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Abstract: Bio-based polyol polyesters are biodegradable elastomers having potential utility in
soft tissue engineering. This class of polymers can serve a wide range of biomedical applications.
Materials based on these polymers are inherently susceptible to degradation during the period of
implantation. Factors that influence the physicochemical properties of polyol polyesters might be
useful in achieving a balance between durability and biodegradability. The characterization of these
polyol polyesters, together with recent comparative studies involving creative synthesis, mechanical
testing, and degradation, have revealed many of their molecular-level differences. The impact of
the polyol component on the properties of these bio-based polyesters and the optimal reaction
conditions for their synthesis are only now beginning to be resolved. This review describes our current
understanding of polyol polyester structural properties as well as a discussion of the more commonly
used polyol monomers.

Keywords: polyol; polyol polyesters; hyperbranched polymers; structural tailored-cut biopolymers;
physical properties

1. Introduction

The demand for biodegradable polymers in medical uses, such as the delivery of therapeutic
drugs and tissue engineering, has inspired scholars in the material research community to develop
new synthetic polymers. Relative to metals and ceramics, synthetic biodegradable polymers provide
extra flexibility that can be adjusted to optimize tissue response, biodegradability, biocompatibility,
and physical properties. In the past few decades, significant progress has been made in the design,
synthesis, and use of biodegradable polymers for biomedical applications, such as drug delivery and
tissue engineering [1-4]. The widespread application of polyesters as biodegradable polymers can be
attributed to their many advantages [5,6].

Many examples of the use of polyester scaffolds as thermoplastics and thermosetting plastics
are described in the literature [7,8]. A problem encountered with semicrystalline thermoplastic
materials is the presence of crystalline regions that possess both crystalline and amorphous domains.
This heterogeneity in morphology can lead to mechanical strength losses that are non-linear [9].
However, cross-linking of thermoset materials often leads to decreased crystallinity or fully amorphous
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materials with linear degradation rates and predictable mechanical strength loss. Furthermore,
thermoset polyesters can offer enhanced performance in combination with improved thermal stability,
chemical resistance, and structural integrity [10].

Polyol polyester polymers made from renewable resources, such as vegetable oils, sorbitol,
diacids, and cellulose, can be used to reduce the high demand for petrochemical products and
their harmful effects on the environment. They contribute to a large number of applications such as
elastomers, sealants, and adhesives, to name a few. They are generally environmentally degradable
and, during prolonged contact with tissues, polyol polyesters hydrolyze to the natural building blocks
they were built from [7].

Hyperbranched polyol polyesters include both macromolecular structures and dendrimers.
Dendrimers are a class of highly branched monodisperse macromolecules having regular cascading
structures (Figure 1). In contrast, macromolecular structures have also been designed with random
hyperbranched structures with highly disperse molecular weight distributions along with structural
defects. Hyperbranched polymers contain a large number of branch points with many functional end
groups. One of the earliest studies on hyperbranched polymers was by Flory, in which he describes
the critical gel point of an AB, type hyperbranched polymer [11]. Since then, many attempts have
been undertaken to avoid gelation between difunctional groups (A;) and trifunctional (B3) monomers.
By the addition of solvents, dilute reaction systems result that increase the molecular weights achieved
prior to gelation [12-16]. Enzyme selectivity has been used to achieve relatively higher polyol polyester
molecular weights with slower onset of branching while, in some cases, circumventing gelation [17-19].
Critical attributes of hyperbranched polyol polyesters are their high solubility and ability to install
reactive functional groups at terminal units, and built-in reactive function. Their compact structure
leads to relatively low solution viscosities and a molten state with little or no chain entanglements.
Traditional synthetic routes to dendritic hyperbranched polyol polyesters require multiple steps.
This is due to the need for protection—deprotection chemistry and purification processes that make
large-scale synthesis quite difficult and inefficient. In contrast, hyperbranched polyester synthesis,
without protection—deprotection chemistry, results in high molecular mass dispersity indices (Dyf) with
heterogeneous branched structures. The Py of hyperbranched polymers depends on the functional
group conversion (p), which eventually leads to cross-linked structures composed of a large number of
functional end groups. The chemical structure of polyol polyesters dramatically impacts its ability to
exhibit good adhesion properties, which is believed to result from a mixture of hydrogen bonding
interactions between the polymer and a substrate.

Lo

Figure 1. Dendritic hyperbranched polyol polyester structure.
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Generally, polyol polyester synthesis occurs by the polycondensation of polyols and polyacids
with or without a catalyst or solvent. The crystallinity, physical properties, degradation behaviors,
and biocompatibility can often be modified by simply adjusting the monomer structure and feed ratio.
Subsequent cure conditions can be used to create and/or increase the cross-link density.

The purpose of this review is to summarize polyol polyester-based biodegradable polymers
synthesized from different types of polyols and to relate the structure of selected building blocks to the
resulting physical, mechanical and biological properties. The emphasis of polyol polyesters discussed
will be those with strong potential for use in biomedical applications. Structural parameters are used
to regulate biodegradation rates, biocompatibility, and physico-mechanical properties. Furthermore,
the conversion of polyol polyester prepolymers to thermoset materials has been an important strategy in
designing amorphous soft materials with low glass transition temperatures Ty (i.e., <37 °C). This review
will also discuss how polyol polyester structures can be adjusted to closely mimic the properties of
natural tissues.

2. Polyols

A large family of polyols are sugar alcohols with variable chain length and stereochemistry
(Figure 2). For example, glycerol, erythritol, and sorbitol have 3, 4, and 6 carbons and hydroxyl groups,
respectively. By selecting polyols with higher chain lengths and the number of hydroxyl groups in
polyol copolymerizations with diacids, the corresponding polymers formed will be decorated with
a higher number of hydroxyl moieties along chains and in branches. These have been studied as
polyol building blocks along with diacids for polycondensation reactions to prepare polyol polyesters.
Reaction time, temperature, and pressure, as well as the ratio of each starting monomer as well as
other factors can influence the properties of resulting polymers [20]. Lipase catalysis has been used for
preparing high molecular weight polyol polyesters [21]. Over the past few decades, the most intensively
studied enzymatic biocatalyst has been lipase B from Candida antarctica (CALB). Lipases require no
cofactors, and they function under mild conditions that avoid side reactions such as sorbitol cyclization,
and with selectivity that provides a degree of control on branch reactions and circumvents to a large
extent cross-link reactions due to steric hindrance at the active site [21]. The fact that cross-link reactions
occur at low frequency permits the synthesis of polyol polyesters of substantially higher molar masses
than by using conventional chemical catalysts [22].
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Figure 2. Typical polyol monomers.
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2.1. Glycerol

Glycerol, 1,2,3-propanetriol, is a by-product of large-scale biodiesel production, for which new
applications are being sought. It is a simple triol with a melting temperature (T,) of 17.8 °C and a
boiling point of 290 °C [23]. At room temperature, glycerol is a transparent, viscous, and hygroscopic
liquid. It is the most commonly used bio-based monomer. Although glycerol could be burnt as a
fuel, it can also be processed into high-value products. Glycerol is a fundamental component of plant
oils that has received approval for medical applications by the U.S. Food and Drug Administration
(FDA) [24]. As a miscellaneous and general food additive, it is generally regarded as safe (GRAS), and it
is also allowed to be used in food packaging. Glycerin is found in the form of triglycerides that consist
of glycerol esterified with three fatty acid molecules. Glycerol is a biocompatible monomer even at high
concentrations, and it has little effect on enzymatic or metabolic processes [25]. As a result, glycerol is
widely used as a cryoprotectant, where glycerol is dissolved in water and reduces freezing damage of
various biomolecules [26]. Since glycerol consists of two primary and one secondary hydroxyl group,
it serves as a trifunctional monomeric building for the synthesis of a wide range of hyperbranched
polymers. When glycerol triol reacts with diacid monomers with non-selective catalysts, an increase in
the functional group conversion ultimately leads to a three-dimensional cross-linked network. Again,
without a selective catalyst, the primary hydroxyl groups are consumed more rapidly than those at
the secondary position. Three hydroxyl groups of glycerol, one secondary and two primary hydroxyl
groups, do not have the same reactivity [27]. For example, in the synthesis of glycerol-adipic acid
polyester, the relative reactivity of each primary hydroxyl is about 3.3 times that of the secondary [28].
Typically, the diacid reacts with the primary hydroxyl groups and, to a lesser extent, with the secondary
hydroxyl group. In the second step, since the concentration of primary hydroxyl groups is greatly
reduced, the esterification of secondary hydroxyl groups is dominant, forming cross-links between
linear polyester chains.

2.2. Erythritol and Threitol

In the early 1980s, a new food ingredient, erythritol, was developed by Cerestar to meet the growing
consumer demand for health and calorie-controlled foods [29]. Erythritol, (2R,3S)-butane-1,2,3,4-tetrol,
is a natural constituent in grapes, peaches, pears, watermelons, and mushrooms. It is a white,
anhydrous, non-hygroscopic, and crystalline substance that has an appearance similar to sucrose.
It has a Tg at —42 °C and a Ty of 121 °C [30]. Erythritol can be prepared from the glucose polymer,
starch, through a completely biotechnological process, by combining an enzymatic conversion and
fermentation. Erythritol has 2- to 4-times the digestive tolerance of other polyols, such as sorbitol,
mannitol, xylitol, or glycerol. It is approved for use in foods in many countries, and the list keeps
growing as does its range of applications [29]. Erythritol is a sweet polyol that has health benefiting
properties, such as being tooth-friendly and safe for use by people with diabetes [31]. It has two
additional critical nutritional advantages: a zero caloric value and an acceptable tolerance in humans.
This tolerance results from its low molecular weight, which allows erythritol to be rapidly absorbed
from the small intestine and then excreted in the urine. Excess erythritol can also be excreted unchanged
without adversely impacting the normal metabolic pathways in humans.

Many polyol polyesters are based on erythritol which, with respect to its small molecular size and
multifunctionality, provides unique characteristics. The low solubility and crystallinity of erythritol
make it suitable for many commercial applications. The new commercially available chiral additives
p-threitol ([2R,3R]-1,2,3,4-butanetetrol) and r-threitol ([25,35]-1,2,3,4-butanetetrol), are enantiomers
produced from the reduction of tartaric acid.

2.3. Xylitol

Xylitol, (2R,3R,4S)-pentane-1,2,3,4,5-pentol, is a sugar alcohol that occurs naturally in fruits and
vegetables, such as lettuce, broccoli, raspberries, grapes, bananas, and strawberries. It is also found in
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yeast, lichen, mushrooms, and seaweed. In industry, xylitol is produced by chemical hydrogenating
p-xylose to xylitol [32]. An alternative route to xylitol is by fermentation using a metabolically
engineered yeast [33]. Xylitol is an intermediate product of carbohydrate metabolism, and adults
produce between 5 and 15 micrograms of xylitol per day.

2.4. Sorbitol, Mannitol, and Galactitol

Sorbitol ([25,3R,4R,5R]-hexane-1,2,3,4,5,6-hexol), mannitol ([2R,3R 4R ,5R]-hexane-1,2,3,4,5,6-hexol),
and galactitol ([2R,35,4R,55]-hexane-1,2,3,4,5,6-hexol) are natural hexitols that exist in acyclic (alditol)
or cyclic (cyclohexitol) forms. The most well-studied natural polysaccharide-derived hexitol is sorbitol,
also known as glucitol. Industrially, sorbitol is produced by the catalytic hydrogenation of glucose
or sucrose with hydrogen or nickel catalyst at high temperature [34-36]. It can also be produced
by electrochemical reduction of dextrose under alkaline conditions [35]. In 1872, French chemists
first discovered sorbitol in the berries of mountain ash. Most sorbitol is made from potato starch or
cellulose, but it can also be found in nature (e.g., apples, pears, peaches, and plums). Similar to xylitol
and erythritol, sorbitol has a negative heat of solution. Like many other sugar alcohols, the FDA also
recognizes sorbitol as safe. It is also increasingly used as a moisturizer, softener, and anti-crystallization
agent [34,37]. Sorbitol is also the basis for commodity chemicals and renewable resins. The advantage
of using sorbitol as a monomer is that it is derived from an inexpensive renewable resource and has six
hydroxyl groups (2 primary and 4 secondary) that, when reacted with a diacid using non-selective
catalysts, at sufficiently high functional conversion, will form cross-linked networks that can be
specifically adjusted to manipulate cross-link density and more.

Mannitol is a diastereomer of sorbitol. In 1939, Madinaveitia and Orozco first reported the
presence of mannitol in Atrovirens leaves. The accumulation of this hexitol is mainly observed in
angiosperms, especially in the celery family. Mannitol is used as a carrier and stabilizer in tablets
and as a diuretic in neuropharmacology. Mannitol is also an antioxidant, and it is claimed it protects
against the development of colon cancer [38—40]. Galactitol, also known as dulcitol, is the reduction
product of galactose. Galactitol-based polymers can be synthesized by polyesterification reactions
with various dicarboxylic acids (such as adipic acid and dodecanedioic acid). They also showed good
cytocompatibility and potential for use in bone tissue engineering [41].

2.5. Maltitol

Maltitol (4-O-a-p-glucopyranosyl-p-glucitol), with nine hydroxyl groups, has also been used
for the synthesis of polyol polyesters. Maltitol is produced by hydrogenation of maltose, which is
obtained in converting starch to maltose. Industrially, maltitol is one of the most commonly produced
polyols with an approximate volume of 160,000 metric tons [42]. Maltitol has a Tg of 43.1 °C and a T
of 149.6 °C [43]. It is a non-toxic, cytocompatible, sugar alcohol, and is an endogenous substance in
human metabolism. In addition, due to the presence of its nine hydroxyl groups, it provides a polyol
monomer that can be used to incorporate along chains multiple free hydroxyl groups as well as to
increase the cross-link density of three-dimensional matrices.

3. Polyol Polyesters from Glycerol and Sugar Alcohols (Alditols)

Examples of polyol polyesters that provide a diverse family of controllable structured scaffolds
are described in this section. Polyol polyesters with free functional groups can be further modified to
form many different biomaterials providing improved control of biomaterial interaction with cells
and tissues.

3.1. Glycerol-Based Polyesters

Glycerol-based polyesters with unreacted hydroxyl groups are suitable for further functionalization
after polymerization (Figure 3). Furthermore, their structural characteristics can be varied to meet
performance requirements. Four major strategies have been developed to synthesize glycerol-based
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polyesters. The first is the epoxide ring-opening polymerization between sebacic acid and diglycidyl
sebacate catalyzed by tetrabutylammonium bromide [44]. The resulting polymer has Mn and D
values of 12.9-50.4 kDa and 1.9-8.3, respectively, after being purified by repeated precipitation [45].
The second is the synthesis of linear 1,3-linked glycerol polyesters using a catalyst like diarylborinic acid
(Ar2BOH) [46]. Without further purification, the resulting polymer has an Mn and D of 19.2 kDa and
1.2, with only 6% of 1,2-linked glycerol polyesters. The third is the enzyme-catalyzed polycondensation
reaction between glycerol and diacid/diester [19,47-57]. Finally, glycerol polyol polyesters were
synthesized without the addition of a catalyst [58]. That is, they are self-catalyzed by acid groups
present in the reaction mixture.

Abbreviations Names Structures

PGS Poly(glycerol sebacate) M )‘LM/U\ %/

PGA Poly(glycerol adipate) /m/\ M g\
PGSuc Poly(glycerol succinate) k\f\ L/\H/ g\

PGGlu Poly(glycerol glutarate) /m/\ M %/

PGSub Poly(glycerol suberate) W\ JMM\ %/
PGAz Poly(glycerol azelate) /k\(\ )’LM/U\ %/

Figure 3. The abbreviations, names, and structures of glycerol-based polyesters.

A prominent glyceryl polyester used in biomedical applications is polyglycerol sebacate (PGS).
PGS was first reported by the Langer group in 2002 [58]. Since it is flexible as well as elastic, it has
primarily been studied for the replacement of soft tissues. Examples of regenerative tissue engineering
application targets include cartilage, cardiac muscle, and retina [24]. To prepare a PGS prepolymer,
typically, polycondensation reactions are conducted using an equimolar concentration of glycerol and
sebacic acid without solvent, maintaining the reaction temperature at 120 °C under vacuum (1 Torr)
for 24 h, and then the pressure is reduced to 40 mTorr and the reaction is continued for 5 h. To promote
cross-linking, the prepolymer is maintained at 120 °C under 40 mTorr for an additional two days [58].
As discussed above, the method of curing dramatically alters PGS mechanical properties. For example,
Chen et al. determined the correlation between the Young’s modulus and curing temperatures.
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By increasing the curing temperature (110, 120, and 130 °C) the corresponding values of Young’s
modulus were 0.056, 0.22, 1.2 MPa, respectively [59]. Based on these and other studies, variation in the
degree of cross-linking achieved during the curing process has resulted in differences in cross-linked
PGS Young’s modulus of 0.05-1.5 MPa, ultimate tensile strength values of 0.4—0.7 MPa, and a failure
strain of 120—300% [60].

PGS physico-mechanical and biodegradation kinetics have also been tuned by changes in the
relative concentrations of glycerol and sebacate as well as by varying other reaction parameters [60,61].
With the increase of molar ratio between glycerol: sebacic acid from 3:4 to 4:3, the tangent modulus
decreases from 4.5 MPa to 1 MPa when curing for 72 h. Various composite materials have been prepared
using cellulose, carbon nanotubes, and silicon as fillers to change PGS’s physical properties [62-65].

To increase the rate of prepolymer synthesis, Gao et al. bubbled nitrogen through the reaction
mixture to accelerate the evolution of water formed [66]. The resultant polymer was a pale yellow,
highly viscous liquid. Aydin et al. accelerated PGS prepolymer synthesis by a microwave-assisted
process [67]. No purge gas, catalyst, or vacuum was used in the prepolymerization step. These
authors reported that the degree of esterification at 130 °C in 15 min was equivalent to a
conventional 6 h polymerization reaction. Tensile tests showed that the PGS elastomers synthesized
via microwave-assisted process have a Young’s modulus of 0.50 + 0.02 MPa, tensile strength of
0.27 + 0.06 MPa, and elongation at break of 180%. The change in properties is triggered by intensive
glycerol evaporation which alters glycerol to SA ratio during the prepolymerization.

An alternative approach to PGS and PGS analog synthesis used as catalyst Candida antarctica lipase
B (CALB) [68,69]. The CALB used is immobilized on a macroporous methyl methacrylate cross-linked
resin. Most commonly, the immobilized CALB catalyst is Novozym 435 (N435), a commercial product
of Novozymes. N435-catalyzed synthesis of glycerol polyesters is usually performed by a one-pot
synthetic method [70-72]. Lang et al. described a family of poly(glycerol sebacate) (PGS) analogs
where glycerol was replaced in part with octanediol (O) in bulk copolymerizations [68]. The new PGS
analogs, PGOS polymers, showed tunable molecular weights with an M, and My, of 9500 and 92,000,
as well as excellent electrospinning properties. By varying the molar ratio of glycerol to octanediol
from 1:1 to 1:4, the peak melting temperature increased from 27 to 47 °C. X-ray diffraction (XRD) was
also used to confirm PGOS'’s ability to crystallize. Perin et al. also studied the kinetics, chain growth,
and branching behavior of enzymatic synthesis of poly(glycerol sebacate) using N435 [69]; 16 kDa
of mass average molecular weight and 41% of the degree of branching were achieved in acetone at
40 °C. The solvent choice impacts the solvation of the polymer coil and the structure of the enzyme,
which in turn affects the degree of polymerization. CALB-catalyzed esterification reaction and acyl
transfer occur simultaneously. They found out that the latter is mainly responsible for the esterification
of secondary hydroxyl groups and produces branched chains.

While PGS prepolymers are most often cross-linked during the curing step by forming ester
links between chains, other cross-linking strategies have been pursued. In one example, methylene
diphenyl diisocyanate (MDI) was used as a cross-linking agent that reinforces Young’s modulus by
adding molecules to the PGS matrix at the molecular level due to rigid phenyl groups. The resulting
material showed an increase in Young’s modulus from 0.34 + 0.04 to 1.62 + 0.09 MPa while retaining its
elasticity [73,74]. Photopolymerization methods as well as the introduction of temperature-sensitive
side chain moieties have also been used for in vivo applications. In one example, a PGS prepolymer
was decorated with acrylate groups and then cross-linked by ultraviolet light with a 0.1% (w/w)
photoinitiator [75]. By changing the degree of acrylate (DA), these networks exhibit Young’s modulus
of 0.05-1.38 MPa, ultimate strength of 0.05-0.50 Mpa, and elongation at break of 42-189%.

Poly(glycerol adipate) (PGA) is obtained from glycerol and adipic acid (A), and can be modified
with stearic acid (S) to form PGAS. Kallinteri and coworkers synthesized PGA copolyesters in 2005
for nanoparticle drug delivery systems [54]. Depending on the catalyst and reaction conditions,
PGA could be prepared in the form of linear as well as hyperbranched architectures. Under enzymatic
catalysis, using an enzyme with selectivity for the primary hydroxyl groups of glycerol, the yield of
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the polycondensation reaction was very high (90-95%) [47]. The resulting polymer has an My, range
from 3-14 kDa with D values of 2.25-3.10. Due to steric hindrance encountered within the catalytic
cleft of the enzyme, linear PGA can be obtained without the protection and deprotection process.
As discussed in the PGS section, the most widely used enzymatic catalyst for PGA synthesis is N435.
Many researchers have interrogated how the reaction temperature alters PGA’s degree of branching
and the molecular weight synthesized by N435 catalysis [76,77]. Taresco et al. found that when the
reaction temperature increased from 50 to 70 °C, the degree of branching could be increased from 5%
to 30%. Without further precipitation, after 24 h polymerization, the average molecular weight of PGA
decreased from 13.0 to 5.2 kDa, and D values increased from 2.7 to 4.2 as the temperature of synthesis
increased from 50 to 70 °C.

The synthesis of the hyperbranched PGA elastomer was carried out through a catalyst-free
polycondensation at 150 °C under atmospheric pressure for 17 h, followed by applying a vacuum of
3 mm Hg for 4 h [78]. PGA prepolymer was then cross-linked by heating at 120 °C for 100 h to prepare
an elastomeric material. The PGA synthesized at a G/A molar ratio of 1:0.6 afforded a polymer with an
Mw, D, and Ty of 4500, 2.2-2.5 °C, while PGA prepared at a G/A molar ratio of 1:1 afforded a polymer
with an My, D, and Ty of 12,500, 7.3, and —15 °C. Comparison of PGA synthesized with a G:A ratio of
1:1 and 1:0.6 molar ratio showed that the former has a higher Young’s modulus and tensile strength.
Analysis of the thermal stability of hyperbranched PGA, prepared at a 1:1 molar ratio of G/A, showed
no obvious thermal degradation up to 200-300 °C [79].

Linear PGA is an amorphous, amphiphilic, water-swellable, high-viscosity polymer synthesized
by the enzymatic method mentioned above [77]. Linear PGA has shown promise as a polymer matrix
for drug delivery. PGA nanoparticles (NPs) showed no hemolytic activity at concentrations up to
10 mg/mL [80]. PGA-based NPs were non-toxic to HepG2 cells. An advantage of linear PGA over
PLA and PLGA is that the former can be decorated with various acyl groups, thereby changing the
polymers” hydrophobicity [80-84]. This is particularly valuable when considering that incorporating
acyl side groups can be used to tune the hydrophilic-hydrophobic character of NP matrices to increase
the loading efficiencies and thereby accommodate a diverse range of drugs [56,77,85-87].

Succinic acid (SuA), a white odorless solid that readily dissolves in acetone, ethanol, and water, is a
highly abundant four-carbon aliphatic diacid that is available from natural sources. Both succinic acid
and glycerol are classified by the FDA as safe for medical applications. Carnahan et al. first reported
the synthesis of poly(glyceryl succinate) (PGSuc) dendrimers [88]. This was accomplished by adopting
the protecting group benzylidene acetal that can be removed selectively and under mild conditions.
All the dendrimers prepared were amorphous solids and, as the dendrimer molecular weight was
increased from 1500 to 8720 (SEC molecular weights relative to polystyrene standards), their Ty
increased from —20.2 °C to —13.5 °C [89]. Agach et al. reported the catalyst and solvent-free synthesis
of PGSuc hyperbranched oligoesters with varied molecular weights and topological features [90].
Polymerizations were performed at 190 °C, under ambient pressure, for 24 h under constant mechanical
stirring. End group measurements were performed as the reaction proceeded, and 93-97% of the
carboxyl groups were esterified within 12 h depending on the Gly/SuA molar ratios. To increase
the quantity of unreacted hydroxyl groups, higher Gly/SuA molar ratios were used to obtain My,
with 1116 g mol™! without fractionation. All polyesters were amorphous with T values between
—15.2 °C and —29.9 °C. Wyatt et al. synthesized prepolymers by reacting glycerol and succinic acid
at relatively lower temperatures by using Ti(OC4Hy), as catalyst [91]. Bulk polymerizations were
performed using equimolar quantities of glycerol and succinic acid, under reduced pressure (~150 Pa)
with 0.15% w/w Ti(OC4Hg)4 catalyst. The reactants were maintained at 60 °C for 1 h, 100 °C for 2 h,
120 °C for 2 h, and 150 °C for 11 h. A hyperbranched prepolymer with an average percentage branching
of 62% was obtained with no observed gelation. The My, D, and degree of polymerization after
fractionation by dissolving in methanol and passing through a column to remove any residual starting
materials and catalyst, were 992 gmol~!, 1.28, and 3.0, respectively. The products were obtained
at an average yield of 62%. These authors also reported PGSuc that was side-chain modified and
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synthesized with the addition of other comonomers. Baharu et al. prepared elastic copolyesters by
the catalyst-free copolymerization of succinic acid, azelaic acid (C9-aliphatic diacid), and glycerol.
The resulting molecular weight of poly(glycerol/azelate/succinate), PGAS increase in the following
order: p(G1Ag.7550.25) > p(G1Ag5505) > p(G1A1Sp) with varying initial azelate/succinate mole ratios [92].
The PGAS copolymer was synthesized in bulk by melt polycondensation at 160-165 °C in a silicon
oil bath for 2 h under a constant stream of nitrogen. The PGAS synthesized at an A/S molar ratio
of 1:0 afforded a polymer with an My, M,,, and D of 515 g mol~!, 13883 g mol™1, 26.9, while PGAS
prepared at an A/S ratio of 0.75:0.25 afforded a polymer with an My, My, and D of 3656 g mol™?,
24626 g mol 1, 6.73, respectively. The copolyester Ty was varied from —23 °C to —8 °C by changing the
ratio of comonomers in the feed of azelate/succinate from 1:0 to 0.5:0.5.

Compared to the aforementioned glycerol-based polyesters, poly(glycerol-co-suberate),
poly(glycerol-co-azelate), and poly(glycerol-co-glutarate) have received less attention. Glutaric acid
has been used to produce glyceryl polyester. Wyatt et al. first reported the synthesis of
poly(glycerol-co-glutarate), PGGlu in 2010. [93] Glutaric acid (a C5 aliphatic diacid, also known
as pentanedioic acid) was dissolved in dimethylformamide (DMF) or dimethyl sulfoxide (DMSO),
and then the catalyst 0.15% w/w titanium tetroxide, glycerol, and butanol was slowly added while
maintaining the reaction at 150 °C (22 h) under ambient pressure. The resulting oligoester product
had an M;, and D of 2402 g mol~! and 1.09, respectively. According to their reports, the Tg values of
PGGlu prepared in toluene at 135 °Care —13.9 °C and -13.0 °C, with the G/Glu molar ratios of 1:2 and
2:1, respectively [94]. These hyperbranched polyesters had low tensile strengths (0.41 and 0.62 MPa,
respectively). The values of Young’s modulus were 1.94 and 4.58 MPa, and tensile elongation at break
are 26.9% and 16.3%, respectively.

To the best of our knowledge, the only report on poly(glyceryl-co-suberate), PGSub, is that by
Unnisa et al. [95]. PGSub was synthesized by reacting glycerol and suberic acid at a ratio of 1:1 under
nitrogen flow at 140 °C until the solution becomes homogeneous. The resulting prepolymer was
blended with PVA with a PVA/PGsub mass ratio of 1:0.75, then cured with various amounts of NH;SCN
(0.5,0.6, and 0.7 g) at 60 °C until complete removal of moisture. The film has a Ty value of 84.54 °C for
pure PGsub blend, which further increased to 116.50 °C (0.5 g), 122.35 °C (0.6 g), and 182.21 °C (0.7 g)
by adding NH4SCN.

Wyatt and coworkers disclosed the copolymerization of glycerol and azelaic acid to prepare the
hyperbranched oligomer poly(glyceryl-co-azelate) (PGAz) [91]. Azelaic acid and glycerin were reacted
at a 1:1 molar ratio using titanium (IV) butoxide (0.15% w/w) as catalyst. The reaction mixture was first
maintained at 60 °C under reduced pressure (~150 Pa) for 1 h. Then, the reaction temperature was
increased to 150 °C gradually under reduced pressure (~150 Pa) for 16 h. The synthesized PGAz had My,
and D values of 2316 g mol~! and 1.30, respectively. Kadhum et al. studied PGAz’s thermal properties
with different comonomer feed ratios Az/G 1:2, 1:1, and 2:1, respectively [96]. The decomposition
temperature determined by TGA was above 380 °C, where the most important decomposition occurred
at ~400 °C.

3.2. Erythritol-Based Polyesters

A series of poly(erythritol-co-dicarboxylate), PErD, elastomers were synthesized without the
addition of catalysts or co-reagents [97]. Polymerizations were carried out by melt polycondensation
reactions with «,w-diacids with carbon chain lengths from 5 to 14. Under an argon atmosphere,
the monomer was stirred at 145 °C. After forming a homogeneous melt, the mixture was
stirred for an additional 2 h. Then the pressure was reduced to 2 Torr and the material
continued to be stirred for 7 h. The prepolymer was then precipitated with methanol at —78 °C.
This resulted in the synthesis of poly(erythritol-co-adipate), PErAd; poly(erythritol-co-pimelate), PErPi;
poly(erythritol-co-suberate), PErSu; poly(erythritol-co-azelate), PErAz; poly(erythritol-co-sebacate),
PErSe; poly(erythritol-co-dodecanedioate), PErDo; and poly(erythritol tetradecanedioate), PErMyr.
The prepolymers were further cured at 120 or 140 °C for 3 days. Table 1 lists Ty and Tr, values
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determined by differential scanning calorimetry (DSC)and M,, and D values measured by gel permeation
chromatography (GPC) [97]. An increase in the diacid chain length resulted in a decrease in Tg
from —7.0 to —47 °C. Furthermore, PErSe, PErDo, and PErMyr had melting transitions at 60.2, 63.4,
and 66.0 °C, respectively. By changing the chain length of the diacid, the rigidity and hydrophobicity
of the resulting copolyesters could be adjusted so that the mechanical properties and degradation rate
could be controlled. The molecular weight, as well as the thermal data of prepolymers are listed in
Table 1. The Young’s modulus, ultimate tensile stress, and breaking strain of erythritol polyesters were
0.08-80.37 MPa, 0.14-16.65 MPa, and 22-466%, respectively. The prepolymers are compatible with
imprint lithography, can be used in emulsions, and can be processed by various methods to obtain
nanoparticles and embossed films. In vitro degradation studies for cured films in phosphate-buffered
saline (PBS) at pH 7.4 and 37°C showed the impact of diacid chain length for the series of PErD
copolymers. PErMyr showed the slowest hydrolytic degradation (6.4% wt. loss in 6 weeks), whereas
PErAd was most rapidly hydrolyzed (100% wt. loss in 3 weeks). Human mesenchymal stem cells
(hMSCs) were used to study the in vitro cytotoxicity of PErDA’s in a polymer-extracted medium.
Within 48 h of extract addition, cells were able to reach confluence regardless of the polymer extract
used. The cell culture test with Swiss Albino 3T3 (SA) fibroblasts showed that these erythritol-based
polyesters had good biocompatibility.

Table 1. Molecular weight, Tg, T, and D values for the series of poly(erythritol dicarboxylate)

prepolymers [97].

Prepolymer M /g mol-1 Tg(Tm) b/°C pb?
Poly(erythritol glutarate) 710 -7.0 14
Poly(erythritol adipate) 810 -15.7 1.1
Poly(erythritol pimelate) 790 -18.1 1.4
Poly(erythritol suberate) 860 -214 1.2
Poly(erythritol azelate) 820 -23.6 15
Poly(erythritol sebacate) 1020 -36.9 (60.2) 1.6

Poly(erythritol _
dodecanedioate) 1470 41.5 (63.4) 1.9

Poly(erythritol B
tetradecanedioate) 1450 46.8 (66.0) 22

2 Determined by GPC. ® Determined by DSC.

3.3. Xylitol-Based Polyesters

Xylitol-based polymers have attracted great interest as biomaterials because of their
biocompatibility and biodegradability. For example, poly(xylitol sebacate) shows an in vitro and in vivo
biocompatibility comparable to the widely used biodegradable polymer poly(r-lactic acid-co-glycolic
acid), PLGA. In addition, the mechanical properties and degradation rate of xylitol-containing polyol
polyester can be fine-tuned by adjusting the ratio of xylitol to dicarboxylic acid. Furthermore,
the polymer properties can be further manipulated by altering the cure time as well as the
dicarboxylic acid chain length. Many potential medical uses of xylitol-based polyesters have been
reported. These include poly(xylitol-co-maleate-co-PEG) (PEG-Polyethylene glycol) hydrogels for cell
encapsulation and poly(xylitol sebacate) fiber networks for electrospinning using the core-shell method.

In 2014, Dasgupta et al. prepared a series of xylitol-based polyesters (Figure 4) [98]. The effect of the
diacid chain length (C4, C6, C8, C10) comonomer stoichiometric ratio, and post polymerization curing
conditions (time, temperature) on the physicochemical properties of the corresponding copolymers
was studied. The polymerization was completed by melt polycondensation at 150 °C for 2 h under
a nitrogen atmosphere. Then, vacuum (-700 mmHg) was used for 1424 h to increase the yield.
The prepolymers were further cured for 3 or 14 days under —700 mmHg vacuum. The prepolymers
were all white, slightly soluble in ethanol, acetone, chloroform, and more soluble in dimethylsulfoxide
and dimethylformamide. The DSC data show that, as the dicarboxylic acid chain length increases,
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the Tg decreases (48 °C to 2 °C) due to increased chain rigidity associated with hydrogen bonding.
They also reported that an increase in the diacid chain length results in slower xylitol-based copolyester
hydrolysis. That is, with succinic and sebacic diacids, the extent of weight loss in 20 mL PBS at pH 7.4
and 37 °C in an incubator shaker at 100 rpm was 100% and 4% in seven days. Furthermore, the Young’s
modulus of these xylitol-based copolyesters with succinic acid, adipic acid, suberic acid, and sebacic
acid were in the range from 0.5 MPa to 15 MPa, respectively.

o o OH OH OR o 0
o " A
HO W OH 0 n 9 /m
OH OR OR

Dicarboxylic acid Xylitol Poly(xylitol dicarboxylate)
where n=2: succinic acid, n=4: adipic acid, n=6: suberic acid, n=8: sebacic acid

Figure 4. Schematic of synthesis of a series of xylitol-based polyesters [98].

Li et al. compared the properties of poly(glycerol-co-sebacate) (PGS) and poly(xylitol-co-sebacate)
(PXS) [99]. The monomers reacted in a 1:1 molar ratio at 130 °C for 24 h under a nitrogen atmosphere.
The prepolymers were then cured at 130 °C under vacuum for 1 to 12 days in the form of thin film.
The elasticity of PXS was about twice that of their PGS analogs having the same cross-link density
(~200% vs ~100%). These changes in properties were attributed to relatively longer and more orientable
xylitol monomers, compared with glycerol molecules. Despite the fact that cured PXS networks should
have substantially more free hydroxyl groups than that of PGS and therefore absorb more water into its
network, this did not result in a more rapid enzymatic degradation of PXS when incubated at 37 °C in
a tissue culture medium. However, after 35 days of in vitro incubation, the weight loss of PGS samples
cross-linked at 130 °C for 7 days was on average 13%, while the weight loss of PXS samples cross-linked
at 130 °C for 9 days was about 8%. This result was attributed by Li et al. to the steric hindrance of the
longer polyol that protects the ester bond from attack by water molecules. An alternative explanation
is that the hydrolysis of PXS is slowed since it exhibits a more extensive hydrogen bonding network
that increases the difficulty of water penetration into the matrix. Thus, changing the polyol structure of
polyol polyesters is a valuable tool to modulate physico-mechanical and hydrolytic behavior.

Taylor and Darin used the following equations to obtain the dependence of the elongation at
break (Amax =1 +€max) and UTS (Ultimate tensile strength) on the strand density:

Amax = kly_(l5 1)

1
(1+ k3>\§nax)°'5

where v is the strand density, and the theoretical value of exponentnis 0.5. The constants k;, ky, and k3 in
this equation were determined by the polymer network structure. Generally, k; represents stretchability
(elongation), and k, represents the resistance (strength) of the network to deformation. In Li et al.
work, the k; and k; values of the PXS network are both higher than that of the PGS, which indicates
that PXS affords improved elongation properties without loss of deformation strength [99]. The theory
is based on UTS being determined by the degree of strand orientation during deformation and Amax

UTS = kyvil-— (2)

being determined by the average Gaussian end-to-end distance of the network strands, proportional to
the square root of the number of strands. Most importantly, under the same cross-link density, PXS is
easier to stretch than PGS. The higher UTS of PXS and the better elongation at break, suggests that PXS
can provide more reliable elasticity than PGS when having a similar Young’s modulus.
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3.4. Sorbitol-Based and Mannitol-Based Polyesters

Polyol polyesters built from sorbitol can be synthesized by acid- or base-catalyzed esterification
reactions at elevated temperatures. They can also be prepared by a base-catalyzed transesterification
reaction of sorbitol with fatty acid methyl esters or triglycerides. Sorbitol has the advantage of possessing
a low melting point (95 °C) relative to many other alditols such as erythritol (121 °C) and mannitol
(165 °C). This facilitates copolymerizations of sorbitol with diacids at relatively lower temperatures
where sorbitol forms a liquid phase. As with other sugar alditols, it provides multiple hydroxyl groups
to enhance hydrogen bonding interactions between chains and function as reactive sites to install
various functional groups. Since base-catalyzed reactions result in undesirable, highly colored products,
it is preferred to synthesize sorbitol-based polyesters by acid-catalysis. Mei et al. synthesized a family
of sorbitol-based polyesters using a one-pot lipase-catalyzed polycondensation [100]. Their data
demonstrated that the resulting sorbitol-containing polyester surface caused cell behavior similar to
the PCL control. The monomers were mixed at 120 °C first to achieve a homogenous solution, then the
temperature was decreased slowly to 95 °C, and N435 was added to the reaction. The vacuum (13.33 Pa)
was applied, and 90 °C was reached for 48 h. The resulting poly(apidic acid-co-octanediol-co-sorbitol)
(PAOS) was then precipitated in cold methanol/chloroform. The highest My, obtained was 117 kDa
with S:O:A ratio of 30:70:100, which has a D value of 3.4. The NIH 3T3 fibroblast cell line was chosen
for the cytocompatibility study to investigate attachment, viability, proliferation, etc. The study of cell
behavior indicated that different compositions of sorbitol-containing polyesters and PCL had similarly
high cytocompatibility, which indicated the functional PAOS backbones could be used to develop a
platform for more advanced biomaterials [100].

Fu et al. synthesized a set of poly(sorbitol adipate) and copolymers of octanediol adipate and
sorbitol adipate using N435 as catalyst [101]. The reaction was performed in bulk at 90 °C under
reduced pressure (40 mmHg) for 48 h. They found that with the increase of sorbitol content in the
copolymer, both melting and crystallization temperatures decreased. The glass transition temperature
values increased from —28 °C to 7 °C as the amount of sorbitol in the copolymer increased from 0% to
30%. The DMA data indicates that poly(sorbitol adipate) is an amorphous polymer, while all other
copolymers are semicrystalline. The DSC (Differential scanning calorimetry) and WAXS (Wide-angle
X-ray scattering) analysis proved that introduction of the hydrophilic polyol units in the polyester
chain hinders crystallization.

Bruggeman et al. (2008) synthesized poly(sorbitol-co-sebacate) (PSS) by melt polycondensation
without catalyst [102]. The monomer was added at 150 °C under inert gas and stirred for 2 h.
Then vacuum (~50 mTorr) was applied for another 2-12 h to yield the prepolymers. This method for
PSS synthesis is simple and has the advantage that products formed lack catalyst impurities. The PSS
synthesized at a sorbitol/sebacate molar ratio of 1:1 afforded a polymer with an M;,, M, and D of
3987 g mol~!, 6093 g mol~?, 1.5, while PSS prepared at a sorbitol/sebacate ratio of 1:2 afforded a polymer
with an My, My, and D of 8990 g mol~1, 23013 g mol1, 2.6, respectively. The prepolymers were further
cured at 120 °C under vacuum (~2 Pa) for 4 days. However, the tensile strength and modulus of the
resulting PSS were low, limiting its application in situations requiring higher load-bearing materials.

Multifunctional monomers such as citric acid or tartaric acid have been incorporated to act as secondary
cross-linkingcross-linking agents to improve the mechanical properties of PSS (Figure 5). The resulting
polyesters, poly(sorbitol-co-citrate-co-sebacate), PSCS, and poly(sorbitol-co-tartaric-co-sebacate),
PSTS showed significant improvements in mechanical properties [103]. The Young’s modulus, tensile
strength, and elongation at break of the PSTS are 7.15 + 0.38 MPa, 0.45 + 0.04 MPa, 578.36 + 51.27%,
while and PSCS has a value of 462.65 + 34.21 MPa, 20.32 + 2.54 MPa, and 25.94 + 4.02%, respectively.

Kamaruzaman et al. synthesized poly(sorbitol-co-azelate) (PSAz) in bulk catalyzed by tin oxide
(ii) [104]. They found that the preferred reaction conditions to achieve the highest monomer conversion
are a temperature of 160 °C, sorbitol to azelaic acid molar ratio of 4:1 and 2 wt% catalyst content.
After a 6 h reaction, the azelaic acid conversion reached 72%. Gustini et al. reported N435 catalyzed
copolymerizations of sorbitol, 1,10-decanediol, and a series of dicarboxylic acids under solvent-free
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conditions [105]. The molecular weight of the corresponding polyesters was a function of the reaction
time, enzyme loading, and reaction stoichiometry. The color of the polyesters obtained varied from
white to yellowish with My, values between 4 and 6 kg mol~!. Thermal analysis by DSC revealed that
the copolymers are amorphous materials with Tg around —50 °C and T, around 30 °C. The temperature
for the maximum decomposition rate was between 330 °C and 410 °C.
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Figure 5. Structure of poly(sorbitol-co-citrate-co-sebacate) (PSCS) and poly(sorbitol-co-tartaric-co-sebacate)
(PSTS) where R groups are either esters or free hydroxyl moieties.

3.5. Maltitol-Based Polyesters

Natarajan et al. reacted maltitol with various dicarboxylic acids (adipic acid, dodecanedioic acid,
and suberic acid) with variation in the comonomer stoichiometry (Figure 6) [106]. Prepolymer synthesis
was performed by a simple melt condensation at 180 °C for 2 h with continuous nitrogen purging.
A two-day post-polymerization process was then conducted in a vacuum oven at 120 °C and 700 mm
Hg. The resulting cross-linked materials were subjected to a hydrolytic degradation study in PBS
(pH 7.4) at 37 °C. These studies revealed that all the maltitol-containing copolyesters follow first-order
degradation kinetics measured by weight loss measurements as a function of time. Both degradation
and dye release studies using the above described series of copolyesters had slower degradation
and dye release kinetics with increased diacid chain length. Also, Natarajan et al. disclosed that
hydrolytic degradation and dye release rate increase when the molar ratio of maltitol: diacid increased.
In vitro cytocompatibility studies conducted using MC3T3-E1 cells are promising as they indicate the
copolyesters are cytocompatible. Studies on these maltitol-based biodegradable polyesters show good
cell compatibility that is suitable for bone tissue engineering.
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Figure 6. Reaction scheme for the synthesis of poly(maltitol-co-adipate), poly(maltitol-co-suberate),
and poly(maltitol-co-dodecanedioate) where R groups are either esters or free hydroxyl moieties [106].
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3.6. Cross-Linking Polyol polyesters

The control over the degree of cross-linking and the proper selection of cross-linkers is critical
in synthesizing structurally tailored polyesters scaffolds that meet specific mechanical properties,
i.e.,, Young’s modulus, ultimate tensile strength and elongation at break, degradation and swelling
behaviors required for an intended tissue engineering application [107,108]. Moreover, the selection of
long polyol building blocks offers a path for cross-linked polyester networks having a high number of
free hydroxyl groups that can be used for chemical functionalization [109,110].

Cross-linking of polyol polyesters can be achieved by the polycondensation reaction of the pendant
carboxyl and hydroxyl groups of the prepolymer chains in absence of catalyst, in a process known as
thermal cross-linking, and usually involves high temperatures (>100 °C), under vacuum for prolonged
curing times [41,111]. Tuning of the mechanical properties of the cross-linked network can be achieved
by modifying the processing conditions, albeit prepolymer structure also determines the probability
and extent of cross-linking [59,111,112]. Unfortunately, given the harsh processing conditions typically
employed, thermal cross-linking poses the following disadvantages: (i) a lack of built in functional
sites for bioconjugation in the resulting thermoset polyester, and (if) an inability to cross-link in situ
in tissue or to incorporate viable cells and thermally sensitive molecules such as drugs and proteins,
features that are highly sought after when designing biomaterials.

This section describes the main strategies proposed to date to overcome the limitations of
cross-linking. The discussion is centered on PGS-based materials to illustrate these strategies. PGS is
one of the most well-studied polyol polyesters and allows a clear picture of the impact that prepolymer
structure and degree of cross-linking have on the physical properties of the resulting cross-linked
networks. These properties can be varied to suit a wide range of applications for a particular prepolymer.

One alternative to thermal cross-linking is photo-induced cross-linking [113]. Incorporation
of ultraviolet (UV) sensitive units along chains or as end chain groups by direct polymerization of
unsaturated building blocks (e.g., itaconic acid) as well as UV-sensitive moieties such as acrylates and
methacrylates through modification of the terminal and pendant hydroxyl groups of polyol polyester
prepolymers, enables a more fine-grained level of control of cross-linking, and consequently of the
mechanical properties [110,114-121]. By this approach, it is possible to prepare cross-linked polyester
3D networks under mild conditions and with significantly faster curing times (minutes versus days)
upon exposure to UV light. For example, Nijst et al. first synthesized a photocurable PGS-derived
elastomer, poly(glycerol sebacate) acrylate (PGSA), by the chemical modification of PGS prepolymers
(M, =6500g mol~1, M,, = 23,000 g mol™!, and P = 3.5) with acrylate moieties derived from the acyl
substitution reaction between acryloyl chloride and the hydroxyl groups of PGS prepolymer [75].
PGS prepolymers were prepared at an equimolar ratio of glycerol and sebacic acid and used without
further purification. Acryloyl chloride reacts preferentially with the hydroxyl groups of glycerol
rather than with the carboxyl groups of sebacic acid. PGSA with degrees of acrylation (DA) from
0.17 to 0.54 were obtained by modifying the acryloyl chloride: hydroxyl groups ratio in the feed
and further cured at room temperature via free-radical mechanism after adding a photoinitiator and
exposing it to UV light for 10 min. The Young’s modulus and ultimate tensile strength of the resulting
PGSA were linearly proportional to DA, with values ranging from 0.05 MPa (DA = 0.17) to 1.38 MPa
(DA = 0.54) and from 0.05 MPa to 0.50 MPa, respectively. Although the Young’s modulus obtained by
this method falls within the typical range of thermally cured PGS, taking advantage of the presence
of UV reactive groups along the polyester chains in PGSA, the authors were able to widen Young's
modulus, ultimate strength, and elongation ranges by its copolymerization with poly(ethylene glycol)
diacrylate macromers (700 g mol~!). By increasing the concentration of PEG diacrylate, the Young’s
modulus could be adjusted to range from 0.6 to 20 MPa, the elongation from 60% to 4%, and the
ultimate strength from 0.27 MPa to 0.89 MPa. The degradation rate of photocured PGSA was dependent
on DA, and photocured PGSA-PEG acrylate copolymers showed a slower in vitro degradation rate
compared to photo-cured PGSA (DA = 0.31) and even slower compared to thermally cross-linked
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PGS. This can be explained by the presence of alkyl cross-links in PGSA-PEG and PGSA in contrast to
thermally cross-linked PGS, in which degradation is facilitated through hydrolysis of the ester bonds.

Building on this work, Burdick and co-workers prepared PGSA and studied the relationship
between the molecular weight and percentage of acrylation of prepolymers, and the bulk properties of
the resulting photo-crosslinked networks [116]. The mechanical properties could be tuned by adjusting
both the percentage of acrylation (9% to 88%) and the molecular weight of the prepolymers (M, from
4000 g mol~! to 23,500 g mol™!). An increase in the percentage of acrylation led to an increase of
the Young’s modulus and a decrease of the elongation at break as a result of a greater number of
cross-link sites formed. For a given percentage of acrylation, higher molecular weights resulted in
similar Young’s modulus values, but more elastomeric-like features. The Young’s modulus range
for photocured PGSA was wider than that reported by Nijst, varying from 0.15 MPa up to 30 MPa,
expanding the range of applications from elastic and soft tissue (e.g., cardiac tissue) to less elastic and
stiff tissue (e.g., bone tissue) applications. Moreover, the authors fabricated complex fibrous scaffolds
from PGSA prepolymers by electrospinning using PEO or gelatin as carrier polymers, and later using
extrusion-based 3D printing techniques, which would otherwise be difficult to obtain by thermal
cross-linking and that better resemble features of natural tissues [116-118]. A small series of PGSA
prepolymers of constant M,, (24.24 kDa), but variable percentage of acrylation (1, 14, and 23.5%)
was synthesized and processed into fibrous scaffolds by electrospinning using gelatin as a carrier
polymer. The mechanical properties of bulk PGSA and PGSA/gelatin scaffolds were then evaluated.
The PGSA/gelatin scaffolds were also evaluated in the hydrated state. Fibrous hydrated scaffolds
exhibited a similar trend in Young’s modulus to bulk samples, increasing with an increased percentage
of acrylation in PGS prepolymers. From the measurements, it was not possible to conclude how the
degree of acrylation influenced the mechanical performance of the scaffolds under more physiological
conditions. In vitro degradation of bulk and fibrous scaffolds was monitored over 18 weeks and
showed the usual correlation with the degree of acrylation.

Recently, Wang and co-workers formulated PGSA inks suitable for digital light processing 3D
printing [122]. The fabrication method that provides high scaffold resolution and processing speed.
The authors investigated the impact of the prepolymer degree of acrylation (17%, 35%, and 75%) on the
mechanical properties of photo-crosslinked PGSA after curing for one minute. Again, and as expected,
the Young’s modulus increased with the degree of acrylation, while the elongation at break decreased.

Analogous to the incorporation of acrylate groups, norbornene groups have also been introduced
to PGS (Nor-PGS) by reacting hydroxyl groups of PGS with 5-norbornene-2-carbonyl chloride [123].
In this case, the resulting Nor-PGS prepolymers were photo-crosslinked by a thiol-ene reaction of
norbornene groups on PGS with a four-arm thiolated cross-linker in the presence of photoinitiator and
UV light and processed into porous scaffolds by 3D-printer. Other photocurable PGS-based polyesters
have also been synthesized by incorporating methacrylate groups by functionalization of the hydroxyl
groups with methacrylic anhydride [121].

The curing conditions control the mechanical properties and the degradation behavior. In
free radical photocuring, the formation of aliphatic backbones, the toxicity of photoinitiators
and residual acrylates and methacrylates, are major limitations in developing biodegradable and
biocompatible photocurable polyesters [124-127]. Therefore, alternatives inspired by naturally
occurring photosensitive cross-linkers are appealing since these compounds additionally exhibit
reversible photocuring (e.g., cinnamate and coumarin groups) and allow controlled degradation [128-
130]. For example, Zhu et al. synthesized photocurable PGS-based elastomers with pendant cinnamate
groups, poly(glycerol-co-sebacate)-cinnamate (PGS-CinA), by modification of PGS prepolymers with
cinnamoyl chloride [131]. Cinnamate groups undergo reversible photo-dimerization by a [2 + 2]
cycloaddition mechanism under UV irradiation at A > 260 nm. The two cinnamate groups combine
to form a cyclobutane ring, which at A < 260 nm undergoes breaking and reverses to C=C double
bonds [130]. The polycondensation reaction of PGS prepolymers was terminated at times prior to the
gel point to obtain prepolymers (M, = 3900 g mol~!, D =1.93) with a high population of free hydroxyl
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groups, to further prepare PGS-CinA prepolymers with degrees of substitution (DB) ranging from
26% to 45%. It is noteworthy that DB was determined from the ratio of the proton nuclear magnetic
resonance (NMR) peaks integrals of methylene groups from sebacic acid and vinylene groups from
cinnamate groups, under the assumption of non-branched PGS chains. The Young’s modulus of
photocured PGS-CinA ranged from 0.05 to 0.15 MPa, while the ultimate tensile strain from 80% to
140% as DS was increased from 26% to 45% with a curing time of 4 h. Furthermore, the incorporation
of cinnamate groups allowed the processing of polyester elastomers into microfilms by replica molding
on patterned silicon substrates after 2 h under UVB in the absence of photoinitiator.

Another alternative to preparing cross-linked polyol polyester networks is through the
formation of urethane linkages between the free hydroxyl groups of prepolymers and diisocyanate
cross-linkers [132,133]. Pereira et al. prepared poly(glycerol sebacate urethane) (PGSU) from PGS
prepolymers (My, = 12700 g mol~!, 4.5) using hexamethylene diisocyanate (HDI) in presence of
Sn(Il) 2-ethyhexanoate as catalyst at 37 °C and relatively long curing times (36 h) [132]. The authors
synthesized PGSU using different cross-linker contents (1, 0.5, and 0.3 HDI to 1 PGS molar ratio), either in
the presence or absence of solvent, and calculated the corresponding cross-link densities. The Young’s
modulus range of films, varying from 0.1 MPa to 20 MPa, was tailored by changing the amount of
urethane groups. Degradation tests were performed in vitro in the presence of cholesterol esterase
and, surprisingly, showed a higher degree of cross-linking resulting in slower the degradation rate.

The mechanical properties and degradation behavior strongly depend on the degree of
cross-linking since it dictates the number of cross-links formed in the polymeric network. Tuning any
of these properties requires a careful balance to obtain a material that is not only mechanically strong
and flexible, but also exhibits the desired degradation kinetics.

The cross-linking strategies described throughout this section broaden the processing capabilities
of polyester thermosets beyond thermal cross-linking, from electrospinning to more sophisticated
techniques such as soft lithography and digital light 3D printing, enabling fabrication of complex 3D
scaffold morphologies. However, all of these rely on the use of toxic compounds, such as photoinitiators,
chemical functionalizers, catalysts, cross-linkers, and solvents. This makes it impossible to employ
some of these strategies for in situ tissue regeneration applications. In the fabrication of body implants,
traces of these compounds must completely be removed to avoid potential toxicity risks. Moreover,
attention should be paid to curing times in case of photo-induced cross-linking, since long UV light
exposure may also limit the incorporation of cells and proteins into scaffolds regardless of low curing
temperatures. There is still plenty of room left to develop cross-linking methods that cover most of
the expectations from the synthetic point of view, such as the use of safe compounds, mild reaction
conditions and short reaction times, that are scalable and can be performed in few reaction steps.

4. Conclusions

4.1. Physicochemical Properties

Compared with their linear counterparts of comparable molecular weight, hyperbranched
polyesters exhibit a large number of terminal groups, higher solubility, and lower viscosity. Structural
characterization of polyol polyesters normally includes molecular weight analysis of prepolymers by
GPC, DSC, Fourier-transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (1 and
2-D 'H NMR and 3C NMR experiments) spectroscopy. The latter is used to differentiate linear verse
dendritic repeat units as well as end group structure. Below are selected examples that elaborate on
the structural and physico-mechanical properties studies that are discussed above.

Bruggeman et al. studied a series of poly(polyol-co-sebacate) copolymers [102]. The polyols
included xylitol, sorbitol, mannitol, and maltitol. Also, the comonomer stoichiometry was varied.
All FTIR spectra showed a stretch at 1740 cm™!, which corresponds to the ester bonds. A broad
stretch is also observed at ~3448 cm™!, which corresponds to the hydrogen-bonded hydroxyl moieties.
All the prepolymers synthesized were waxy, opaque solids at room temperature and became a clear,
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viscous liquid at 130 °C. The authors reported that an increase in the sebacic:polyol molar ratio in
the feed resulted in a higher cross-link density and lower polymer wettability, characterized by the
equilibrium hydration weight difference and measurements of contact angle. Poly(maltitol-co-sebacate),
synthesized at a maltitol to sebacic acid feed ratio of 1:4, is a stiff material with Young’s modulus,
UTS and elongation to break of 378 + 33.0 MPa, 17.6 + 1.30 MPa, and 10.90 + 1.37% [102]. In contrast,
poly(sorbitol-co-sebacate), PSS, synthesized at a sebacic-to-maltitol feed ratio of 1:1, is the softest of
the copolyesters series synthesized. Its tensile Young’s modulus, UTS, and elongation at break are
0.37 + 0.08 MPa, 0.57 + 0.15 MPa, and 192.24 + 60.12%. At the same molar ratio and reaction conditions,
poly(xylitol-co-sebacate) (PXS) has a Young’s modulus and elongation at break of 0.82 + 0.15 MPa
(2.2-fold larger than PSS) and 205.16 + 55.76%, respectively. However, the elongation at break of PSS 1:2
is larger than that of PXS 1:2, 65.94 + 24.87% and 33.12 + 4.85%, respectively. This apparent contradiction
may be due to differences in the network cross-linking structure which should be carefully defined.

In Barrett’s study, several elastomers were synthesized by melt-condensation reactions using
erythritol as the alditol and one of eight dicarboxylic acids: adipic acid, pimelic acid, suberic acid, azelaic
acid, sebacicacid, dodecanedioic acid, and tetradecanedioic acid [97]. They reported that cured materials
were semicrystalline or amorphous, depending on the diacid chain length. Relatively shorter diacids
(<10 carbon atoms) copolymerized with erythritol form amorphous prepolymers; while copolymers
with sebacic, dodecanedioic, and tetradecanedioic acids result in semi-solid and opaque materials
at room temperature. By changing the length of the diacid, the rigidity and hydrophobicity of the
resulting polymer can be adjusted so that the mechanical properties and degradation rate can be
controlled. The 'H NMR spectra of the prepolymer series had similar peaks with differences due to the
position of methylene group signals. These prepolymers also show a trend of increasing M, when
erythritol is reacted with longer chain diacids (Table 1).

A comparative study by Li et al. measured mass loss during propagation that results from water
evolution, providing an approach to determine functional group conversion [99]. The authors also
performed an acid titration for PGS and PXS synthesized under the same conditions. In addition to
water, they also found that glycerol evolution occurred to a greater extent than xylitol evaporation.
This is important since it points out that loss of polyol by evaporation during polycondensation
reactions can occur, resulting in product repeat unit compositions that differ from the feed ratio used.

Results consistently show that the thermal stability of hyperbranched polyols increases with
a higher number of functional groups [102,134,135]. Since hyperbranched polyols have a large
number of hydroxyl groups, the increase in their thermal durability is attributed to enhanced
intramolecular/intermolecular bridges between hydroxyl groups.

4.2. Mechanical Properties

Several groups have investigated how the mechanical properties of polyol polyesters are impacted
by the comonomer stoichiometry, starting monomer structures, synthetic methods used for prepolymers
and the extent of cross-linking that results from curing. Furthermore, the mechanical properties of
polyol polyesters are dependent on the crystallinity and sol content. While mechanical properties such
as Young’s modulus and UTS are lower with increased sol content, the sol content determines the
thermoformability of the cross-linked polymers. One potential method to improve the stretchability of
polyol polyesters is to use relatively long polyol diacid monomers that can separate the cross-links,
thereby enhancing the flexibility of the polymer network. Another potential method to enhance
the elongation at break of polyol polyesters is to use longer polyol monomers that can separate
cross-links, increasing the flexibility of the polymer networks compared to short polyol counterparts.
The mechanical properties of polyesters are normally determined by the degree of polymerization and
cross-linking, and these properties correspond to the degree of polymer esterification. Long polyol
monomers are considered those with more than three hydroxyl groups. Therefore, the influence of
additional hydroxyl groups on the hydrolysis of polyol polyester networks represents an additional
variable. The content of hydroxyl groups can enhance water absorption within the network; however,
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these larger hydroxyl groups can also create strong hydrogen bonding networks that hinder network
ester bond hydrolysis. Therefore, to tune polyol polyester mechanical properties and hydrolytic
degradation rates, one must balance diacid length, polyol length, cross-linking extent, and crystallinity.

4.3. Degradation Bbehavior

There are different types of polymer degradation, such as photodegradation, thermal degradation,
mechanical degradation, and chemical degradation [136,137]. The degradability of biopolyesters was
intensively studied in the early 1970s. Since then, studies have been conducted in vivo on different
polyesters in the form of microspheres, nanospheres, films and implants [138]. Biodegradable polymers
all contain hydrolyzable bonds, therefore, the most important degradation mechanism they exhibit is
chemical degradation or enzymatic hydrolysis. Several factors affect the chemical degradation rate:
the type of chemical bond, pH, copolymer composition, and water uptake. According to Barret et al.,
the degradation rate of polyesters is controlled by two major factors: hydrophobicity of the elastomer
and the degree that the polymer network is cross-linked [97]. The degradation rates of hyperbranched
polyol polyesters are generally faster than other polyesters, including polylactides and polyglycolides.
Fast-degrading polyol polyester materials are generally soft and hydrophilic, whereas higher Ty
hydrophobic materials survive longer under hydrolysis conditions. This behavior has been reported
by several groups [97,139]. During the degradation process, the crystallinity increases, which is caused
by preferential hydrolysis in the amorphous domain of polyester [140].

In 1977, Tokiwa and Suzuki et al. reported that isolated enzymes could attack synthetic
polymers [141]. Enzymes (lipase) catalyze the hydrolysis of the ester bonds of polyesters, resulting
in a reduction in chain length and ultimately a water-soluble intermediate [142]. The enzymatic
depolymerization of polyesters and the ester cleavage of oligomers are affected by different factors.
One of them is the necessity of long polymer chains being able to penetrate into the enzyme-active site,
which makes the chain mobility a critical factor in controlling the degradation rate. As predicted by
Marten et al., as the test temperature increases, the degradation rate of the semi-crystalline polyester
film increases significantly [143]. Since the polymer chain mobility is theoretically correlated to the
crystallinity and melting temperature, it is possible to predict and compare the degradation behavior
via these parameters. The biodegradation of polymers is a surface erosion process, and the degradation
rate depends on the surface area of the polymer [144]. Therefore, the increase in the surface area is a
feasible method to accelerate the degradation rate, for example, creating the porous scaffold for the
polyester or using nanoparticles.

4.4. Biocompatibility

Generally, polymers belonging to the poly(polyol dicarboxylate) family show both in vivo
and in vitro biocompatibility [102]. The toxicity of polyol polyesters results from unreacted and
hydrolysis-generated carboxylic acid groups. This is similarly observed for polyesters such as PLA
and its copolymers with glycolic acid. Longer curing time can improve compatibility due to a higher
cross-link density that converts many of the carboxyl groups to esters and slows the generation of
carboxylic acid small molecules generated during extended incubation conditions [139].

4.5. Summary

The lack of tough biodegradable elastomers underlies one of the most complicated and intriguing
challenges in modern bioengineering, the search for affordable and effective mechanical substitutes for
tissues. The efforts have included studies of bio-based polyol polyesters owing to their diversity in
polymer compositions, structures, and corresponding physicochemical and biological properties.

Over the past few decades, multiple polyol polyester architectures have been studied, however,
while much progress has been made, relationships between monomer selection, the synthetic method
used (including curing) and polyester properties remain unclear. Despite the multitude of studies in this
area, the search for the ideal biomaterial for tissue engineering remains a challenging task. The research
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community has increasingly looked towards polyol polyesters that provide numerous options for
tunability while retaining biocompatibility and degradation as safe products. In conclusion, we continue
to witness groundbreaking developments in material science. It is expected that these developments,
coupled with recent major progress in polyol polyester synthesis and ongoing fundamental research
on the mechanism of biodegradation, should lead to the development of scalable, high-performance
biomaterials that will undoubtedly revolutionize biomedical devices built for in vivo applications.
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