



Electronic Supplementary Information

Polydimethylsiloxane elastomers filled with rod-like α-MnO₂ nanoparticles: An interplay of structure and electrorheological performance

Alexander V. Agafonov^{1,2}, Anton S. Kraev¹, Anastasia A. Egorova³, Alexander E. Baranchikov³, Sergey A. Kozyukhin³, Vladimir K. Ivanov^{3,4}*

- Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, 153045, Russia; ava@isc-ras.ru
- ² National Research Tomsk State University, Tomsk, 634050, Russia
- ³ Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, 119991, Russia; a.baranchikov@yandex.ru
- ⁴ National Research University Higher School of Economics, Moscow, 101000, Russia
- * Correspondence: van@igic.ras.ru

Figure S1. The appearance of α -MnO₂ suspension at 40× magnification in uncured polydimethylsiloxane between the electrodes (**a**) in the absence and (**b**) in the presence of an electric field. The interelectrode gap was 1 mm.