3D nano-architect of polyaniline-MoS₂ hybrid material for Hg(II) adsorption properties

Hilal Ahmad ^{1,2}, Ibtisam I. BinSharfan ³, Rais Ahmad Khan ³ and Ali Alsalme ^{3,*}

- ¹ Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; hilalahmad@tdtu.edu.vn
- ² Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- ³ Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; ibtisam.i.sh@hotmail.com (I.I.B.); krais@ksu.edu.sa (R.A.K.)
- * Correspondence: aalsalme@ksu.edu.sa

Figure S1: Zeta potential envelope of bare PANI and bare MoS2.

Figure S2: ATR-IR spectra of PANI-MoS₂ before and after Hg(II) adsorption.

Samples	Spiked amount (µg)	Hg(II) found (μg L ⁻¹) ± standard deviation ^a	Recovery percentage of added amount (RSD) ^c	value of <i>t</i> -test ^d
Tap water	0	ND^{b}	-	-
	5	4.98 ± 0.44	99.6 (0.37)	0.76
	10	9.97 ± 0.52	99.7 (0.42)	1.28
River water	0	5.5	-	-
	5	10.48 ± 0.70	99.6 (0.35)	1.56
	10	15.58 ± 0.86	100.8 (2.26)	1.77
Industrial wastewater	0	12.80 ± 1.42	-	1.64
	5	17.75 ± 1.15	99.0 (0.68)	1.87
	10	22.82 ± 1.42	100.2 (0.97)	2.64

Table S1: Solid phase extraction and preconcentration of trace Hg(II) in real samples analyses after to determine Hg(II) concentration by ICP-OES (column conditions: sample volume 250 mL, flow rate 8 mL min⁻¹, eluent 5 mL HCl, sorbent amount 0.25 g).

^a N=3; ^b not detected; ^c Relative standard deviation; ^d at 95% confidence level,

 $t_{\text{critical}} = 4.303$