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Abstract: We develop a theoretical description of the topological disentanglement occurring when
torus knots reach the ends of a semiflexible polymer under tension. These include decays into simpler
knots and total unknotting. The minimal number of crossings and the minimal knot contour length
are the topological invariants playing a key role in the model. The crossings behave as particles
diffusing along the chain and the application of appropriate boundary conditions at the ends of
the chain accounts for the knot disentanglement. Starting from the number of particles and their
positions, suitable rules allow reconstructing the type and location of the knot moving on the chain
Our theory is extensively benchmarked with corresponding molecular dynamics simulations and
the results show a remarkable agreement between the simulations and the theoretical predictions of
the model.

Keywords: physical knots; topological disentanglement; knot diffusion

1. Introduction

From tying shoelaces to maneuvers in sailing or mountaineering, knots are useful in our everyday
lives. At microscopic scales, knots have been shown to occur naturally in DNA [1–4], proteins [5–7],
and more generally in long polymer chains [8]. Within polymer rings, knots move and fluctuate in size
permanently (equilibrium state) but if tied in open chains they do not represent a genuine topological
state of the system and can disappear, form again, or change the underlined topological complexity
(knot type) [9–11]. Yet, these “physical knots", act as long-lived constraints and can, for instance,
affect the metric and mechanical properties of the hosting chain, interfere with the elongation processes
induced by either confinement [11–13] or tensile forces [14,15], hinder the ejection dynamics of viral
DNAs from their capsids [16–19], and slow down the translocation process through nanopores [20–22].

Nowadays, physical knots can also be artificially formed in biomolecules via optical
tweezers [23,24], compression in nanochannels [25], and by applying elongational flows [26–29]
or electric fields [30,31]. These single-molecule experiments combined with computational
studies [12,13,27–29,32–40] have paved the way for a better physical understanding of the mobility of
the knot along the chain and on the disentanglement process of the hosting polymer.

Perhaps the most controlled setup to study knot untying in fluctuating chains uses tensile forces
applied at their ends. In this case, for sufficiently large forces, the physical knot can be easily detected
and followed during its erratic motion along the chain (contour motion). Moreover, unknotting
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often occurs when the knot reaches one of the chain ends, making the comparison among theory,
experiments, and simulations easier. In this regime of highly tensioned chains, knots tend to be
localized within the chain and their contour motion is essentially a diffusion process [33–35].

Much less is known, however, for moderate and small tensions, where physical knots are more
difficult to detect and can widely fluctuate in size [14,41] giving rise to the known weak localization
regime in the limit of zero forces [10,42]. Valuable insight into this problem has been gained by
Ben-Naim et al. [43], who studied knot untying in tension-free granular chains supported by a vibrating
plane and flattened in 2D by gravity. In this work the statistical properties of unknotting are shown to
be well described by a simple model of nk random walks interacting via hard-core exclusion in one
spatial dimension (single-file diffusion), with nk being the number of essential crossings associated to
the knot type k. This analysis, however, is restricted to the simpler case of quasi-2D chains in which the
position of the crossings do not depend on the projection. This is not the case for the full 3D problem
where the spatial location of crossings is very elusive.

In this work, by extending a recently introduced model capable of accounting for the
disentanglement process of untensioned torus knots in 3D [41], we study the mechanism of knot
contour motion and knot untying for trefoil (31) and 51 knots when subject to any tension. As in Ref. [41],
the basic ingredients are the nk essential crossings associated to the given knot type. These evolve in
time as Brownian point-like particles on the rescaled support [0, 1] with a drift force derived from an
effective free energy that depends on the knot size `k. In Ref. [41] the free energy drives to the knot
dynamics come from the excess bending energy stored in the portion of the polymer where the knot
resides and the knot conformational entropy. While the first one entails knot expansion, the latter
limits it, which, in long open chains, results in a typical knot size as suggested by the recent theory of
metastable knots [44–46]. Here, by adding a tension dependent contribution to the free energy we can
rationalize the statistical properties of the unknotting dynamics and knot decay for any value of the
external force. As representative of different qualitative behaviors, we compare our results with the
strong pulling force limit and the free diffusive limit. The results of the model are validated on those
obtained by performing extensive molecular dynamics simulations on the full 3D problem.

The paper is organized as follows: in Section 2 we present the molecular dynamics (MD)
simulations used to study the problem and we delineate the basic properties of topological
disentanglement physics. In Section 3 we discuss the mathematical model for the unknotting dynamics
and its limiting cases. In Section 4 we benchmark the model against the MD simulations. Finally,
Section 5 summarizes and concludes the paper.

2. Numerical Simulations

To simulate and monitor topological disentanglement, we consider a coarse-grained model of
a semiflexible polymer with N beads of diameter σ kept together by a FENE potential and with
a repulsive pairwise Lennard-Jones term providing excluded volume with hardcore range σ [47].
A bending potential determines a persistence length lp = 5σ. The chain is kept under tension T > 0
along the z-direction by a potential VT = −T (zN − z1), where z1 and zN are coordinates of the chain
ends along z. The system is in contact with a Langevin bath at temperature T and the equations of
motion are numerically solved by a velocity–Verlet algorithm and integrated through the LAMMPS

simulation package [48]. The characteristic simulation time is τLJ = σ
√

m/kBT, with m the mass of
each single bead. For each knot type and value of the pulling force T , we perform 1000 runs with the
specific knot initially strongly tied in the middle of the chain.

The detection of the knotted arc along the linear chain is a crucial issue, especially at low forces,
when the knot can swell and interfere topologically with the rest of the chain [8]. Here we rely on
an algorithm introduced in Ref. [42] and later refined and applied in several situations [14,49–51].
For a given chain configuration, all possible open portions are considered. For each of these
portions, a closure is made by joining its ends with a path specifically designed to minimally
interfere topologically with the portion itself. The knotted arc of the chain is then identified with the
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shortest portion still displaying the original knot type after closure (i.e., sharing the same Alexander
polynomial [52]). Through this protocol we are able to monitor the chemical coordinates along the
backbone of the ends of the knot, and thus the dynamical evolution of the knot location and length.

Typical trajectories are qualitatively different depending on the value of the pulling force. Starting
with the knot tied in the middle of the chain, when the pulling force is strong the length of the knot
remains small and does not fluctuate much. In this case, the extremities of the knot undergo a highly
correlated motion so that the knot moves as a whole (left kymograph in Figure 1). In contrast, when the
tension is sufficiently small for the polymer response to lie between the elastic and blob regimes [33],
knot length fluctuations are important and knot ends are much less correlated (right kymograph
in Figure 1).
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Figure 1. Kymographs of the unknotting dynamics of a trefoil knot tied in a linear polymer of
N = 50 beads under strong (left) and weak (right) external pulling. Red highlights the knotted portion,
blue indicates dangling ends; x is the chemical coordinate along the backbone. Panels (A–E) display
different snapshots at increasing time.

In this paper we limit ourselves to simple knots of the (2, p)-torus family [52]. If the size of the
chain is not too large or if the pulling force is strong enough, the probability of spontaneous knot
formation turns out to be negligible. Under these conditions the decay process is expected to follow
the sequence . . . → 71 → 51 → 31 → unknotted, i.e., a given torus knot k with nk > 3 decays in the
torus knot k with nk = nk − 2. In our MD simulations this picture is always confirmed.

3. Model

The modeling we put forward to account for the statistical properties of knot disentanglement
is the one outlined in Ref. [41], with the addition of a tension-dependent free energy term ∆FT (`k)

(see below). In order to be self-contained, we review here the model construction.
The main idea is to relate the motion of a knot k along the polymer backbone to the driven diffusion

of nk particles, nk being the number of essential crossing. A second key topological invariant that
enters in our model is the ratio between the minimal knot length and the diameter of the chain, `k0/σ.
Here `k0 is the contour length of the chain portion embedding the knot when this is maximally tied.
The construction begins conceiving nk rigid segments diffusing on the interval [0, L], with L = Nσ

the total contour length of the chain (see Figure 2). Since the knot size `k cannot be smaller than
`k0, we assign the size `k0/nk to each segment (in doing so, we implicitly take advantage of the
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fact that for torus knots minimal crossings are topologically equivalent) and require segments not
to overlap. However, since for a real polymer in 3D crossings can traverse each other during the
time evolution (The concept of a crossing in 3D is not well defined but a fluctuating polymer can
be projected onto an arbitrary plane. On this, the dynamics may give rise to Reidemeister moves
in which crossings can be created or annihilated and can traverse each other.), the segments are
allowed to traverse each other. The position along the backbone of the center of these segments is
denoted by xi (i = 1, . . . , nk) and at each time, it is convenient to renumber the segments in such
a way that `k0/2nk ≤ x1 < x2 < . . . < xnk ≤ L− `k0/2nk. The paradox between nonoverlap and
allowed-traversing of the segments is conveniently solved by a rescaling procedure: we remove the
particle sizes, gluing together the remaining backbone pieces, and finally rescaling the available length
L− `k0 to 1 (see Figure 2). Such a transformation makes the particles point-like and maps the original
coordinates xi onto x′i ∈ [0, 1]:

x′i ≡
xi − 2i−1

2
`k0
nk

L− `k0
(i = 1, 2, . . . , nk) . (1)

Figure 2. Modeling the unknotting dynamics. Central quantities are the topological invariants nk

(number of essential crossings) and `k0/σ (knot minimal size). A knot of contour length `k is first
mapped onto nk rigid segments in [0, L]. Then, rigid segments are mapped onto point-like particles

diffusing in [0, 1]. ∆k ≡ x′nk
− x′1 =

`k − `k0
L− `k0

is the rescaled excess knot size.

Point-like particles satisfy overdamped Langevin equations

dx′i
dt

= αi
f ′

ζ ′
+
√

2D′ ηi(t) , (2)

where ηi are Gaussian white noises and D′ and ζ ′ are effective diffusion and friction coefficients,
respectively. One of our basic results is that model calibration addressed in Section 4 suggests that
D′ and ζ ′ depend on the rescaling procedure only (hence on the minimal knot length `k0) and are
in fact independent of all other quantities like, e.g., the applied tension T . The rescaled drift force
f ′ = f /(L− `k0) is determined by f = −∂(∆F)/∂`k, where ∆F is the free energy difference due to the
presence of the knot. Below in this section we discuss ∆F in details, for now it is enough to anticipate
that free energy drives amount to systematic expansions or contractions of the knot length and that
the coefficient αi homogeneously shares dilatations among the particles. This is achieved as follows.
Since the position of the external particles is directly related to the size of the knot,

`k = xnk − x1 +
`k0
nk

= `k0 + (x′nk
− x′1)(L− `k0) , (3)

we pose the requirements α1 f = −∂(∆F)/∂x1 and αnk f = −∂(∆F)/∂xnk . The homogeneous share of
expansion or contraction is then achieved setting
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αi ≡ −1 + 2
i− 1

nk − 1
. (4)

To account for knot simplification according to the sequence . . .→ 71 → 51 → 31 → unknotted,
appropriate boundary conditions are applied. For a trefoil knot, whenever x′1 = 0 or x′3 = 1 unknotting
occurs immediately. For nk > 3, whenever either x′1 = 0 or x′nk

= 1 the knot simplifies into a simpler
torus knot k, with nk = nk − 2. To achieve this we consistently assume that either x′1 and x′2 or x′nk

and
x′nk−1 are simultaneously absorbed, respectively. After the simplification, the positions x′1, . . . x′nk

of

the point-like particles representing the crossings of the new knot k are given as follows.

(i) If the nk-th (1-st) particle of knot k is absorbed, then the 1-st (nk -th) particle on the new knot k
has the same position as the 1-st (nk-th) particle on the old knot k.

(ii) The rescaled excess size of the simplified knot is a fraction 0 ≤ δ < 1 of the previous rescaled
excess knot size,

∆k = δ ∆k ⇔ x′nk
− x′1 = (x′nk

− x′1) δ . (5)

Thus,
x′nk

= x′1 + ∆k (x′1 = xnk
− ∆k) , (6)

respectively. The other surviving particles are homogeneously placed inside the surviving knot
in such a way that

x′i − x′i−1 =
∆k

nk − 1
, ∀i = 2, . . . , nk − 1 . (7)

Figure 3 exemplifies why the knot-size renormalization is required. The value of δ is of course
specific to the particular polymer configuration. In our model we use the average value as
measured in MD simulations when the 51 knot decays into a trefoil.

Figure 3. Simplification from a 51 torus knot (left) to a trefoil knot (31) (right).

After decay, also the effective diffusion and friction coefficients must be adapted to the surviving
knot specifications.

We now turn to the major contributions of the knot to the polymer free energy. As a first
approximation, the free energy difference due to the presence of the knot is the sum of three
contributions depending on the knot contour length,

∆F(`k) = ∆Fb(`k) + ∆Fc(`k) + ∆FT (`k) . (8)

The first two terms are independent of the applied tension and were already described in Ref. [41].
They are respectively the excess of bending energy stored in the knotted portion and the contribution to
the free energy given by the conformational entropy. Consistently with the MD simulations, the excess
bending energy contribution is modeled as

∆Fb(`k) = kBT

[
εb0

`k0
σ

exp

(
− `k − `k0˜̀

k − `k0

)]
, (9)
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where εb0 kBT represents the extra bending energy per monomer in the tightest knot configuration
(when `k = `k0) and ˜̀

k is the size of the knot beyond which the bending energy in the knotted
portion of the chain relaxes to that of an unknotted chain of the same length. From a fit to our MD,
εb0 and ˜̀

k are about independent of the knot type and on the chain length. The excess bending
energy results in a contribution to the force f ′ in Equation (2) which is positive and as such leads to
a knot expansion. The conformational entropy contribution is readily understood considering that
when the dangling chains departing from the knotted region are long enough, they exert an entropic
compression on the knot. In tensionless open chains this may favor the existence of a metastable knot
size [44–46]. This contribution is expected to be negligible for small chains [46,53] and we pragmatically
approximate it with its first significant term in a Taylor expansion,

∆Fc(`k) = Ac kBT
`k
σ

. (10)

Whereas in tension-free simulations we observed that Ac 6= 0, only if L & 30 lp, in the presence of
a pulling force knot expansion is also hindered by the tension itself and this makes in turn the dangling
ends longer. Thus, while the conformational entropy of the knot is severely reduced, that of the longer
dangling ends is less affected and, as a consequence, depending on the value of the pulling force,
under tension the conformational entropy is expected to play a role also for chain shorter than 30 lp.

The tension dependence in the free energy is embedded in the last term of Equation (8), ∆FT (`k).
Based on MD simulations, in Appendix A we present a study of this term which leads to

∆FT (`k) = T (b `k − akT σ) , (11)

where b > 0 is a parameter independent of the pulling force and of the knot type, whereas akT does
not contribute to Equation (2) and will therefore not be investigated in detail. Conformed to intuition,
the contribution of the pulling potential to the force f ′ in Equation (2), is negative and limits then the
knot expansion.

In summary, our model for the disentanglement dynamics works through Equation (2),
with appropriate boundary conditions, and the calibrated parameters that are reported in Section 4 and
encapsulated in Appendix C. The model effectively reproduces the survival probability and average
disentanglement time under all tension conditions for the trefoil and the 51 knot.

In the next subsections we address two specific situations in which it is possible to add insight to
Equation (2). The first occurs when the energy drive is dominated by tension; the second when free
energy contributions compensate each other, giving rise to free diffusion.

3.1. Strong Tension Limit

With the polymer under tension, the external force contribution contrasts the knot expansion due
to both the bending energy and the diffusion of the crossings. Hence, the knot is localized and its
length slightly fluctuates around a well-defined value before touching the boundaries of the chain.

Under these conditions, insight is gained focusing on the motion of the middle position only of
the particles in our model,

x′ ≡
x′1 + x′nk

2
. (12)

In order to do so, we must take into account that particles can traverse each other and that at
all times they are labeled such that their coordinates are in increasing order. Moreover, we must
investigate the consequences of strong pulling in the motion of the middle position. Appendix B
reports a careful theoretical and numerical analysis which demonstrates that in view of these effects
the middle coordinate x′ free diffuses with a coefficient D′mid which in the large tension limit is
D′mid ' 0.33 D′ for the trefoil knot, and D′mid ' 0.21 D′ for the 51 torus knot.
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Accordingly, the probability density function (PDF) for finding the middle coordinate at x′ ∈ [0, 1]
at time t > t0 is

p(x′, t) =
∫ 1

0
dx′0 GD′mid

(x′, t|x′0, t0) p(x′0, t0) , (13)

where x′0 is the position at time t = t0 and GD′mid
is the Green function of the diffusion equation

∂p/∂t = D′mid ∂2 p/∂x2 with absorbing boundary conditions at x′ = 0 and x′ = 1:

GD′mid
(x′, t|x′0, t0) = 2

∞

∑
n=1

sin(n π x′0) sin(n π x′)×

exp
{
−n2 π2 D′mid (t− t0)

}
. (14)

The initial conditions in the MD simulations are always with the knot in a tight configuration
in the middle of the chain. So, at t = t0 the PDF of x′ can be assumed to amount to a delta function
δ(x′ − x′0) with x′0 = 1/2.

The survival probability of the knot k is then obtained by integration:

Sk(t) =
∫ 1

0
dx′ p(x′, t) =

4
π

∞

∑
n=0

sin [(2n + 1)πx′0]
2n + 1

×

exp
{
−(2n + 1)2π2D′midt

}
, (15)

and finally, the probability for the particle being absorbed at time t is given by −∂Sk(t)/∂t.
Now, suppose that the tight knot k is a torus knot with nk > 3 crossings. To deal with the knot

decay within this simplified context, one has to specify the coordinate x′ of the middle position of
the new knot k arising when the coordinate x′ of k touches one of the boundaries. To do so we first
notice that in the strong force limit `k ' `k0 and `k ' `k0. This implies that ∆k = ∆k = 0 (δ = 0) or,
equivalently, that all the rigid segments of length `k0/nk are in contact to each other forming a single
segment of length `k0 (see Figure 2). When x′ = 0 we have to remove the two segments of size `k0/nk
at the left of the knot k and we must take into account that the new knot k has nk = nk − 2 essential
crossings. The initial condition for the further diffusion of the new simplified knot is thus

x′0 =

5
2
`k,0
nk
− 1

2
`k,0
nk

L− `k0
=

2`k,0

nk(L− `k0)
= ∆k,k , (16)

where in the second equality we used the fact that the ratio `k,0/σnk is a constant independent of the
considered torus knot. Only, the diffusion coefficient D′mid should be updated considering that a new
knot with nk essential crossing is diffusing. In a symmetric way, one argues that if the adsorption occurs
at the right border (x′ = 1), then the initial position of the new knot is x′0 = 1−∆k,k. Equations (13)–(15)
can then be employed again with an initial distribution delta-peaked in x′0 to analyze the further decay
of knot k. In general, the whole procedure can be iterated until the full disentanglement takes place.

3.2. Free Diffusion Limit

A complementary situation adding valuable insight is associated with the situation in which
competing free energy effects compensate to produce an average zero drive ( f ′ = 0). According to the
analysis in Appendix B this happens for small but nonzero value of the tension T (see Figure A3).

Under these conditions, different parts of the knot move independently of each other and we
can map the knot’s dynamics onto that of nk noninteracting particles which evolve in time according
to Equation (2), without the deterministic drift term. The initial conditions in the MD simulations
are always with the knot in a tight configuration at the middle of the chain. So, at t0 the PDFs of
the various x′i corresponds to delta functions δ(x′i − 1/2). At variance with the previous limit, here
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we must account for nk different PDFs (i = 1, . . . , nk) of freely diffusing particles. Correspondingly,
the survival probability of the i-th particle, Si, can be calculated through Equations (13)–(15) with D′

replacing D′mid and x′i replacing x′. In view of particles’ independency, the knot survival probability Sk
is now given by

Sk(t) =
nk

∏
i=1

Si(t) , (17)

and the probability of observing the knot decay at time t becomes

− ∂Sk(t)
∂t

= −
nk

∑
i=1

[
∏
j 6=i

Sj(t)

]
∂Si(t)

∂t
. (18)

At the decay time t1 > t0 the marginal PDFs of the nk survived particles are given by

p(x′i,1, t1) =
∫ 1

0
dx′i,0 GD′(x′i,1, t1|x′i,0, t0) p(x′i,0, t0) , (19)

where x′i,0 denotes the position of the i-th particle at t = t0 and D′ is the diffusion coefficient associated
with knot k. In correspondence with the length contraction introduced by the knot’s simplification,
these PDFs must be rescaled by the factor δ and can then be seen as defining nk initial distributions
p(xi,1, t1) that can be inserted into Equations (13)–(18) to study the next topological simplification
occurring at time t > t1. Now, in Equations (13)–(15) one has to replace x′ with x′i, x′0 with x′i,1, t0 with
t1, and D′mid with D′, where D′ is the diffusion coefficient of knot k. All this procedure can be further
iterated if k can still decay to simpler knots.

4. Results

The main quantities one can compute and compare with simulation results include the survival
probability at time t, Sk(t), and the average survival time, τk =

∫ ∞
0 Sk(t)dt, for a knot k. In cases in

which the knot decays into a simpler one, like for an initially tied torus knot 51, one can also report the
probability that at time t the knot is already present in the simpler form (31 in this example) resulting
from topological decay. We perform this comparison in the case of a chain composed of N = 100 beads.

However, before starting the comparison, it is better to provide details about the calibration
procedure; results here described are also summarized in Appendix C. We start with those parameters
that can be obtained independently of the point-like particle model, directly from the MD simulation
data. First, the minimal knot size `k0 is obtained by measuring the average size of the knot k when a
very high force (T = 10kBT/σ) is pulling apart the polymer ends. This gives `k0 = 13.7σ and 20.8σ

for the trefoil and the 51 knot, respectively. Second, the bending energy parameters, εb0 ' 0.74 and˜̀
k ' 1.85`k0 about independently of the knot type and of the chain length (see SI of Ref. [41]). Third,

regarding the pulling energy parameters, with N = 100 we found b ' 0.6 both for the trefoil and the
51 knot about independently of the pulling force (see Appendix A). Not affecting f ′, the actual value
of akT is not reported being not relevant to our discussion. Fourth, the parameter δ is obtained by
directly measuring the size of the knot just before and after the simplification in MD simulations at
null pulling force. Specifically, we measured δ = 0.65 in the case 51 → 31.

We next consider the parameters D′ and ζ ′. They are obtained as those that best fit the knots’
survival probability from independent MD simulations at null pulling force and for different sizes of
the chain (N = 50, 100 and 200) [41]. Remarkably, estimates suggest that D′ and ζ ′ obey the following
scaling properties with the chain size:

D′ =
D0

(L− `k0)2 , ζ ′ = ζ0

(
L− `k0

σ

)2
. (20)
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where D0 and ζ0 are independent of the chain length L and of the knot type k. Explicitly, we obtained
D0 = 0.31 and ζ0 = 0.0016.

Finally, the only remaining parameter that we have to estimate by directly fitting the mathematical
model to the simulations at various pulling forces is the conformational entropy parameter Ac. For each
knot and each value of the pulling force considered we adjust Ac in such a way that the typical knot
size predicted by our model matches the one obtained by the MD simulations (see Figures 4 and 5).
In the case of the trefoil knot and N = 100, we found Ac = 0.02, 0.05, 0.10, 0.18, 0.20, 0.24, 0.32 and
1.58 for T = 0.1, 0.17, 0.32, 0.56, 1.0, 1.7, 3.2 and 5.6kBT/σ respectively. Given the smaller size of the
trefoil in comparison to the 51 knot, for the latter we expect lower values of Ac. Indeed for the 51 knot
we found Ac = 0.00, 0.02, 0.04, 0.09, 0.14, 0.11, 0.14 and 1.2 for T = 0.1, 0.17, 0.32, 0.56, 1.0, 1.7, 3.2
and 5.6kBT/σ respectively.

0 5000 10000 15000 20000

t/τLJ

20

30

40

50

60

〈`
k
(t

)〉

T = 5.6kBT/σ
T = 3.2kBT/σ
T = 1.7kBT/σ
T = 1.0kBT/σ
T = 0.56kBT/σ
T = 0.32kBT/σ
T = 0.17kBT/σ
T = 0.1kBT/σ

Figure 4. Average knot size of the 31 (nk = 3) at the various value of T considered as a function of
time. Dots are data from MD simulations and the corresponding full lines are the prediction of the
model once Ac is adjusted to obtain the best agreement with MD simulations.
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Figure 5. Same as Figure 4 but for the 51 knot (nk = 5).
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The predictive power of our model is best illustrated by the plots of the survival probability Sk(t)
reported in Figure 6 for the trefoil knot. As expected, data from MD simulations point out that the
knot disentanglement process is faster when the pulling force is low, with the average survival time
τk increasing monotonically with the pulling force. Except for the case of T = 5.6kBT/σ, our model
nicely reproduces the behavior of data from MD simulations. Indeed, the case of T = 5.6kBT/σ can be
better understood in the light of the strong force limit discussed in Section 3.1. In this limit, the model
maps the knot behavior onto that of a single particle diffusing in [0, 1] with a diffusion coefficient D′mid
which is about independent of the pulling force (see the plateau in Figure A3). The survival probability
obtained in this limit is reported with a dash-dotted line reported in Figure 6 and represents the limit of
validity of our modeling. While model predictions (orange line) consistently remain at the left of this
strong force limit and (we checked that this is true for any applied tension), the survival probabilities
obtained from MD simulations lay at the right of the dash-dotted line in Figure 6 for T > 5.6kBT/σ.
We believe that the origin of this behavior resides in enhanced friction due to steric interaction between
the various bead of an extremely compact knot, an effect which is not taken into account in our model.
On the other hand, one may add that the strong force limit model can still be used to well describe the
MD simulations data also for pulling forces T & 5.6kBT/σ, provided that D′mid is directly measured
by studying the mean square displacement of the knot position along the chain.
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T = 0.32kBT/σ
T = 0.17kBT/σ
T = 0.1kBT/σ

Figure 6. Survival probability of the 31 (nk = 3) at the various value of T considered. Dots are data
from MD simulations and the corresponding full lines are the prediction of the model. Dashed black
line on the left is the prediction of the free diffusive model with nk = 3 and the same diffusion
coefficient D used in the general model. Dash-dotted line on the right is the prediction in the strong
force limit.

The other instructive limit is the free diffusive limit. In this limit the free energy drives compensate
and in our model the nk particles freely diffuse with the same diffusion coefficient D′ used in the
general case. The trefoil survival probability in the case of pulling force T = 0.1kBT/σ (see the
lines crossing in Figure A3) has a behavior very similar to the one described by this limit, which is
represented in Figure 6 by the black-dashed line. Consistently with the fact that lines crossing in
Figure A3 happens in effect slightly at the right of T = 0.1kBT/σ, MD simulations at this value of the
tension display a slightly faster decay that what would happen in the free diffusive limit. In such a
way, we understand that at this tension the expansion effect due to the excess bending energy is not
completely compensated for by the pulling and the conformational entropy drives.

The model is exploited in its full scope when we consider the full disentanglement process of more
complex torus knots. Here, we study in detail the 51, i.e., the simplest torus knot after the 31. Again,
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survival probabilities observed in MD simulations are well reproduced for the initial decay 51 → 31

(see Figure 7), and one can draw conclusions similar to those delineated above for the trefoil knot.
In comparison to the trefoil, one notes that the spread among the various curves at the different

values of the pulling force is bigger. At small forces, the 51 decays faster than the trefoil while at
high forces the opposite holds. The first observation is easily understood considering that 51 knot is
modeled with nk = 5 particles while the trefoil is modeled with nk = 3 particles and that, consequently,
the average time before the first particle reaches the boundary is shorter in the first case. However,
given that D0 and ζ0 are independent of the knot type, one may be surprised to notice that at high
forces the 51 knot decays slower than the trefoil. In fact, since the 51 knot corresponds to nk = 5
particles and the trefoil to nk = 3 particles, one may naively expect the first one to decay faster.
The explanation of this apparent contradiction is hidden in the rescaling procedure to the unitary
interval [0, 1]. Considering Equations (2) and (20) and the fact that f ′ = f /(L− `k0), it follows that
while the stochastic term is rescaled by a factor (L − `k0), the drift term is rescaled by (L − `k0)

3.
Since the minimal knot size of the 51 knot is greater than that of the trefoil, it follows that the drift term
in the case of the 51 knot has a larger weight in the rescaled dynamics than in the case of the trefoil.
And since at high pulling force the effect of the drift term is mainly contrasting the knot expansion,
one can finally explain the longer lifetime of the 51 knot at high forces.
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Figure 7. Same as Figure 6 but in the case of the 51 knot.

Following the procedure describe in Section 3, it is possible to study also the probability of having
a trefoil after the 51 simplification. Also in this case the validity of our modeling is nicely confirmed
(see Figure 8). Note that all the probabilities in Figures 6–8 die down for longer simulation times.
In fact, spontaneous knot formation is not taken into account in our theoretical description and, for the
considered values of N and lp turns out to be negligible also in the MD simulations. We also stress that
here only chains of length N = 100 have been considered. However, our mathematical scheme can also
be applied to other values of N. In Ref. [41] we showed how, for T = 0, the model reproduces well the
results of MD simulations also for N = 50 and N = 200, with Ac the only parameter dependent on the
system size. Then, provided that Ac is properly adjusted, we are confident that the present model can
account for the description of the topological disentanglement occurring in chains of different length
and subjected to a nonvanishing pulling force.
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Figure 8. Probability to have a trefoil knot after the decay 51 → 31.

5. Conclusions

Entanglement affects in a nontrivial way the mechanical properties of polymer chains subject
to tensile forces [14,15,54]. In this work we have studied the untying statistics of torus knots in open
chains subject to a pulling force. The investigation is carried out both numerically via Brownian
dynamics simulations and theoretically by extending a model originally introduced for free chains [41].
In this model the knot dynamics is described by the diffusion of nk particles representing the essential
crossings of the underlying knot type. Within this picture the action of the pulling force as well as
the interplay between bending energy and entropy, ruling the expansion/contraction of the knot, is
accounted for by adding specific free energy based potentials on the total drift force acting on these
particles. Appropriate boundary conditions endorse the model to also describe the decay process
from complex to simpler knot types within the torus knot family (knot decay). The model of Ref. [41]
is recovered in the limit of T → 0; a limit that in the present case of chains composed by N = 100
beads, is well represented by the results obtained for T = 0.1kBT/σ. The analytical results, once
benchmarked with the corresponding Brownian simulations of a fully 3D coarse-grained model of
knotted chains, show that the model nicely predicts, for a wide range of forces, both the survival
probability of the initially tied knot and the probability of the new knots that may form during
disentanglement. In particular, the results at intermediate forces fit well with those obtained for the
previously studied cases of zero and strong force [33–41]. These predictions are new in literature and
could be a useful guideline for future experiments of knot disentanglement of mildly elongated chains
based on confinement spectroscopy techniques [55], elongational flows [26–29], electric fields [30,37],
and stretching micro-devices [23,24].

We believe that our model can be further exploited, modified, or extended to take into account
several still open issues. For instance, here we focused on the disentanglement of 31 and 51 knots as
representative of the torus knot family but a systematic exploration of this process within this family
can be useful considering that complex torus knots have been observed in viral capsids [16,18,19].
In contrast, to encompass other knot families, like for example twist knots, the model should be
modified by abandoning the requirement that in the disentanglement dynamics all essential crossings
are equivalent. In fact, unlike torus knots, twist knots are characterized by the presence of a single
special loop, which, if untied, it would fully disentangle the chain (unknotting number equal to 1) [52].
In this respect a possible modification of the model could be the introduction of two types of particles
that, once adsorbed, produce two different topological states: in one case it would lead to a transition to
a simpler knot type while in the other it would disentangle the chain (direct transition to the unknotted
state). A similar approach could also be used to describe the disentanglement process in the more
subtle case of slip-knots [56,57]
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Finally, we note that in the present approach, we do not consider the possible reappearance of
a knot [10] during the disentanglement process, a phenomenon that however becomes more and
more probable as the contour length of the polymer increases and the tension is sufficiently small.
Yet, a further extension of the model, specifying for instance rules for the creation of new particles,
could also account for this aspect.
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Appendix A. Tension Dependence in the Free Energy

Since our simulation protocol works at constant tension T > 0, the polymer free energy is
characterized by a term

FT = −T Lz , (A1)

where Lz is the component along the pulling axis z of the polymer end-to-end length. For unknotted
polymer chains, Lz has a typical average value which depends on the intensity of the pulling force T .
Correspondingly, the free energy takes a reference value FT 0.
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Figure A1. Average component of the end-to-end polymer extension along the direction of the pulling
force as a function of the knot size, for the 31 knot. Various value of T are considered. Dots are data
from molecular dynamics (MD) simulations starting with a trefoil knot tied in the middle of a chain of
N = 100 beads. Dashed lines are fit to Equation (11) in the ranges of `k spanned by the dashed lines
themselves. Fits return bk ' 0.6 about independently of the pulling force and knot type.
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Figure A2. Same as in Figure A1 but in the case of the 51 knot.

In the presence of the knot, 〈Lz〉 becomes of course a function of the knot length, 〈Lz〉 = 〈Lz(`k)〉.
Figures A1 and A2 display such a dependence in the case of the trefoil and of the 51 knot, respectively.
Averages are performed using the whole set of data at disposal from our MD simulations. Inspection
of the results in the strong force regime (T = 5.6, 3.2, and 1.7kBT) suggest the relation

〈Lz(`k)〉 = akT σ− b `k (A2)

to hold, where akT is a parameter that depends both on the knot type and on the applied force, while b
is a parameter that is about 0.6 independently of both the knot type and of T . Interestingly, the same
relation also holds for weak applied forces but only for large enough values of `k. In effect, when we
start simulations with an initial configuration in which the knot is strongly tied in the center of a very
stretched chain (see panel A in Figure 1), when `k is small results are strongly biased by the initial knot
expansion due to the release of the bending energy. As such, they should not be considered in the
construction of the tension dependence in the free energy. In summary, our results suggest

∆FT (`k) = FT (`k)− FT 0 = −T (akT σ− b `k) . (A3)

Appendix B. Diffusion Coefficient for the Middle Position of n Trespassing Particles

We address the problem of finding the diffusion coefficient D′mid of the middle coordinate
x′ = (x′1 + x′n)/2 in a system of n independent particles diffusing according to the model of Section 3.

We start by considering a free diffusion ( f ′ = 0) in a one-dimensional infinite support. Let us
suppose to have n independent particles free diffusing with diffusion coefficient D′, and let us denote
with −∞ < x′1(t) ≤ x′2(t) ≤ . . . ≤ x′n(t) < ∞ their position at time t. At different time, the same index
i may refer to different particles since the latter are allowed to cross each other. For simplicity we
assume the initial condition x′1(0) = x′2(0) = . . . = x′n(0) = 0. We are interested in finding a relation
between the diffusion coefficient D′mid of the coordinate x ≡ (x′1 + x′n)/2 and the diffusion coefficient
D′ of the single particles. We are about to show that in this case

D′mid = gn D′ , (A4)
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with gn an n-dependent coefficient. By definition, we have〈(
x′1(t) + x′n(t)

2

)2
〉
−
〈

x′1(t) + x′n(t)
2

〉2

= 2D′midt . (A5)

Because of the symmetry 〈x′1(t)〉 = −〈x′n(t)〉, the previous equation becomes

〈(x′1)
2(t)〉+ 〈(x′n)

2(t)〉+ 2〈x′1(t) · x′n(t)〉 = 8D′midt , (A6)

where

〈(x′1)
2(t)〉 = n!

∫ +∞

−∞
dy1 y2

1
e−

y2
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. . .
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; (A7)
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2(t)〉 = n!
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4Dt√
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; (A8)

〈x′1(t) · x′n(t)〉 = n!
∫ +∞

−∞
dy1

e−
y2

1
4Dt√

4πDt

∫ +∞

y1
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e−

y2
2

4Dt√
4πDt

. . .
∫ +∞
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dyn (y1 · yn)
e−

y2
n

4Dt√
4πDt

. (A9)

For n = 2, it is easy to check

〈(x′1)
2(t)〉 = 〈(x′n)

2(t)〉 = 2D′t , (A10)

〈x′1(t) · x′n(t)〉 = 0 , (A11)

which implies D′ = 2D′mid, i.e., g2 = 1/2. In a similar way, with n = 3

〈(x′1)
2(t)〉 = 〈(x′n)

2(t)〉 =
(
√

3 + 2π)D′t
π

, (A12)

〈x′1(t) · x′n(t)〉 = −2
√

3
π

D′t , (A13)

implying D′ = 4πD′mid/(2π −
√

3) and g3 ' 0.362. Numerical integration of Equations (A7)–(A9)
provides g5 ' 0.252 and g7 ' 0.232.
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Figure A3. Analysis of the diffusion coefficient D′mid for the middle position of nk particles satisfying
Equation (2) on an infinite support. Full lines: gn = D′mid/D′ as a function of the pulling force T with
n = nk = 3 for the trefoil and n = nk = 5 for the 51 knot. Dashed lines represent the corresponding
value in the free diffusive case ( f ′ = 0).
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The drift term in Equation (2) acts in such a way that with f ′ > 0 the knot inflates and with
f ′ < 0 it squeezes. This amounts to push further and closer, respectively, the first and the n = nk-th
particles compared to free diffusion. The overall effect of such a driving introduces a systematic
correction to the above values D′mid, which we evaluate numerically. Starting with the initial condition
x′i(0) = 0, we integrated Equation (2) on an infinite support (without boundary conditions) up to
t = 1000 iteration steps. Figure A3 reports the values of D′mid obtained by fitting Equation (A5) to the
numerical integration data. With low pulling force, the excess bending energy dominates the drift term
making it expansive. Correspondingly, D′mid is large. As the expansive drive turns into contractive
with increasing tension, D′mid monotonically decreases crossing the free diffusive case and tends to a
plateau for strong forces. Interestingly, in the case of the 51 knot, D′mid crosses the free diffusive value
for a larger tension T than the trefoil knot. This is because the excess bending energy gives a larger
contribution in the case of the 51 knot than for trefoil. The asymptotic values of the effective diffusion
coefficient are about D′mid = 0.333D′ for the trefoil and D′mid = 0.206D′ for the 51 knot. These are the
values used in Figures 6 and 7 to obtain the strong force limit (dash-dotted line).

Appendix C. Summary of Model Parameters

Here we sum up the parameters entering in the model described in Section 3, with some comments
about their meaning.

Parameters independent of the knot type and of the pulling force:

• εb0 represents the extra bending energy (in unit kBT) per monomer in the tightest knot
configuration with respect to the equipartition value kBT attained for the corresponding relaxed
state `k � ˜̀

k.
εb0 ' 0.74

• D0 = D′(L− `k0)
2, where D′ is the diffusion coefficient of the point-like particles representing

essential crossings moving on the unit segment (0, 1).

D0 = 0.31

• ζ0 = ζ ′/
(

L−`k0
σ

)2
, where ζ ′ is the friction constant to be used in the Langevin equation describing

the dynamics of the point-like particles.

ζ0 = 0.0016

• b is the proportionality constant linking the average end-to-end length of the polymer chain to the
size of the knot embedded in the chain.

b = 0.6

Parameters dependent on the knot type and independent of the pulling force:

• `k0 is the minimal length of the knotted arc.

k `k0

31 13.7σ

51 20.8σ

• ˜̀
k is the typical characteristic length in the decaying of the bending energy of the knotted portion.

˜̀
k = 1.85`k0
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• δ is the parameter describing the reduction of the knot size in the rescaled support [0, 1] when a
torus knot k decays into a simpler torus k̄.

δ = 0.65 for 51 → 31

Parameters dependent on the knot type and on the pulling force:

• Ac is the parameter measuring the contribution of the entropic force.

H
HHHHk

T
0.1 0.17 0.32 0.56 1.0 1.7 3.2 5.6

31 0.02 0.05 0.1 0.18 0.2 0.24 0.32 1.58
51 0 0.02 0.04 0.09 0.14 0.11 0.14 1.2
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