Acid Treatment Enhances the Antioxidant Activity of Enzymatically Synthesized Phenolic Polymers

Maria Laura Alfieri, Federica Moccia, Gerardino D'Errico, Lucia Panzella *, Marco d'Ischia and Alessandra Napolitano

Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy; marialaura.alfieri@unina.it (M.L.A.); federica.moccia@unina.it (F.M.); gderrico@unina.it (G.D.E.); dischia@unina.it (M.d.I.); alesnapo@unina.it (A.N.)

* Correspondence: panzella@unina.it; Tel.: +39-081-674131

Table of contents	Page
Figure S1. Correlation between EC50 (DPPH assay) and Trolox eqs (FRAP assay) values of the acid	l-treated
polymers.	2
Figure S2. NO and superoxide scavenging properties of the enzymatically synthesized phenolic p	olymers
before and after acid treatment.	3
Table S1. EPR parameters of the phenolic polymers before and after acid treatment.	4
Figure S3. 1H NMR spectra of selected phenolic polymers before and after acid treatment.	5

Figure S1. Correlation between EC₅₀ (DPPH assay) and Trolox eqs (FRAP assay) values of the acid-treated polymers.

Figure S2. **A**) NO and **B**) superoxide scavenging properties of the phenolic polymers before and after acid treatment. Reported are the mean \pm SD values of at least three experiments. Values marked with asterisks are significantly different from those of the corresponding polymer before acid treatment (P<0.05, Microsoft Excel Student's t-test).

Polymer	g-factor	Spin density (spin g ⁻¹)	ΔB (G)
PolyGAL	2.0030	1.6 x 10 ¹⁸	3.3
Treated PolyGAL	2.0037	7.2 x 10 ¹⁸	3.7
PolyPYR	2.0033	1.3 x 10 ¹⁸	3.8
Treated PolyPYR	2.0032	7.1 x 10 ¹⁸	4.3
PolyCAT	2.0033	1.9 x 10 ¹⁸	3.4
Treated PolyCAT	2.0033	9.5 x 10 ¹⁸	3.5
PolyMCAT	2.0033	3.8 x 10 ¹⁶	4.8
Treated PolyMCAT	2.0033	2.5 x 10 ¹⁷	5.2
PolyCAF	2.0033	7.5 x 10 ¹⁷	3.7
Treated PolyCAF	2.0032	4.8 x 10 ¹⁸	4.0
PolyFER	2.0033	5.7 x 10 ¹⁷	2.3
Treated PolyFER	2.0032	5.9 x 10 ¹⁷	4.5
PolyCOUM	2.0031	6.9 x 10 ¹⁵	6.2
Treated PolyCOUM	2.0028	1.9 x 10 ¹⁶	5.1
PolyVAN	2.0028	2.5 x 10 ¹⁶	6.4
Treated PolyVAN	2.0033	2.1 x 10 ¹⁶	3.4
PolyTYR	2.0033	2.4 x 10 ¹⁶	8.8
Treated PolyTYR	2.0029	6.7 x 10 ¹⁶	6.3

Table S1. EPR parameters of the phenolic polymers before and after acid treatment.^{1.}

 1 Experimental uncertainties are ± 0.0003 on g-factor, ± 10% on spin-density and ± 0.2 g on $\Delta B.$

Figure S3. ¹H NMR spectra (DMSO-d₆) of selected enzymatically synthesized phenolic polymers before (red trace) and after (blue trace) the acid treatment. A) PolyPYR. B) PolyCAT. C) PolyTYR.