Text S1 Preparation of coagulant

Preparation of PDA

The synthesis of PDA was carried out by oxidant-induced self-polymerization of dopamine. Typically, 2 g dopamine hydrochloride was dispersed in 50 mL ultrapure water adjusted to pH 7.5 . After 5 min of sonication, the mixture was irradiated by ultraviolet light to initiate the polymerization reaction, which was allowed to proceed 1 hour. The precipitate was then retrieved by centrifugation and washed over three times with ultrapure water and ethanol.

Preparation of TAPAM

The synthesis of TAPAM was carried out in a 250 mL quartz jar. A 500-watt high-pressure mercury lamp was used as a UV light source for the polymerization process. A mixed aqueous solution composed of 7 g AM, 1 g PDAC, 2 g AMPS was dissolved in 15 mL of ultrapure water. The initial pH of resulting solution was adjusted to 9.0 with 0.5 M NaOH or HCl . The predetermined amount of V-50 was added after the reaction solution was completely deoxygenated by bubbling with pure $\mathrm{N}_{2}(99.99 \%)$ for 30 min . The reaction vessel was sealed immediately and exposed to radiation at room temperature for about 60 min . Then TAPAM was purified by ethanol several times. The white product was dried in a vacuum oven at $60{ }^{\circ} \mathrm{C}$ until constant weight.

Preparation of TAPAM-PDA-Fe $3_{3} \mathrm{O}_{4}$

Briefly, $2 \mathrm{~g} \mathrm{PDA} ,2 \mathrm{~g} \mathrm{Fe} 3 \mathrm{O}_{4}, 5 \mathrm{~g}$ TAPAM were dispersed in 100 mL ultrapure water, followed by N_{2} purging for 5 min . The reaction vessel was sealed immediately and exposed to radiation at room temperature for about 60 min . Finally, the product was harvested by magnetic separation and washed repeatedly with ethanol. The $\mathrm{Fe}_{3} \mathrm{O}_{4}$-grafted polymer was obtained.

$$
\begin{equation*}
Y=\beta_{0}+\sum_{i=1}^{k} \beta_{i} X_{i}+\sum_{i=1}^{k} \beta_{i i} X_{i}^{2}+\sum_{i=1}^{k-1} \sum_{j=i+1}^{k} \beta_{i j} X_{i} X_{j} \tag{EquationS1}
\end{equation*}
$$

Where $\beta_{0}, \beta_{i}, \beta_{i i}$ and $\beta_{i j}$ are regression coefficients, X_{i} and X_{j} are coded independent variables. Equation S2:

Intrinsic viscosity $=1516.32+192.16 X_{1}-36.04 X_{2}-132.66 X_{3}-85.93 X_{4}-14.37 X_{5}-23.92 X_{6}+$
$20.09 X_{1} X_{2}-231.84 X_{1} X_{3}-28.51 X_{1} X_{4}+86.55 X_{1} X_{5}-39.40 X_{1} X_{6}+54.43 X_{2} X_{3}+277.33 X_{2} X_{4}+$
$180.54 X_{2} X_{5}-256.56 X_{2} X_{6}+107.43 X_{3} X_{4}-140.01 X_{3} X_{5}+15.72 X_{3} X_{6}-60.60 X_{4} X_{5}-37.55 X_{4} X_{6}$
$-116.74 X_{5} X_{6}-363.21 X_{1}^{2}-102.96 X_{2}^{2}-320.74 X_{3}^{2}-271.17 X_{4}^{2}-349.82 X_{5}^{2}-506.54 X_{6}^{2}$

$$
\begin{align*}
q_{t} & =q_{e} \times\left(1-e^{-k_{1} t}\right) \tag{EquationS3}\\
q_{t} & =\frac{q_{e}^{2} k_{2} t}{q_{e} k_{2} t+1} \tag{EquationS4}\\
q_{t} & =k_{p} t^{0.5}+C \tag{EquationS5}
\end{align*}
$$

Where $q_{e}\left(\mathrm{mg} \mathrm{g}^{-1}\right)$ and $q_{t}\left(\mathrm{mg} \mathrm{g}^{-1}\right)$ are the flocculation capacity of the magnetic flocculant at the equilibrium and at time $t(\mathrm{~min})$, respectively. k_{1} and $k_{2}\left(\mathrm{~g} \mathrm{mg}^{-1} \mathrm{~min}^{-1}\right)$ are the rate constant of first-order and second-order flocculation, respectively. $k_{p}\left(\mathrm{mg} \mathrm{g}^{-1} \mathrm{~min}^{-0.5}\right)$ is the intraparticle diffusion rate constant, and $\mathrm{C}\left(\mathrm{mg} \mathrm{g}^{-1}\right)$ is also a constant.

$$
\begin{aligned}
\ln q_{e} & =\ln q_{d}-K_{d} \varepsilon^{2} \\
q_{e} & =K_{f} C_{e}^{1 / n} \\
q_{e} & =\frac{q_{m} K_{l} C_{e}}{1+K_{l} C_{e}}
\end{aligned}
$$

(Equation S6)
(Equation S7)
(Equation S8)

Where $q_{e}\left(\mathrm{mg} \mathrm{g}^{-1}\right)$ and $C_{e}\left(\mathrm{mg} \mathrm{L}^{-1}\right)$ are the flocculation capacity and concentration of DCF at equilibrium, respectively; $q_{m}\left(\mathrm{mg} \mathrm{g}^{-1}\right)$ is the Langmuir constant related to the maximum flocculation capacity $\left(\mathrm{mg} \mathrm{g}^{-1}\right)$ of the magnetic flocculant; and $K_{l}\left(\mathrm{~L} \mathrm{mg}^{-1}\right)$ is the Langmuir isotherm constant. K_{f} is the Freundlich isotherm constant, and n is the heterogeneity factor. $q_{d}\left(\mathrm{mg} \mathrm{g}^{-1}\right)$ is the theoretical saturation capacity in the D-R model, K_{d} is the constant related to the mean free energy of flocculation, and ε is the Polanyi potential.

Table S1. Six factors Box-Behnken design and the value of response function.

Runs	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	Response value	
							Actual	Predicted
1	10	0.5	2.6	6	3.5	75	600.011	595.33
2	5	1.25	0.2	3.5	3.5	120	40.756	34.27
3	7.5	2	5	3.5	6	75	663.2	654.66
4	7.5	1.25	5	6	3.5	30	346.3	352.44
5	10	1.25	2.6	1	1	75	710.11	705.95
6	5	0.5	2.6	6	3.5	75	311.241	308.21
7	5	1.25	2.6	6	6	75	117.221	121.03
8	7.5	1.25	0.2	1	3.5	30	739.716	745.99
9	5	1.25	2.6	1	6	75	355.573	357.06
10	10	1.25	2.6	6	1	75	599.421	598.29
11	7.5	2	2.6	3.5	6	120	270.539	289.91
12	7.5	1.25	0.2	6	3.5	120	270.054	280.00
13	10	1.25	2.6	6	6	75	617.425	621.43
14	7.5	2	0.2	3.5	1	75	467.224	478.84
15	5	2	2.6	1	3.5	75	306.443	310.77
16	7.5	0.5	0.2	3.5	6	75	895.3	911.05
17	7.5	0.5	2.6	3.5	6	120	530.61	514.04
18	5	0.5	2.6	1	3.5	75	975.374	977.70
19	7.5	2	5	3.5	1	75	600.28	602.34
20	7.5	1.25	2.6	3.5	3.5	75	1515.18	1516.32
21	7.5	1.25	2.6	3.5	3.5	75	1517.11	1516.32
22	5	1.25	5	3.5	3.5	30	200.234	201.61
23	7.5	1.25	0.2	1	3.5	120	744.234	741.82
24	10	1.25	5	3.5	3.5	120	100.937	105.86
25	5	1.25	2.6	6	1	75	445.015	444.07
26	7.5	1.25	2.6	3.5	3.5	75	1516.408	1516.32
27	7.5	1.25	2.6	3.5	3.5	75	1516.408	1516.32
28	10	2	2.6	6	3.5	75	1120.78	1118.09

29	5	2	2.6	6	3.5	75	750.868	750.60
30	7.5	0.5	2.6	3.5	6	30	290.176	282.23
31	7.5	2	2.6	3.5	1	120	200.912	191.05
32	7.5	0.5	5	3.5	6	75	250.612	256.81
33	7.5	1.25	5	6	3.5	120	270.933	260.93
34	7.5	1.25	2.6	3.5	3.5	75	1516.408	1516.32
35	7.5	2	2.6	3.5	6	30	1083.06	1084.35
36	10	0.5	2.6	1	3.5	75	1378.25	1378.87
37	10	1.25	2.6	1	6	75	970.92	971.51
38	7.5	2	2.6	3.5	1	30	519.78	518.53
39	7.5	0.5	0.2	3.5	1	75	1030.14	1020.86
40	10	1.25	0.2	3.5	3.5	120	808.574	803.47
41	7.5	1.25	0.2	6	3.5	30	435.536	434.39
42	5	1.25	2.6	1	1	75	441.336	437.69
43	7.5	0.5	2.6	3.5	1	30	440.134	438.58
44	7.5	1.25	2.6	3.5	3.5	75	1516.408	1516.32
45	7.5	1.25	5	1	3.5	30	240.543	234.32
46	5	1.25	0.2	3.5	3.5	30	35.936	34.74
47	7.5	1.25	5	1	3.5	120	295.609	293.03
48	10	1.25	0.2	3.5	3.5	30	960.08	961.56
49	7.5	0.5	2.6	3.5	1	120	1120.81	1137.34
50	10	2	2.6	1	3.5	75	788.91	792.30
51	7.5	2	0.2	3.5	6	75	1110.63	1091.19
52	5	1.25	5	3.5	3.5	120	261.776	264.02
53	10	1.25	5	3.5	3.5	30	198.303	201.07
54	7.5	0.5	5	3.5	1	75	925.025	926.65

Table S2. Variance analysis of regression model.

Source	Sum of squares $\times 10^{-5}$	df	Mean square $\times 10^{-5}$	F value	P value prob $>\mathrm{F}$	
Model	102.886	27	3.811	3759.174	<0.0001	Significance
X_{1}	8.863	1	8.863	8742.911	< 0.0001	
X_{2}	0.312	1	0.312	307.593	0.0014	
X_{3}	4.225	1	4.225	4168.215	< 0.0001	
X_{4}	1.772	1	1.772	1748.052	0.0085	
X_{5}	0.050	1	0.049	48.902	0.0172	
X_{6}	0.137	1	0.137	135.454	< 0.0001	
$\mathrm{X}_{1} \mathrm{X}_{2}$	0.032	1	0.032	31.858	0.0097	
$\mathrm{X}_{1} \mathrm{X}_{3}$	4.300	1	4.300	4242.002	0.0025	
$\mathrm{X}_{1} \mathrm{X}_{4}$	0.130	1	0.130	128.303	0.4058	
$\mathrm{X}_{1} \mathrm{X}_{5}$	0.599	1	0.599	591.134	0.1267	
$\mathrm{X}_{1} \mathrm{X}_{6}$	0.124	1	0.124	122.539	0.0024	
$\mathrm{X}_{2} \mathrm{X}_{3}$	0.237	1	0.237	233.799	0.0666	
$\mathrm{X}_{2} \mathrm{X}_{4}$	6.153	1	6.153	6070.057	0.0086	
$\mathrm{X}_{2} \mathrm{X}_{5}$	5.215	1	5.215	5144.777	0.0024	
$\mathrm{X}_{2} \mathrm{X}_{6}$	5.266	1	5.266	5194.867	0.1221	
$\mathrm{X}_{3} \mathrm{X}_{4}$	0.923	1	0.923	910.837	0.1063	
$\mathrm{X}_{3} \mathrm{X}_{5}$	1.568	1	1.568	1547.000	0.0154	
$\mathrm{X}_{3} \mathrm{X}_{6}$	0.040	1	0.039	39.007	0.056	
$\mathrm{X}_{4} \mathrm{X}_{5}$	0.294	1	0.294	289.868	0.0014	
$\mathrm{X}_{4} \mathrm{X}_{6}$	0.113	1	0.113	111.302	0.0085	
$\mathrm{X}_{5} \mathrm{X}_{6}$	1.090	1	1.090	1075.486	0.1225	
$\mathrm{X}_{1}{ }^{2}$	13.569	1	13.570	13385.852	< 0.0001	
$\mathrm{X}_{2}{ }^{2}$	1.090	1	1.090	1075.626	0.0037	
$\mathrm{X}_{3}{ }^{2}$	10.582	1	10.580	10438.791	< 0.0001	
$\mathrm{X}_{4}{ }^{2}$	7.563	1	7.563	7461.210	0.0075	
$\mathrm{X}_{5}{ }^{2}$	12.587	1	12.590	12416.870	0.5677	
$\mathrm{X}_{6}{ }^{2}$	26.392	1	26.390	26035.461	< 0.0001	
Residual	0.026	26	1.014×10^{-3}		0.0026	
Lack of Fit	0.026	21	1.254×10^{-3}	320.796	0.3009	Not significance
Pure Error	1.955×10^{-5}	5	0.390×10^{-5}			
Cor Total	102.913	53				

