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Abstract: Polyamide 6 (PA6)/poly(vinylidene fluoride) (PVDF) blend-based nanocomposites
were successfully prepared using a twin screw extruder. Carbon nanotube (CNT) and
organo-montmorillonite (30B) were used individually and simultaneously as reinforcing nanofillers
for the immiscible PA6/PVDF blend. Scanning electron micrographs showed that adding 30B reduced
the dispersed domain size of PVDF in the blend, and CNT played a vital role in the formation of a
quasi-co-continuous PA6-PVDF morphology. Transmission electron microscopy observation revealed
that both fillers were mainly located in the PA6 matrix phase. X-ray diffraction patterns showed that
the presence of 30B facilitated the formation of γ-form PA6 crystals in the composites. Differential
scanning calorimetry results indicated that the crystallization temperature of PA6 increased after
adding CNT into the blend. The inclusion of 30B retarded PA6 nucleation (γ-form crystals growth)
upon crystallization. The Young’s and flexural moduli of the blend increased after adding CNT
and/or 30B. 30B exhibited higher enhancing efficiency compared with CNT. The composite with
2 phr 30B exhibited 21% higher Young’s modulus than the blend. Measurements of the rheological
properties confirmed the development of a pseudo-network structure in the CNT-loaded composites.
Double percolation morphology in the PA6/PVDF blend was achieved with the addition of CNT.
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1. Introduction

Polymer blends filled with nanofillers have attracted considerable attention in academia and in
the industry because of their superior properties compared with conventional blends. Polyamide 6
(PA6) is an essential crystalline engineering plastic with good chemical stability, high strength, excellent
wear resistance, and oil resistance. The crystal structures in PA6 are mainly α- and γ-morphism [1–4].
The α-form is composed of a fully extended planar zigzag chain conformation, while the γ-form
consists of pleated sheets of parallel chains joined by hydrogen bonds [5]. The polar functional groups
(amide) of PA6 tend to absorb moisture, resulting in poor stability after prolonged exposure to air
environment. Poly(vinylidene fluoride) (PVDF), another crystalline engineering plastic, possesses
high mechanical strength, excellent thermal/chemical stability, and good hydrolysis resistance and
weatherability [6,7]. PVDF has five distinct polymorphs (α, β, γ, δ, ε).The polar β-structure-induced
piezo- and pyroelectric characteristics of PVDF allows for applications in sensors and actuators [8,9].

Polymers 2020, 12, 184; doi:10.3390/polym12010184 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-3531-9287
http://www.mdpi.com/2073-4360/12/1/184?type=check_update&version=1
http://dx.doi.org/10.3390/polym12010184
http://www.mdpi.com/journal/polymers


Polymers 2020, 12, 184 2 of 15

Through polymer blending approach, it is expected to overcome the drawbacks of parent components.
The PA6/PVDF blends and related composites with fine dielectric properties can be applied in an
electronic field, such as embedded capacitors [10]. PA6/PVDF blend-based membranes may be used
for separating gases such as CO2, N2, CH4 [5]. Accordingly, PA6/PVDF blends may integrate the
advantages of individual components to present broad applications in various fields.

Various combinations of polymers and nanofillers have been used to fabricate high-performance
polymer nanocomposites. Chiu et al. [11] reported that adding organically modified montmorillonite
clay (OMMT) induced the formation of γ -form PA6 crystals. The inclusion of carbon nanotube
(CNT) favored the formation of α-form PA6 crystals in the nanocomposites [5,12]. Pramoda et al. [13]
reported that the incorporation of OMMT assisted the formation of β-form PVDF crystals. Chiu [14]
differentiated the physical properties of PVDF/OMMT and PVDF/CNT nanocomposites. The addition
of OMMT induced β-form PVDF crystal growth, but CNT barely affected the development of the
original α-form crystals. Both nanofillers facilitated the nucleation of PVDF, but CNT exhibited a higher
nucleation efficiency than OMMT. In addition to the binary polymer/nanofiller nanocomposites, polymer
blend-based multicomponent nanocomposites with superior mechanical and thermal properties due
to the modification on phase morphology were reported [15–18].

Huitric et al. [19] reported that adding up to 1 wt % of OMMT to the linear low-density
polyethylene/PA12 blend increased the Young’s modulus by 57%. Chiu et al. [20,21] characterized
PVDF/poly(methyl methacrylate) blend-based nanocomposites with OMMT and CNT as nanofillers.
The storage modulus values of the binary and ternary composites increased to 23% and 54% at 25 ◦C,
respectively, compared with that of PVDF. Li et al. [22] studied PVDF/polycaprolactone (PCL)/CNT
nanocomposites and found that CNT was selectively localized in the PCL phase. Mao et al. [10] reported
altering the weight ratio of PVDF-to-PA6 resulted in the evolution of the sea-island morphology to
co-continuous morphology. CNT was selectively localized in the PA6 phase in both blends with
sea-island and co-continuous morphologies because of the finer interaction between PA6 and CNT.
Phase transformed from sea-island to co-continuous by CNT loading, which increased the melt viscosity
of the PA6 phase [23]. Systems with hybrid filler are recently studied to fabricate high-performance
polymer nanocomposites. Chen et al. [24] reported that with the inclusions of CNT and/or OMMT,
the blend-based composites of polycarbonate/PVDF showed apparent change in the morphology
from a typical sea-island structure to the quasi-co-continuous structure. Chiu [25] studied the effect
of loading halloysite nanotube (HNT) and OMMT on the physical properties of poly[(butylene
succinate)–co–(adipate)] (PBSA)/maleated polyethylene blend-based nanocomposites. The rigidity of
PBSA evidently increased after the formation of blend-based nanocomposites. Loading 4 wt % HNT
exhibited higher enhancing efficiency for the rigidity of the blend than loading 5 wt % OMMT.

The influences of individual and simultaneous incorporations of OMMT and CNT on the physical
properties of polymer blends merit thorough investigation from the academic research and practical
application viewpoints. OMMT- and CNT-loaded PA6/PVDF blend-based nanocomposites have not
yet been reported. In the current study, OMMT and CNT were utilized individually and simultaneously
for preparing PA6/PVDF blend-based nanocomposites by using a twin screw extruder. This study was
performed to investigate the change in the morphology of the immiscible blend after the incorporation
of single or hybrid nanofillers. The crystallization/melting behavior and the mechanical and rheological
properties of prepared blend and composite samples were compared and reported.

2. Experimental

2.1. Materials

PA6 (TP 4208) was a commercial product of Zig Sheng Industrial Co. (Taiwan). PVDF (Kynar®710),
with an average molecular weight of ca. 1.9 × 105 g mol−1, was provided by Arkema (France).
Organomontomorillonite (Cloisite®30B, denoted as 30B) was obtained from Southern Clay Products,
Inc (USA). Multi-walled CNT, with a carbon purity of >95%, an average outer diameter of 60 nm, and an
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aspect ratio of >100, was supplied by Golden Innovation Co. (Taiwan). N,N-Dimethylformamide
(DMF), which was used for etching experiments, was purchased from JT Baker (Radnor, PA, USA).

2.2. Sample Preparation

All samples were prepared by using twin screw extruder (SHJ-20B, L/D = 40) in co-rotating mode.
The screw speed was maintained at approximately 200 rpm. The barrel temperatures from the hopper
to the die were maintained within 180–240 ◦C. Before melt-mixing, the ingredients were dried at
70 ◦C for 24 h in an air-circulated oven to remove the absorbed moisture. After melt-mixing, the test
specimens were prepared by injection molding (V4-20SP-G, Multiplas Enterprise Co., Ltd., Taoyuan,
Taiwan). PA6 blended with PVDF at weight ratio 50/50 was represented as A5F5. The blend filled with
2 phr of 30B or CNT was denoted as A5F5C2 and A5F5T2, respectively. The blend filled with 1 phr
each of 30B and CNT was denoted as A5F5C1T1.

2.3. Characterizations

The morphology of the prepared blend and composites was examined by a field emission
scanning electron microscope (FESEM, JSM-7500, Hitachi High-Technologies Corp., Tokyo, Japan).
FESEM images were observed from cross-section of cryo-fractured specimens (in liquid nitrogen for
five min). The SG capture software was used to measure the domain size of PVDF from FESEM
images. Transmission electron microscope (TEM, JEM-2000EX II, Jeol Ltd., Akishima, Japan) at an
acceleration voltage of 100 kV was employed to assess the dispersibility of 30B and CNT. The TEM
samples (ca. <100 nm) were prepared by ultra-cryomicrotoming at −130 ◦C. X-ray diffraction (XRD)
was performed using a Bruker instrument (D2, Billerica, MA, USA) to investigate the crystal structures
of PA6 and PVDF in the samples. The X-ray source was CuKα radiation with a wavelength of 0.154 nm.
The diffractograms were scanned within 2θ of 10◦–30◦, and the X-ray unit was operated at 40 kV and
30 mA.

A differential scanning calorimeter (TA DSC Q10, Milford, MA, USA) equipped with an intercooler
under a nitrogen environment was utilized to investigate the crystallization and melting behavior
of the samples. For the non-isothermal crystallization experiments, the samples were first heated
from room temperature to 240 ◦C at 20 ◦C/min, and then cooled to room temperature at different
rates (5 and 40 ◦C/min). The crystallized samples were heated at 20 ◦C/min to observe the melting
behavior. The samples were heated to 240 ◦C, cooled at a fast rate of 90 ◦C/min to the predetermined
crystallization temperatures (Tcs), held for various times, and subsequently heated to 240 ◦C (20 ◦C/min)
to study isothermal crystallization and melting behavior. The Young’s modulus (YM), yield strength
(YS), and flexural modulus (FM) were measured at a crosshead speed of 1 mm/min, using a Gotech
Al-2000 system (Taichung, Taiwan). For YM and YS measurement, the dumbbell-shaped specimen
was used according to ASTM D638. For FM measurement, the cuboid-shaped specimen was used
(L:W:H = 62.5:12.5:3.2) according to ADTM D790. Six specimens were tested for each formulation,
and the average value was reported. The conditions we chose for the different tests were to obtain the
proper data for comparison. Rheological properties were determined at 240 ◦C by using an Anton
Paar Physica rheometer (MCR 101, Anton Paar GmbH, Graz, Austria) in oscillating mode with parallel
plate geometry (25 mm diameter and 1 mm gap).

3. Results and Discussion

3.1. Phase Morphology and Selective Localization of Nanofillers

The cryo-fractured surfaces of the representative samples were investigated using FESEM (Figure 1).
Figure 1a shows the biphasic morphology of the A5F5 blend, indicating its immiscible characteristics.
Based on the difference in the densities of PA6 (1.14 g/cm3) and PVDF (1.78 g/cm3), the volume ratio
of PA6 to PVDF in the blend was 61:39. The PVDF should play the dispersion phase (domains) in
the blend/composites. The dispersed PVDF exhibited an average domain size of 3.1 µm and was
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composed of 17% with size <2 µm, 64% with size 2–4 µm, and 20% with size >4 µm. Figure 1b
shows the evidently smaller and more uniform PVDF domain size in A5F5C2 compared to A5F5.
This result indicates that 30B played a compatibilizer role to improve the compatibility between PA6
and PVDF. For the composite with 2 phr CNT (Figure 1c), the biphasic structure became diffused and
some elongated domains of PVDF were observed. The CNT was mainly dispersed in the PA6 matrix
phase, and some CNT particles were found across the PA6-PVDF two phases. CNT played a crucial
role in the formation of quasi-co-continuous PA6-PVDF phases. A5F5T2 composite showed evident
quasi-co-continuous morphology. With the loading of 30B and CNT into the blend (cf. A5F5C1T1,
Figure 1d), the morphology was in between those of A5F5C2 and A5F5T2, and the quasi-co-continuous
PA6-PVDF morphology was relatively developed.
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Figure 1. FESEM images of the samples: (a) A5F5, (b) A5F5C2, (c) A5F5T2, (d) A5F5C1T1,
and PVDF-etched (e) A5F5T2, and (f) A5F5C1T1.
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The scanning electron micrographs of PVDF-etched (by DMF) A5F5T2 and A5F5C1T1 are shown
in Figure 1e,f to determine the component responsible for the dispersion phase in the blend/composites.
The dispersed phase was removed (etched out), confirming that PVDF played the dispersed domains.
The dispersion of CNT in the PA6 matrix was evident again. The dispersibility of 30B within the
composites was examined by TEM. Figure 2a,b show the transmission electron micrographs of the
finely dispersed 30B within the PA6 matrix of A5F5C2 and A5F5C1T1. 30B was also detected at the
interface between PA6 and PVDF. CNT was also found in the PA6 phase and in the interfacial region of
PA6-PVDF phases. The selective localization of 30B and CNT mainly within the PA6 matrix phase was
determined. The multicomponent PA6/PVDF blend-based nanocomposites was achieved.
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Gomari et al. [26] and Zhao et al. [27] discussed the location of nanofillers in immiscible blends by
assessing the wetting coefficient,ωα, according to Young’s equation [26]. For the PA6/PVDF blend
system, the equation can be expressed as follows:

ωα =
γPVDF−filler − γPA6−filler

γPVDF−PA6
(1)



Polymers 2020, 12, 184 6 of 15

where γPVDF−filler is the interfacial energy between PVDF and the nanofiller, γPA6−filler is the interfacial
energy between PA6 and the nanofiller, and γPVDF−PA6 is the interfacial energy between PVDF and
PA6. In Equation (1), if ωα > 1, then the nanofiller will be distributed in PA6 phase. If ωα < −1,
the nanofiller will be distributed in the PVDF phase. If − 1 <ωα < 1, the nanofiller will be located at
the interface between the two phases. The interfacial energy between the two components could be
calculated from the surface tensions of the components by using two different approaches. The first
approach is the geometric mean equation [26], which is suitable for polar systems as follows:

γ12 = γ1 + γ2 − 2
(√
γd

1γ
d
2 +

√
γ

p
1γ

p
2

)
(2)

The second approach is Wu’s harmonic mean equation [26] as follows:

γ12 = γ1 + γ2 − 4

 γd
1γ

d
2

γd
1 + γd

2

+
γ

p
1γ

p
2

γ
p
1 + γ

p
2

 (3)

where γ1 and γ2 are the surface tension of components 1 and 2, respectively. γd and γp stand for the
dispersive and polar parts of the surface tensions, respectively.

In this study, the surface tensions of PA6, PVDF, and two nanofillers were derived from the
literature [27–30]. The retrieved values were corrected to correspond to the mixing temperature (240 ◦C)
by using the temperature coefficients (−dγdT−1) in literature [26]. According to Equations (2) and
(3), the interfacial tensions between the pairs of components are summarized in Table 1. By setting
the nanofiller as 30B or CNT, the values ofωα according to the geometric mean and harmonic mean
equations were calculated using Equation (1). The results are presented in Table 2. Based on the
calculatedωα, 30B or CNT were anticipated to be located in the PA6 phase. The obtained morphology
results were mostly consistent with the predicted results. However, some 30B and CNT were observed
at the interfacial region of the two phases.

Table 1. Surface free energy of studied polymers and nanofillers at 240 ◦C.

Material
Total Surface Free Energy Temperature Coefficient Dispersive Part Polar Part

γ (mJm−2) −dγdT−1 (mJm−2*K) γd (mJm−2) γp (mJm−2)

PVDF [27] 30.3 0 23.3 7.0
PA6 [28] 37.7 0.065 [26] 27.1 10.6
30B [29] 36.0 0.1 [26] 23.0 13.0

CNT [30] 45.3 0 18.4 26.9

Table 2. Interfacial tensions and wetting coefficients according to the geometric mean and harmonic
mean equations.

Material
Interfacial Tension γ12 (mMm−1) Wetting Coefficient,ωα Location

PredictionHarmonic Mean
Equation

Geometric Mean
Equation

Harmonic Mean
Equation

Geometric Mean
Equation

γPVDF−PA6 1.0 0.5
γPVDF−30B 1.8 0.9
γPA6−30B 0.6 0.3

γPVDF−PA6−30B 1.2 1.2 PA6
γPVDF−CNT 12.3 6.7
γPA6−CNT 8.8 4.6

γPVDF−PA6−CNT 3.4 4.2 PA6

3.2. Crystal Structure

Figure 3a shows the XRD patterns of the precooled samples (10 ◦C/min from the melting state).
Neat PA6 exhibited characteristic diffraction peaks of the α-form crystal at 2θ = 20.5◦ (200) and 23.7◦
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(202/002), whereas neat PVDF revealed characteristic diffraction peaks of theα-form crystal at 2θ = 17.9◦

(100), 18.5◦ (020), 20.0◦ (110), and 26.6◦ (021) [31–34]. The blend and CNT-loaded composites showed
diffraction peaks corresponding to the individual PA6 and PVDF components. The presence of CNT
did not alter the crystal structures of PA6 and PVDF. However, only 30B-loaded composite (A5F5C2)
exhibited additional diffraction peaks at approximately 2θ = 11.0◦ (020) (weak intensity) and 21.5◦

(200/001), which indicates the formation of the α/γ-crystalline form of PA6. With the presence of 30B
and CNT, the diffractions associated with the γ-crystalline form of PA6 was hardly detected. Figure 3b
shows the XRD patterns of the air-quenched samples cooled from the melt state to room temperature by
air circulation. Neat PA6 showed characteristic diffraction peaks at approximately 2θ = 20.5◦ and 23.7◦

(α-crystalline form) and 21.5◦ (γ-crystalline form). Neat PVDF showed diffractions of the α-crystalline
form. The diffraction peaks of the A5F5 blend were superimposed of the individual PA6 and PVDF
components. The PVDF in the composites showed α-crystalline form, except with minor diffraction of
β-crystalline form in the A5F5C2. The γ-crystalline form of PA6 became more evident in the A5F5C2
composite where only 30B was added. When only CNT was loaded in the composite (cf. A5F5T2),
PA6 exhibited mainly α-form crystal diffraction. The A5F5C1T1 samples showed the diffractions of the
γ-crystalline form of PA6 and the α-crystalline form of PA6 and PVDF. The XRD results revealed that
30B induced the β-crystalline form of PVDF (under fast cooling process) and the γ-crystalline form of
PA6. The addition of CNT did not alter the α-crystalline form of PVDF, but diminished the growth of
the 30B-induced γ-crystalline form of PA6. The induction of β-form PVDF crystals with CNT/clay
presence has been previously reported [12,35]. In this study, the selective location of 30B and CNT
mainly within the PA6 phase was responsible for the lack of change in the crystal form of PVDF in the
composites. Thus, crystal form modification was evident for PA6 in the composites.
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Figure 3. XRD patterns of selected samples prepared through different cooling rates: (a) 10 ◦C/min and
(b) air quenching.

3.3. Crystallization and Melting Behavior

The effects of blending with its counterpart and addition with 30B and/or CNT on the crystallization
behavior of PA6 and PVDF were investigated through DSC. Figure 4a shows the 5 ◦C/min cooling
curves of the samples. The crystallization peak temperature (Tp) of the neat PA6 and PVDF were
194.1 ◦C and 139.0 ◦C, respectively. After blending, the Tp of PA6 slightly shifted to a lower value while
PVDF exhibited a lower temperature crystallization in addition to the original crystallization peak.
The lower temperature crystallization was associated with the small domain-caused homogeneous
crystallization (SEM results). For the sole 30B-loaded composite (cf. A5F5C2), the Tp of PA6 slightly
decreased because of the growth of γ-form crystals of PA6 (XRD data). The PVDF showed a Tp (uniform
domain size) similar to that of neat PVDF. With the loading of CNT in the blend (cf. A5F5T2 and
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A5F5C1T1), the Tp of PA6 shifted to higher temperatures because of the nucleation effect of CNT. The Tp

of PVDF marginally changed compared with that of the neat PVDF. The quasi-co-continuous PA6-PVDF
morphology caused partially overlapped two crystallizations of PVDF in A5F5T2. The determined Tp

and crystallinity values of the samples are listed in Table 3. The crystallinity of PA6 and PVDF of the
selected samples are calculated from the melting enthalpy (∆Hm) of the thermograms according to
Equation (4) [36]:

χc =
∆Hm

w∆Hmo (4)

where w is the weight fraction of PA6 or PVDF in the composite, ∆Hm is the heat of fusion at the melting
point, and ∆Hm

o is the heat of fusion of 100% crystalline PA6 or PVDF. The estimated ∆Hm
o values of

PA6 and PVDF are 230.0 J/g [37] and 104.6 J/g [21], respectively. Table 3 shows a decrease in the PVDF
crystallinity in the composites, possibly due to the hindrance to the diffusion of PVDF chains. By contrast,
the PA6 crystallinity increased in the composites compared with the blend, likely because CNT and
30B were mainly located in the PA6 phase (SEM image). A formulation-dependent crystallization
behavior similar to that of the samples cooled at 5 ◦C/min was observed in the samples cooled at
40 ◦C/min (Figure 4b). The Tp shifted to lower values for the fast-cooled samples mainly because of the
thermal lag effect. The isothermal crystallization behavior of PA6 in different samples was investigated
through DSC. The isothermal crystallization curves of A5F5 and A5F5C2 at various temperatures as a
function time t are presented in Figure 4c,d. According to the nucleation-controlled crystal growth
theory, the crystallization time increased with increasing crystallization temperature (Tc). The plots
in Figure 4e depict the reciprocal of the crystallization peak time (tp) versus Tc. The reciprocal value
(tp
−1) is proportional to the overall crystallization rate. Neat PA6 and A5F5 showed similar isothermal

crystallization rates at individual Tc. The well-dispersed 30B in the PA6 matrix phase (TEM image
for A5F5C2 in Figure 2) caused the interaction between PA6 and 30B, and thus induced the slowly
crystallized γ-form PA6 crystals. The CNT-loaded composites (c.f. A5F5T2 and A5F5C1T1) showed a
faster PA6 crystallization rate than the other samples at individual Tc because of the CNT nucleation
effect. The presence of 30B (induced γ-form crystals) reduced the CNT nucleation effect for PA6
crystallization compared with the A5F5T2 sample at different Tcs.

Figure 5a shows the comparison of the DSC melting behavior of the neat components, blend,
and composites precooled at 5 ◦C/min. Neat PA6 and PVDF exhibited melting temperature (Tm) at
220.9 ◦C and 172.0 ◦C, respectively, and the values marginally changed after the blend formation.
For the A5F5C2 composite, two overlapping melting endotherms were observed. The Tm of PA6 shifted
to 215.2 ◦C, which was associated with the melting of the γ-form crystals. The melting of the α-form
PA6 crystal occurred at the temperature close to that of the A5F5 blend. For CNT-loaded composites,
the Tm of PA6 was similar to that of the A5F5 blend. The presence of CNT facilitated the growth
of the original α-form PA6 crystals. In the blend and composites, PVDF showed overlapped peaks,
which might mainly be due to the melting of the original grown and heating-annealed crystals [17].
The melting behavior of PA6 and PVDF in the different samples at a faster precooling rate are depicted
in Figure 5b. Compared with the slower rate-cooled corresponding samples, evident multiple melting
phenomena were observed for both PA6 and PVDF in the blend/composites. These results are due to the
occurrence of more γ-form PA6 crystals (XRD data) and less-stable PVDF crystals at a faster cooling rate.
The apparent Tm values of PA6 and PVDF in different samples are summarized in Table 3. Figure 5c,d
show the melting curves of PA6 in A5F5 and A5F5C2 after isothermal crystallization at different Tcs.
As anticipated, the Tm of PA6 increased with increasing Tc for individual samples. The Hoffman–Weeks
(Tm vs. Tc) plots [38] for individual samples are shown in Figure 5e. A5F5C2 exhibited lower Tm

values of PA6 compared with the other samples at each Tc because of the 30B-induced formation of
γ-form crystals. The equilibrium melting temperature of PA6 (Tm

o) in different samples was obtained
from the plots (intercepts with the Tm = Tc straight line). The Tm

o of A5F5 (229.6 ◦C) was close to that
of neat PA6 (230.6 ◦C). The Tm

o of the composite with sole 30B inclusion (A5F5C2) was lower than that
of A5F5C1T1. This outcome was ascribed to the reduced γ-form crystals because of the presence of
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CNT. The reason for the low Tm
o value of A5F5T2 was not clear. Further experiments are required to
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Table 3. Representative DSC thermal data of the samples.

Samples
Properties

TcPVDF (◦C) a TcPA6 (◦C) a χcPVDF (%) a χcPA6 (%) a TmPVDF (◦C) b TmPA6 (◦C) b

PVDF 139.0 – 46.2 – 172.0 –
PA6 – 194.1 – 27.5 – 220.9

A5F5 126.1/137.1 192.8 50.4 26.3 169.9 219.4
A5F5C2 136.3 190.8 42.6 27.0 170.8 215.2
A5F5T2 125.3/133.9 197.8 45.9 28.3 169.9 220.7

A5F5C1T1 137.1 197.2 37.6 28.8 170.2 220.4
a 5 ◦C/min-cooled; b 20 ◦C/min-heating after 5 ◦C/min-cooled.
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3.4. Mechanical Properties

Typical tensile stress–strain curves of the neat components and their blend/composites are shown
in Figure 6a. PA6 showed superior tensile properties to PVDF. The elongation at break (EB) of the
blend was lower than those of the neat components due to the immiscible nature between PA6 and
PVDF. The composites showed even lower EB than the blend due to the rigid nature of 30B and CNT.
Figure 6b shows the comparison of the YS values of the tested samples. Neat PVDF (50 MPa) exhibited
lower YS than neat PA6 (85 MPa). The YS (53 MPa) of the blend was within those of the two parent
components (close to the PVDF value). The sole addition of CNT into the blend slightly increased the
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YS (a 13% increase compared to that of the blend), which was higher than the YS of the sole 30B-added
composite (a 9% increase). This phenomenon should be associated with the higher rigidity of CNT
and the formation of the quasi-co-continuous morphology with the CNT inclusion. YS also increased
after the simultaneous addition of 30B and CNT, but the enhancement was not as evident as that of
sole 30B- or CNT-added composites.
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Figure 6c shows the comparison of the YM of the tested samples. PA6 showed higher YM
(2150 MPa) than PVDF (1770 MPa). The blend showed a considerably lower YM (1890 MPa) than
that (1960 MPa) calculated by the additivity rule because of interfacial interaction and changes in the
phase morphology [39]. YM evidently increased after the formation of the composites. The 30B-loaded
composite (A5F5C2) exhibited higher YM than the CNT-loaded composite (A5F5T2). Furthermore,
the simultaneous addition of 30B and CNT (A5F5C1T1) showed a value within those of the sole
addition of 30B or CNT. The A5F5C2 increased YM approximately by 21% compared with that of the
blend. This result could be attributed to the combined effects of PA6-PVDF interface modification by
30B and fine dispersion status of 30B in the blend matrix. Similar to the formulation-dependent trend
of YM, the FM results are shown in Figure 6d. The A5F5C2 composite again possessed the highest
value among all samples. The FM of A5F5C2 increased by 20% compared to that of the blend.

3.5. Rheological Properties

The processability and internal structure change in the immiscible blends after the formation of
the nanocomposites can be disclosed from the rheological property measurements. Figure 7a shows the
complex viscosity (η*) as a function of sweep frequency (ω) for the samples. PA6 showed Newtonian
fluid behavior at almost all frequencies. By contrast, PVDF exhibited Newtonian fluid behavior in
the low-frequency region and non-Newtonian fluid behavior at higher frequencies (shear-thinning).
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PVDF possessed higher η* than PA6 at all tested frequencies, indicating that PA6 showed a more
temperature-sensitive processability than PVDF. The blend showed η* value in between parent
components at all frequencies. The sole 30B-added composite had lower η* values than the blend.
This result could be attributed to the fact that 30B induced more uniform and smaller PVDF domain
size. The layered structure of 30B might also play a certain role for the lower η* values. However,
the CNT-loaded composites (cf. A5F5T2 and A5F5C1T1) exhibited evidently higher η* than the blend
as well as non-Newtonian fluid behavior at all frequencies. The shear-thinning behavior started at low
frequencies, which suggests that a pseudo-network structure (liquid-like to solid-like transition) was
achieved in the samples with the quasi-co-continuous morphology and fine dispersion of 30B/CNT
nanofillers. The sweep frequency dependence of storage modulus (G’) of the samples is depicted in
Figure 7b. G’ increased with increasing frequency for all samples, and PVDF showed higher G’ than
PA6 at all frequencies. The G’ values were higher for the blend than its parent components at low
frequencies (slightly solid-like behavior due to the non-uniform distribution of the PVDF domain size).
The formulation-dependent increase in G’ after the formation of the composites followed similar trend
of the η* values. The CNT-added composites showed evident increase in G’ at ω < 1 rad/s, and the
flattened slopes at low frequencies suggested a solid-like behavior. The pseudo-network structure
(development of double percolation) might have led to the observed rheological properties of the
CNT-added composites, corresponding to the morphological results. The results revealed that the
CNT-added composites had higher melt elasticity than the blend, while the addition of 30B decreased
the melt elasticity of the blend.
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4. Conclusions

Immiscible PA6/PVDF blend and blend-based nanocomposites were successfully fabricated using
a twin screw extruder through individual and simultaneous incorporation of 30B and CNT nanofillers.
Morphological observations revealed that the presence of 30B reduced the dispersed domain size of
PVDF in the blend. Addition of CNT led to the development of a quasi-co-continuous PA6/PVDF
morphology. TEM analysis confirmed that 30B and CNT were mostly located in the PA6 matrix phase.
DSC data revealed that CNT facilitated the nucleation of PA6 upon crystallization, whereas the addition
of 30B barely changed the crystallization of PA6. The crystal structure of PA6 in the sole 30B-added
composite was transformed from the α-form to γ-form, as shown by the XRD results. The mechanical
properties of A5F5 blend decreased compared to the neat polymers due to the immiscible characteristics.
The rigidity of the PA6/PVDF blend considerably increased after the formation of composites. The YS
values also increased with increasing CNT and/or the addition of 30B, which enhanced the rigidity
of the composites more efficiently than CNT. The measured rheological properties confirmed the
formation of a pseudo-network structure in the CNT-loaded composites, and higher CNT loading
increased the complex viscosity and G′ to a higher extent.

Author Contributions: H.-M.L. did the experimental work, analyzed the results, and prepared the manuscript.
M.Y. reviewed the manuscript. K.B. assisted the mechanical and thermal properties measurements. F.-C.C. (project
leader) advised experimental techniques and revised the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank to Chang Gung Memorial Hospital (CMRPD2J0081/BMRP392) for financial
support. The financial support and Post-doctoral fellowship from Ministry of Science and Technology (Taiwan)
under contracts MOST 105-2221-E-182-081-MY2 and MOST 108-2811-E-182-500 are appreciated as well.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ho, J.C.; Wei, K.H. Induced crystal transformation in blends of polyamide 6 and liquid crystalline copolyester.
Macromolecules 2000, 33, 5181–5186. [CrossRef]

2. Miyasaka, K.; Ishikawa, M. Effects of temperature and water on the crystalline transition of nylon 6 caused
by stretching in the chain direction. J. Polym. Sci. Part A-2 1968, 6, 1317–1329. [CrossRef]

3. Dusek, K.; Patterson, D. Transition in swollen polymer networks induced by intramolecular condensation.
J. Polym. Sci. Part A-2 1968, 6, 1209–1216. [CrossRef]

4. Murthy, N.S. Metastable crystalline phases in nylon 6. Polym. Commun. 1991, 32, 301–305.
5. Li, J.; Fang, Z.; Tong, L.; Gu, A.; Liu, F. Polymorphism of nylon-6 in multiwalled carbon nanotubes/nylon-6

composites. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 1499–1512. [CrossRef]
6. Chiu, F.C. Poly(vinylidene fluoride)/polycarbonate blend-based nanocomposites with enhanced

rigidity-selective localization of carbon nanofillers and organoclay. Polym. Test. 2017, 62, 115–123. [CrossRef]
7. Elnabawy, E.; Hassanain, A.H.; Shehata, N.; Popelka, A.; Nair, R.; Yousef, S.; Kandas, I. Piezoelastic PVDF/TPU

nanofibrous composite membrane: Fabrication and characterization. Polymers 2019, 11, 1634. [CrossRef]
8. Lovinger, A.J. Crystallization of the phase of poly(vinylidene fluoride) from the melt. Polymer 1981, 22,

412–413. [CrossRef]
9. Mohajir, B.E.E.; Heymans, N. Changes in structural and mechanical behaviour of PVDF with processing and

thermomechanical treatments. 1. change in structure. Polymer 2001, 42, 5661–5667. [CrossRef]
10. Mao, H.; Zhang, T.; Huang, T.; Zhang, N.; Wang, Y.; Yang, J. Fabrication of high-k poly(vinylidene

fluoride)/nylon 6/carbon nanotube nanocomposites through selective localization of carbon nanotubes in
blends. Polym. Int. 2017, 66, 604–611. [CrossRef]

11. Chiu, F.C.; Lai, S.M.; Chen, Y.L.; Lee, T.H. Investigation on the polyamide 6/organoclay nanocomposites with
or without a maleated polyolefin elastomer as a toughener. Polymer 2005, 46, 11600–11609. [CrossRef]

12. Li, J.; Tong, L.; Fang, Z.; Gu, A.; Xu, Z. Thermal degradation behavior of multi-walled carbon
nanotubes/polyamide 6 composites. Polym. Degrad. Stab. 2006, 91, 2046–2052. [CrossRef]

http://dx.doi.org/10.1021/ma991702f
http://dx.doi.org/10.1002/pol.1968.160060709
http://dx.doi.org/10.1002/pol.1968.160060701
http://dx.doi.org/10.1002/polb.20808
http://dx.doi.org/10.1016/j.polymertesting.2017.06.018
http://dx.doi.org/10.3390/polym11101634
http://dx.doi.org/10.1016/0032-3861(81)90058-6
http://dx.doi.org/10.1016/S0032-3861(01)00064-7
http://dx.doi.org/10.1002/pi.5302
http://dx.doi.org/10.1016/j.polymer.2005.09.077
http://dx.doi.org/10.1016/j.polymdegradstab.2006.02.001


Polymers 2020, 12, 184 14 of 15

13. Pramoda, K.; Mohamed, A.; Phang, I.Y.; Liu, T. Crystal transformation and thermomechanical properties of
poly(vinylidene fluoride)/clay nanocomposites. Polym. Int. 2005, 54, 226–232. [CrossRef]

14. Chiu, F.C. Comparisons of phase morphology and physical properties of PVDF nanocomposites filled with
organoclay and/or multi-walled carbon nanotubes. Mater. Chem. Phys. 2014, 143, 681–692. [CrossRef]

15. Mahmood, N.; Islam, M.; Hameed, A.; Saeed, S. Polyamide 6/multiwalled carbon nanotubes nanocomposites
with modified morphology and thermal properties. Polymers 2013, 5, 1380–1391. [CrossRef]

16. Du, F.P.; Qiao, X.; Wu, Y.G.; Fu, P.; Liu, S.P.; Zhang, Y.F.; Wang, Q.Y. Fabrication of porous polyvinylidene
fluoride/multi-walled carbon nanotube nanocomposites and their enhanced thermoelectric performance.
Polymers 2018, 10, 797. [CrossRef]

17. Otaegi, I.; Aramburu, N.; Müller, A.J.; Gonzalo, G.E. Novel biobased polyamide 410/polyamide 6/CNT
nanocomposites. Polymers 2018, 10, 986. [CrossRef]

18. Lee, S.; Ko, K.; Youk, J.; Lim, D.; Jeong, W. Preparation and properties of carbon fiber/carbon nanotube
wet-laid composites. Polymers 2019, 11, 1597. [CrossRef]

19. Huitric, J.; Ville, J.; Mederic, P.; Aubry, T. Solid-state morphology, structure, and tensile properties of
polyethylene/polyamide/nanoclay blends: Effect of clay fraction. Polym. Test. 2017, 58, 96–103. [CrossRef]

20. Chiu, F.C.; Chen, C.C.; Chen, Y.J. Binary and ternary nanocomposites based on PVDF, PMMA,
and PVDF/PMMA blends: Polymorphism, thermal, and rheological properties. J. Polym. Res. 2014,
21, 378–389. [CrossRef]

21. Chiu, F.C.; Chen, Y.J. Evaluation of thermal, mechanical, and electrical properties of PVDF/GNP binary and
PVDF/PMMA/GNP ternary nanocomposites. Compos. Part A Appl. Sci. Manuf. 2015, 68, 62–71. [CrossRef]

22. Li, L.; Ruan, W.H.; Zhang, M.Q.; Rong, M.Z. Studies on the selective localization of multi-walled carbon
nanotubes in blends of poly(vinylidene fluoride) and polycaprolactone. Polym. Lett. 2015, 9, 77–83.
[CrossRef]

23. Li, Y.; Shimizu, H. Conductive PVDF/PA6/CNTs nanocomposites fabricated by dual formation of cocontinuous
and nanodispersion structures. Macromolecules 2008, 41, 5339–5344. [CrossRef]

24. Chen, J.; Lu, H.Y.; Yang, J.H.; Wanga, Y.; Zheng, X.T.; Zhang, C.L.; Yuan, G.P. Effect of organoclay on
morphology and electrical conductivity of PC/PVDF/CNT blend composites. Compos. Sci. Technol. 2014,
94, 30–38. [CrossRef]

25. Chiu, F.C. Halloysite nanotube- and organoclay-filled biodegradable poly(butylene
succinate-co-adipate)/maleated polyethylene blend based nanocomposites with enhanced rigidity.
Compos. Part B Eng. 2017, 110, 193–203. [CrossRef]

26. Gomari, S.; Ghasemi, I.; Karrabi, M.; Azizi, H. Organoclay localization in polyamide 6/ethylene-butene
copolymer grafted maleic anhydride blends: The effect of different types of organoclay. J. Polym. Res. 2012,
19, 9769–9779. [CrossRef]

27. Zhao, X.D.; Zhao, J.; Cao, J.P.; Wang, D.R.; Hub, G.H.; Chen, F.H.; Dang, Z.M. Effect of the selective
localization of carbon nanotubes in polystyrene/poly(vinylidene fluoride) blends on their dielectric, thermal,
and mechanical properties. Mater. Des. 2014, 56, 807–815. [CrossRef]

28. Taghizadeh, E.; Naderi, G.; Dubois, C. Rheological and morphological properties of PA6/ECO nanocomposites.
Rheol. Acta 2010, 49, 1015–1027. [CrossRef]

29. Dharaiya, D.; Jana, S.C. Thermal decomposition of alkyl ammonium ions and its effects on surface polarity
of organically treated nanoclay. Polymer 2005, 46, 10139–10147. [CrossRef]

30. Nuriel, S.; Liu, L.; Barber, A.H.; Wagner, H.D. Direct measurement of multiwall nanotube surface tension.
Chem. Phys. Lett. 2005, 404, 263–266. [CrossRef]

31. Vo, L.T.; Giannelis, E.P. Compatibilizing poly(vinylidene fluoride)/nylon-6 blends with nanoclay.
Macromolecules 2007, 40, 8271–8276. [CrossRef]

32. Li, Y.; Iwakura, Y.; Shimizu, H. Crystal form and phase structure of poly(vinylidene fluoride)/polyamide
11/clay nanocomposites by high-shear processing. J. Nanosci. Nanotechnol. 2008, 8, 1714–1720. [PubMed]

33. Wang, B.; Wang, W.; Wang, H.; Hu, G. Isothermal crystallization kinetics and melting behavior of in situ
compatibilized polyamide 6/polyethylene-octene blends. J. Polym. Res. 2010, 17, 429–437. [CrossRef]

34. Zhang, Y.Y.; Jiang, S.L.; Yu, Y.; Zeng, Y.K.; Zhang, G.Z.; Zhang, Q.F.; He, J.G. Crystallization behavior
and phase-transformation mechanism with the use of graphite nanosheets in poly(vinylidene fluoride)
nanocomposites. J. Appl. Polym. Sci. 2012, 125, 314–319. [CrossRef]

http://dx.doi.org/10.1002/pi.1692
http://dx.doi.org/10.1016/j.matchemphys.2013.09.054
http://dx.doi.org/10.3390/polym5041380
http://dx.doi.org/10.3390/polym10070797
http://dx.doi.org/10.3390/polym10090986
http://dx.doi.org/10.3390/polym11101597
http://dx.doi.org/10.1016/j.polymertesting.2016.12.020
http://dx.doi.org/10.1007/s10965-014-0378-7
http://dx.doi.org/10.1016/j.compositesa.2014.09.019
http://dx.doi.org/10.3144/expresspolymlett.2015.8
http://dx.doi.org/10.1021/ma8006834
http://dx.doi.org/10.1016/j.compscitech.2014.01.010
http://dx.doi.org/10.1016/j.compositesb.2016.10.091
http://dx.doi.org/10.1007/s10965-011-9769-1
http://dx.doi.org/10.1016/j.matdes.2013.11.073
http://dx.doi.org/10.1007/s00397-010-0476-3
http://dx.doi.org/10.1016/j.polymer.2005.08.027
http://dx.doi.org/10.1016/j.cplett.2005.01.072
http://dx.doi.org/10.1021/ma071508q
http://www.ncbi.nlm.nih.gov/pubmed/18572569
http://dx.doi.org/10.1007/s10965-009-9329-0
http://dx.doi.org/10.1002/app.35627


Polymers 2020, 12, 184 15 of 15

35. Priya, L.; Jog, J.P. Polymorphism in intercalated poly(vinylidene fluoride)/clay nanocomposites. J. Appl.
Polym. Sci. 2003, 89, 2036–2040. [CrossRef]

36. Virtanen, S.; Vartianen, J.; Setälä, H.; Tammelinb, T.; Vuotic, S. Modified nanofibrillated cellulose-polyvinyl
alcohol films with improved mechanical performance. RSC Adv. 2014, 4, 11343–11350. [CrossRef]

37. Klata, E.; Van de Velde, K.; Krucin’ska, I. DSC investigations of polyamide 6 in hybrid GF/PA 6 yarns and
composites. Polym. Test. 2003, 22, 929–937. [CrossRef]

38. Hoffman, J.D.; Weeks, J.J. Melting process and the equilibrium melting temperature of
polychlorotrifluoroethylene. J. Res. Natl. Bur. Stand. A Phys. Chem. 1962, 66A, 13–28. [CrossRef]

39. Liu, Z.H.; Maréchal, P.; Jérôme, R. Blends of poly(vinylidene fluoride) with polyamide 6: Interfacial adhesion,
morphology and mechanical properties. Polymer 1998, 39, 1779–1785. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/app.12346
http://dx.doi.org/10.1039/c3ra46287k
http://dx.doi.org/10.1016/S0142-9418(03)00043-6
http://dx.doi.org/10.6028/jres.066A.003
http://dx.doi.org/10.1016/S0032-3861(97)00222-X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental 
	Materials 
	Sample Preparation 
	Characterizations 

	Results and Discussion 
	Phase Morphology and Selective Localization of Nanofillers 
	Crystal Structure 
	Crystallization and Melting Behavior 
	Mechanical Properties 
	Rheological Properties 

	Conclusions 
	References

