SUPPORTING INFORMATION

Surface Alkylation of Cellulose Nanocrystals to Enhance their

Compatibility with Polylactide

Joo Hyung Lee^{1, †}, Sang Ho Park^{2, †}, and Seong Hun Kim^{1, *}

¹Department of Organic and Nano Engineering, College of Engineering, Hanyang University, Seoul, Korea ²LG Hausys R&D Center, Seoul, Korea

*Corresponding Author: Prof. Seong Hun Kim, Ph.D. (E-mail: kimsh@hanyang.ac.kr)

[†]Both authors contributed equally to this work.

Figure S1. Degree of substitution of modified CNCs as a function of reaction time.

Figure S2. (a) Chloroform and dispersion states of (b) acetyl-CNC, (c) alkyl-CNC, and (d) CNC in chloroform.

Figure S3. Horowitz-Metzger plots for obtaining E_a of the neat PLA and PLA nanocomposites.

Figure S4. Transmittance curves for the neat PLA and PLA nanocomposites reinforced with 1

wt% of reinforcements.