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Abstract: A series of conjugated, symmetrical, and ferrocene-containing main-chain monomers
was prepared following a gentle coupling reaction. Ferrocene-containing oligomers with
all-trans-configured vinylene bonds could be synthesized via acyclic diene metathesis (ADMET)
polymerization. These oligomers had a larger Stokes shift (2400 to 2600 cm−1) and
both exhibited stable and reversible electrochemistry. Meanwhile, the copolymerization
of 1,1’-bis[1-methyl-2-(4-vinylphenyl)ethenyl]ferrocene with 2,7-divinyl-9,9-dioctylfluorene was
achieved. The structurally regular copolymers proved their optical and electrochemical properties.
The fluorescence intensity of the copolymer gradually enhanced with the increasing number of
fluorene units. At the same time, it was also found that the color of the copolymers had a significant
change from yellow-green to red.

Keywords: ferrocene; conjugated oligomers; acyclic diene metathesis (ADMET) polymerization

1. Introduction

Ferrocene is the most stable metallocene with a steady 18-electron structure and the highest average
dissociation energy, which is the trait of being impervious to air and humidity [1]. Therefore, since the
first example of polyferrocenes was reported in 1955, the study of ferrocene-containing polymers has
intrigued chemists and blossomed into a mature field [2–18]. These polymers are sought due to their
useful properties, which range from catalysis to magnetism and electrochemical characteristics [19–21].
Generally, there are several methods for transitioning metal-containing polymers in the main chain,
such as ring-opening [4,18,22–24] polymerization (ROP) (Scheme 1a), ring opening metathesis [25–29]
polymerization (ROMP) (Scheme 1b), and acyclic diene metathesis [30–32] (ADMET) polymerization
(Scheme 1c). Up to now, only a few papers about ADMET polymerization have been reported,
comparing ROP and ROMP. Their results were unsatisfactory because of low molecular weight or
negative experimental results.

Over the past decade, transition metal-containing polymers, especially oligomers, have attracted
much interest due to their applications. On first reflection, the incorporation of metals into polymers
naturally enhanced conductivity, given the high values associated with the metallic state [7,16].
Chen et al. [33] and Swager group [34] prepared polymers successfully showing conductivity. Metallated
conjugated polymers have also demonstrated exceptional promise in the creation of high-efficiency
polymer solar cells [16]. Recently, great efforts have been dedicated to developing new oligomer
molecules for applications in solar cells as active layer materials, including electron donors and electron
acceptors [35].
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compounds containing ferrocene as monomers in ADMET polymerization is also desirable. In this 
paper, the successful synthesis of a series of conjugated, symmetrical, and ferrocene-containing 
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Scheme 1. General polymerization method for synthesizing polyferrocenes.

Conjugate polymers are promising macromolecular compounds, owing to their potential
applications in electrochemical devices and optical properties [36–39]. However, conjugate monomers
are rarely used in ADMET polymerization. Therefore, the discovery of new conjugate compounds
containing ferrocene as monomers in ADMET polymerization is also desirable. In this paper,
the successful synthesis of a series of conjugated, symmetrical, and ferrocene-containing monomers
using a metal-free carbon–carbon bond-forming coupling reaction was reported [40]. Using ADMET
strategy, the polymerization (Scheme 2) of a series of ferrocene-containing conjugated monomers and
copolymerization with 2,7-divinyl-9,9-dioctylfluorene (monomer D) were carried out. The properties
of oligomers and copolymers were characterized.
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Scheme 2. Ferrocene-containing conjugated oligomers synthesized by acyclic diene metathesis
(ADMET) polymerization.

2. Materials and Methods

All hydrocarbon solvents were distilled from sodium before use. All reagents were used as
received from commercial sources, unless otherwise noted, and the Grubbs type catalysts were prepared
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according to the literature [41,42]. All experiments were carried out under a nitrogen atmosphere
in a dry box and conventional Schlenk line techniques unless otherwise specified. All 1H and 13C
NMR spectra were recorded on a Bruker 500 spectrometer (499.65 MHz, 1H). The polymer samples for
analysis were prepared by dissolving the polymers in CDCl3 solution and the spectra were measured
at 25 ◦C. Number- (Mn) and weight- (Mw) averaged molecular weights and polydispersity indices
(Mw/Mn) of the polymers were estimated by a Waters 2545 instrument equipped with four Waters
Styragel HR columns, i.e., HR-1, HR-3, HR-4, and HR-5E. HPLC grade THF was used as eluent at a flow
rate of 1.0 mL/min at 35 ◦C. IR spectra were recorded on a Nicolet nexus 670 FT-IR spectrophotometer.
UV spectra were measured on an FLS 920 spectrophotometer. Fluorescence spectra were recorded with
a HitachiF-7000 spectrofluorimeter. Thermogravimetric analysis (TGA) measurements were carried out
under nitrogen on a Perkin-Elmer TGA 7 analyzer at a heating rate of 20 ◦C ·min−1. DSC measurements
were performed on a Mettler-Toledo S1. Cyclic voltammetry (CV) analyses were recorded on an
autolab–pgstat (model 302). The samples for electron microscopy were prepared by drop casting 1 drop
of suspension of the sample onto a carbon coated copper grid, which was placed on a piece of filter
paper to remove excess solvent. Bright field transmission electron microscopy (TEM) micrographs
were obtained both on a JEOL1200EX TEM Mk1 and Mk2 microscope operating at 120 kV.

2.1. Synthesis of 1,1’-Diacetylferrocene (2)

The AlCl3 (8.97 g, 0.07 mol) was added to 1,2-dichloroethane (30 mL) and stirred at room
temperature. The solution of acetylchloride (6.33 g, 0.08 mol) in 1,2–dichloroethane (8.4 mL) was
dropwise added into the above solution and stirred at 0 ◦C in a three-necked flask. The solution of
ferrocene (5 g, 0.03 mol) in 1,2-dichloroethane (40 mL) was added to the flask to give the mixture as a
purple complex and stirred at 0 ◦C for 3 h. Then the solution was restored to room temperature and
stirred at 40 ◦C for 1 h. The mixture was poured into ice water and diluted with 1,2-dichloroethane.
The organic layer was dried over MgSO4 and evaporated to dryness under reduced pressure. The residue
was purified by column chromatography (PE: EA = 10:1) to give 2 as a red solid (4.52 g, 62% yield).

2.2. Synthesis of N’,N”-(1,1’-ferrocenylbis(ethan-1-yl-1-ylidene))bis(4-methylbenzenesulfonohydrazide) (3)

The solution of 2 (3.52 g, 13 mmol) in methanol (16 mL) was dropwise added to the solution of
methylbenzenesulfonhydrazide (10.55 g, 56 mmol) in methanol (56 mL) at 60 ◦C for 4 h. Then the
mixture was washed with PE to give 3 as a yellow solid (7.56 g, 95% yield).

2.3. Synthesis of Monomer A

In a glovebox, a toluene solution (5 mL) of Pd2(dba)3 (9.2 mg, 5.0 mol%), P-(4-MePh)3 (6.1 mg,
10 mol%), 3 (121.2 mg, 0.20 mmol), and LiOtBu (96.1 mg, 6 equiv) were added into a 25 mL Schlenk
tube, then 4-vinylbenzyl chloride was added to the mixture. The Schlenk tube was sealed and taken
out of the glovebox and then heated at 70 ◦C for 12 h. Then, the solution was evaporated to dryness
under reduced pressure and the mixture was purified by column chromatography (PE as eluent) to
give monomer A as a red solid (48.2 mg, 41% yield, Z: E = 1:3). 1H NMR (500 MHz, CDCl3) δ 7.33 (d,
J = 8.0 Hz, 3H), 7.20 (d, J = 8.1 Hz, 3H), 6.74–6.70 (m, 2H), 6.68 (s, 2H), 5.75 (d, J = 17.7 Hz, 2H), 5.24 (d,
J = 10.9 Hz, 2H), 4.46 (s, 4H), 4.27 (s, 4H), 2.19 (s, 6H). 13C NMR (126 MHz, CDCl3), δ 138.0, 136.7, 135.3,
134.8, 129.2, 128.2, 126.1, 123.4, 113.4, 90.1, 70.0, 66.9, 17.3.

2.4. Synthesis of Monomer B

In a glovebox, a solution of Pd2(dba)3 (9.2 mg, 5.0 mol%), PCy3 (5.6 mg, 10 mol%), 3 (121.2 mg,
0.20 mmol), and LiOtBu (96.1 mg, 6 equiv.) in toluene (3 mL) and dioxane (2 mL) were added into a
25 mL Schlenk tube and stirred at 90 ◦C for 0.5 h. Then, 4-vinylphenylboronic acid was added to the
tube and stirred at 90 ◦C for 12 h. The mixture was evaporated to dryness under reduced pressure and
washed with dichloromethane. The organic layer was dried over MgSO4 and evaporated to dryness
under reduced pressure. The residue was purified by column chromatography (PE as eluent) to give
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monomer B as a red solid (74.7 mg, 60% yield, Z: E = 1:1). 1H NMR (500 MHz, CDCl3) δ 7.65–7.55
(m, 6H), 7.52–7.44 (m, 6H), 7.44–7.39 (m, 6H), 7.37 (d, J = 7.9 Hz, 4H), 7.33 (d, J = 7.1 Hz, 2H), 7.23 (d,
J = 8.0 Hz, 4H), 6.72 (s, 2H), 6.46 (s, 2H), 4.42 (s, 4H), 4.26 (s, 4H), 4.16 (s, 4H), 4.13 (s, 4H), 2.29 (s, 6H),
2.21 (s, 6H). 13C NMR (126 MHz, CDCl3), δ 141.0, 138.7, 138.1, 137.6, 135.0, 134.3, 129.5, 128.9, 128.8,
127.2, 127.0, 126.9, 126.7, 125.9, 123.2, 90.0, 85.7, 70.2, 70.0, 69.6, 67.0, 25.3, 17.3.

2.5. Synthesis of Monomer C

Monomer C was prepared under the same synthetic procedure to that of monomer B. 1H NMR
(500 MHz, CDCl3) δ 7.51 (d, J = 8.2 Hz, 4H), 7.46 (d, J = 6.4 Hz, 4H), 7.44 (s, 2H), 7.39 (d, J = 7.7 Hz, 2H),
7.31 (t, J = 7.7 Hz, 2H), 7.23 (d, J = 10.1 Hz, 2H), 6.77 (s, 2H), 6.76–6.70 (m, 2H), 5.77 (d, J = 17.6 Hz, 2H),
5.26 (d, J = 10.9 Hz, 2H), 4.46 (s, 4H), 4.28 (s, 4H), 2.24 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 140.7,
138.9, 136.6, 136.5, 135.0, 128.6, 128.0, 127.7, 127.3, 126.7, 124.7, 123.5, 113.9, 89.9, 70.1, 67.0, 17.3.

2.6. Synthesis of 9,9-dioctyl-2,7-divinylfluorene (Monomer D)

In a glovebox, a solution of 9,9-di-n-octyl-2,7-dibromofluorene (500 mg, 0.91 mmol),
tributyl(vinyl)tin (635 mg, 2.0mmol), Pd(PPh3)4 (42 mg, 3.9 mol%), and a small amount of
2,6-di-tert-butyl-4-methylphenol in toluene (3 mL) was added to a 25 mL Schlenk tube and stirred
at 90 ◦C for 20 h. The solvent was evaporated under reduced pressure and residue was purified by
column chromatography (PE as eluent) to give monomer D as a colorless oil (184.6 mg, 48% yield).
1H NMR (500 MHz, CDCl3) δ 7.63 (d, J = 7.8 Hz, 2H), 7.40 (d, J = 7.9 Hz, 2H), 7.37 (s, 2H), 6.81 (d,
J = 10 Hz, 10.9 Hz, 2H), 5.81 (d, J = 10 Hz, 2H), 5.26 (d, J = 10.9 Hz, 2H), 1.99–1.96 (m, 4H), 1.45–0.91 (m,
20H), 0.84–0.81 (m, 8H).

2.7. Synthesis of Oligomer A

A 100 mL reaction tube was charged with monomer A (0.1 g, 0.21 mmol, 0.21 M) and 1 mL toluene
in glovebox. The catalyst solution of Grubbs 2nd catalyst (1.8 mg, 2.1 µmol, 100 µL, 0.02 M) was injected
into the reaction tube. The reaction took place under vacuum at 80 ◦C. After 12 h, the polymerization
was quenched by adding a substantial amount of methanol. The reaction mixture was then stirred
for 1 h for completion. To end the reaction, 100 mL methanol was added into the reaction solution.
The yellow solid oligomer was collected by filtration and was then dried in a vacuum (68 mg, 72%
yield). 1H NMR (500 MHz, CDCl3) δ 7.33–7.29 (d, J = 3.8 Hz, 4H), 7.27 (d, J = 4.0 Hz, 4H), 7.21 (t, J = 7.1
Hz, 2H), 6.73 (s, 2H), 4.46 (s, 4H), 4.28 (s, 4H), 2.21 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 138.4, 134.6,
129.1, 128.2, 126.0, 123.6, 90.0, 70.0, 66.9, 17.1.

2.8. Synthesis of Copolymer 1

A 100 mL reaction tube was charged with monomer A (0.1 g, 0.21 mmol, 0.21 M), monomer D
(0.37 g, 0.84 mmol, 0.84 M), and 1 mL toluene in a glovebox. The catalyst solution of Grubbs second
catalyst (1.8 mg, 2.1 µmol, 100 µL, 0.02 M) was injected into the reaction tube. The reaction took place
under a vacuum and 60 ◦C. After 24 h, the polymerization was quenched by adding a substantial
amount of methanol. The reaction mixture was then stirred for 1 h for completion. To end the reaction,
100 mL methanol was added into the reaction solution. The sticky yellow copolymer was collected by
filtration and was then dried in a vacuum. 1H NMR (500 MHz, CDCl3) δ 7.68 (d, J = 10.0, 4.4 Hz, 2H),
7.54 (t, J = 9.9 Hz, 4H), 7.51–7.47 (m, 4H), 7.45 (d, J = 6.0, 3.6 Hz, 2H), 7.29 (d, J = 9.1 Hz, 4H), 7.22–7.18
(d, J = 15.6 Hz, 2H), 6.72 (s, 2H), 4.47 (s, 4H), 4.29 (s, 4H), 2.23 (d, J = 24.0 Hz, 6H), 2.04 (s, 5H), 1.65(d,
J = 15.7, 8.0 Hz, 1H), 1.54 (s, 2H), 1.44 (s, 1H), 1.36 (d, J = 7.4 Hz, 3H), 1.26 (s, 5H), 1.19 (s,7H), 1.08
(s, 22H), 0.93 (t, J = 7.3 Hz, 2H), 0.81 (s, 10H), 0.69 (s, 5H). 13C NMR (126 MHz, CDCl3) δ 151.6, 140.7,
138.4, 135.3, 134.9, 134.6, 132.6, 130.6, 129.4, 129.1, 128.2, 127.8, 126.3, 126.0,123.7, 123.4, 120.7, 120.0,
90.0, 70.0, 66.9, 55.1, 31.9, 30.2, 29.8, 29.3, 23.9, 22.7, 17.2, 14.2.



Polymers 2019, 11, 1334 5 of 15

3. Results

3.1. Monomer Synthesis and Characterisation

Monomer A, monomer B, and monomer C could be synthesized by the route outlined in Scheme 3.
These monomers were fully characterized by 1H NMR, 13C NMR, and HRMS (Figures S1–S9).
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3.2. Acyclic Diene Metathesis (ADMET) Polymerization of Monomers

The effect of time, solvent, and type of catalyst on the polymerization was evaluated as shown in
Table 1. First of all, the ADMET of monomer A was successfully carried out using the ruthenium-based
Grubbs second generation catalyst, oligomer A, with a number-average molecular weight Mn = 2001 Da
and molecular weight distribution Mw/Mn = 1.10 was obtained (Table 1, Entry 1). The yield of oligomer
A increased with the increase in temperature from 80 to 100 ◦C, but the metathesis of monomer A
still only gave oligomers (Table 1, Entry 2). Likewise, further prolonging the reaction time to 24 h
resulted in a lower Mn = 1614 Da (Table 1, Entry 3). The result (Mn = 2021 Da) was similar to Entry 1
using 1,2-dichlorobenzene (DCB) as a solvent with a higher boiling point (Table 1, Entry 4). Finally, we
still obtained oligomers with an average of three repeating units using a Grubbs–Hoveyda second
generation catalyst and mixed solvents of toluene and DCB (Table 1, Entries 5 to 7). On the basis of
monomer A, the optimal conditions of monomers B and C were investigated (Table 1, Entries 8 to 13).
Monomers B and C were more rigid than monomer A, so we gained a lower Mn of 2160 Da and 3360
Da, respectively. However, above all, the ADMET results with the various monomers all obtained low
molecular weight. Low molecular weight may be attributed to limited solubility, which may be caused
by ferrocene-containing main-chain oligomers and a lack of alkyl groups. Some related generated
ferrocene polymers were reported to be soluble only in the presence of such moieties [27,43,44].



Polymers 2019, 11, 1334 6 of 15

Table 1. ADMET of monomers A, B, and C using Grubbs-type catalyst a.

Entry Catalyst Solvent Temp.
(◦C) t (h) Yield

b (%)
Mn

c

(Da)
Mw

c

(Da) Ðc

Monomer
A
1 G2 toluene 80 12 73 2001 2207 1.10
2 G2 toluene 100 12 82 1714 1802 1.05
3 G2 toluene d 80 24 81 1614 1666 1.03
4 G2 DCB 100 12 83 2021 2250 1.06
5 G-H2 toluene 80 12 78 1672 1745 1.04
6 G-H2 toluene 100 12 80 1705 1788 1.05
7 G2 toluene/DCB 80 24 76 1867 2029 1.09

Monomer
B
8 G2 toluene 80 24 81 1714 1791 1.04
9 G-H2 toluene 80 24 83 1372 1377 1.00
10 G2 toluene/DCB 80 24 79 2160 2374 1.10

Monomer
C
11 G2 toluene 80 24 76 2752 3558 1.29
12 G3 toluene/DCB 60 24 79 3355 3724 1.11
13 G3 toluene/DCB 60 48 75 3360 4066 1.21

a All reactions were finished under a vacuum; 1 mL solvent, and 1 mol % of catalyst were used. Degasification after
6 h (monomer A) or 12 h (monomers B and C); b isolated yield by precipitation using methanol; c GPC data in THF
against a polystyrene standard; d 0.5 mL toluene was used.

3.3. Microstructure via NMR and FT-IR

The microstructure of both the monomers and the oligomers was determined by 1H and 13C NMR
spectra (Figures S20–S25). Respectively, the 1H and 13C NMR spectra of monomer A and oligomer A
were depicted in Figure 1. Their 1H NMR spectra were consistent with their structures. The appearance
of a resonance at 7.20 ppm manifested the formation of internal trans-vinylene protons (–CHa’=CHa’–)
in oligomer A [45,46]. No resonances for a cis-configured double bond were observed at 6.5 ppm
(reported value for the internal vinylene proton signals in cis-stilbene). The aromatic protons appeared
at 7.25 and 7.30 ppm. The downfield shift of the aromatic protons in oligomer A relative to monomer
A might be due to the extended electron conjugation. It’s worth noting that we could clearly see the
terminal vinyl group in the 1H NMR spectrum (Figure 1B). Moreover, after ADMET, the 13C NMR
spectrum of the terminal vinyl group (–CaH=CbH2) at 113.1 and 136.7 ppm disappeared and a new
peak emerged at 129.2 ppm, corresponding to the internal vinylene carbons (–Ca’H=Ca’H–).

FT-IR spectroscopy showed the obvious differences between monomer A and oligomer A.
Figure S26 illustrated this for a select region of the FT-IR spectra of monomer A and its ADMET product.
It was obvious that the absorption peaks of C=C stretching at 861 cm−1 and 807 cm−1 for monomer A
disappeared after the ADMET reaction and a new C=C stretching was observed at 989 cm−1, strongly
indicating that there is a newly generated out-of-plane (oop) bending internal trans-vinylene bond.
Strong evidence from FT-IR, 1H, and 13C NMR clearly indicated that an exclusively trans-configured
vinylene bond of stilbene was formed by ADMET polymerization of monomer A.

To further evaluate degree of polymerization, we tested the resulting oligomer by matrix-assisted
laser desorption time of flight mass spectrometry (MALDI-TOF MS) (Figure S11). On the basis of this,
we could conclude that ions identify with the different molecular weight oligomers with n values
between 2 and 5 repetitive individual monomer units, which were in good accordance with the data
of GPC.
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3.4. Optical Property

Oligomer samples with different conjugation repeat units were analyzed with regard to their
optical characterization by UV/Vis absorption spectra and fluorescence spectra (Figure 2), recorded as
dichloromethane solutions (0.05 mM). There are broad featureless absorption bands of these oligomers
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in the visible region that could be put down to MLCT transitions, with their absorption maxima
between 454 and 468 nm. The emission showed λmax = 510–524 nm for all oligomers, indicating that
these oligomers had Stokes shift values ranging from 2400 to 2600 cm−1. As expected, the absorption of
oligomers was red-shifted compared to the monomers (Figure 2a and Figure S27). On the basis of the
above observations, we analyzed the bathochromic shift of the oligomers related to the different chain
length and provided evidence for extended conjugation chain lengths. The fluorescence of all oligomers
is quenched due to containing ferrocene in the oligomers, as shown in Figure 2c. However, as shown
in Figure 2c, on account of the different degrees of polymerization, fluorescence intensity of oligomer
C (n = 5) compared to oligomer A and oligomer B (n = 3) dramatically decreased. The difference in
fluorescence intensity of oligomer B and oligomer C may be due to the reason that ferrocene is known
to act as an efficient quencher [32]. Molar extinction coefficients for new molecules were shown in
Table 2. Oligomers A, B, and C had almost extinction coefficient because of the low molecular weight,
while the extinction coefficient of copolymer 1 was higher than that of the oligomers.
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A, B, and C in CH2Cl2. (c) Fluorescence spectra of oligomers A, B, and C in CH2Cl2 (insert of magnified
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Table 2. Extinction coefficients of oligomers and copolymer.

Entry Substance A ε (Lmol−1cm−1) Equation a

1 Oligomer A 0.39 7800

ε = A/BC (1)
2 Oligomer B 0.388 7760

3 Oligomer C 0.386 7720

4 Copolymer 1 1.05 21000
a ε Molar extinction coefficient (Lmol−1cm−1), A = absorbance, B = the length of light (cm), C = the concentration of
substance (mol/L). b B = 1 cm, C = 5 × 10−5 M.
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3.5. Thermal Stability Studies

In order to test the thermal stability of the oligomers, we then investigated by differential scanning
calorimetry (DSC) and thermogravimetric analysis (TGA). Thermogravimetric analysis (Figure 3a) was
performed under inert atmosphere (N2) and air to compare the stability of oligomer A in a different
atmosphere. A similar trend of thermal decomposition behavior was obtained from the oligomer with
a different molecular weight. At a scan rate of 10 ◦C·min−1, oligomer A showed good stability up to ca.
334.5 ◦C under air and it revealed that oligomer A had good resistance to thermolysis. But when we
continued to raise the temperature, it led to rapid degrading. Moreover, no appreciable weight loss of
oligomer A was found with the TGA analysis up to ≈ 493 ◦C under air. Oligomer A showed a glass
transition temperature (Tg) of 153.9 ◦C (Figure 3b), whereas the DSC curve showed that oligomer A
was amorphous without a clear melting point (Tm).

Polymers 2019, 11, x FOR PEER REVIEW 9 of 15 

 

Figure 2. (a) UV–Vis spectra of monomer A and oligomer A in CH2Cl2. (b) UV–Vis spectra of 
oligomers A, B, and C in CH2Cl2. (c) Fluorescence spectra of oligomers A, B, and C in CH2Cl2 (insert 
of magnified image of oligomer C). 

Table 2. Extinction coefficients of oligomers and copolymer. 

Entry Substance A ε (Lmol-1cm-1( Equationa 

1 Oligomer A 0.39 7800 

ε = A/BC (1) 
2 Oligomer B 0.388 7760 

3 Oligomer C 0.386 7720 

4 Copolymer 1 1.05 21000 

a ε Molar extinction coefficient (Lmol–1cm–1), A = absorbance, B = the length of light (cm), C = the 
concentration of substance (mol/L). b B = 1 cm, C = 5×10–5 M. 

3.5. Thermal Stability Studies 

In order to test the thermal stability of the oligomers, we then investigated by differential 
scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Thermogravimetric analysis 
(Figure 3a) was performed under inert atmosphere (N2) and air to compare the stability of oligomer 
A in a different atmosphere. A similar trend of thermal decomposition behavior was obtained from 
the oligomer with a different molecular weight. At a scan rate of 10 °C·min−1, oligomer A showed 
good stability up to ca. 334.5 °C under air and it revealed that oligomer A had good resistance to 
thermolysis. But when we continued to raise the temperature, it led to rapid degrading. Moreover, 
no appreciable weight loss of oligomer A was found with the TGA analysis up to ≈ 493 °C under air. 
Oligomer A showed a glass transition temperature (Tg) of 153.9 °C (Figure 3b), whereas the DSC 
curve showed that oligomer A was amorphous without a clear melting point (Tm). 

 

Figure 3. (a) Thermogravimetric analysis (TGA) curves of oligomer A under N2 and air; (b) 
differential scanning calorimetry (DSC) curve of oligomer A. 

3.6. Electrochemical Properties 

In attempts to see the electrochemical properties of monomers and oligomers, cyclic 
voltammetry was used (Figure 4 and Figures S36-37). The voltammogram was obtained in a CH2Cl2 
solution (0.5 mM) at a scan rate of 100 mV/s, using Bu4NPO4F6 as the supporting electrolyte. As 
shown in Figure 4, the result demonstrated that stable and reversible electrochemical properties of 
oligomers could be recorded in an organic solvent. An example of oligomer B, the oxidation process 
appeared at 0.55 V and the reduction was about 0.48 V, indicating a one-electron transfer reaction (~ 
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scanning calorimetry (DSC) curve of oligomer A.

3.6. Electrochemical Properties

In attempts to see the electrochemical properties of monomers and oligomers, cyclic voltammetry
was used (Figure 4 and Figures S36 and S37). The voltammogram was obtained in a CH2Cl2 solution
(0.5 mM) at a scan rate of 100 mV/s, using Bu4NPO4F6 as the supporting electrolyte. As shown in
Figure 4, the result demonstrated that stable and reversible electrochemical properties of oligomers
could be recorded in an organic solvent. An example of oligomer B, the oxidation process appeared
at 0.55 V and the reduction was about 0.48 V, indicating a one-electron transfer reaction (~0.07 V).
Similarly, ipa/ipc ≈ 1 demonstrated an electrochemical reversibility. The same analysis can be applied
to oligomer A and oligomer C (Table 3).
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Table 3. Electrochemical date of oligomers.

Compound
Oxidation Reduction

I (µA) E (V) I (µA) E (V)

Oligomer A 1.02 0.57 0.99 0.43
Oligomer B 0.55 0.55 0.53 0.48
Oligomer C 0.57 0.54 0.56 0.47

3.7. Copolymerization of Monomer A and 9,9-Dioctyl-2,7-Divinylfluorene (Monomer D)

After having proved the validity of the ADMET method, we then examined the copolymerization
of monomer A with monomer D (Scheme 4). Some representative results are shown in Table 4.
Remarkably, these results of 1H NMR and 13C NMR spectra suggested that copolymers were obtained
successfully (Figures S29 to S32). According to the data of Table 4, it was reasonable to assume that the
ratio of incorporation of the ferrocene group could be adjusted by simple variation of the monomer
feed ratio.
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Table 4. Copolymerization of monomer A with monomer D.

Entry MA/MD Yield (%) b Mn (Da) c Mw (Da) c Ð c x d y d

1 1:4 76 13453 23824 1.77 5 25
2 1:2 80 6602 10893 1.65 2 12
3 1:1 78 2610 3973 1.52 2 4
4 2:1 79 2436 2901 1.19 3 2
5 4:1 75 1896 2058 1.09 3 1

a All reactions were finished under a vacuum; 1 mL solvent and 1 mol % catalyst was used; b isolated yield by
precipitation using methanol; c GPC data in THF against a polystyrene standard; d determined by 1H NMR and
GPC; x = number of ferrocene units, y = number of fluorene units.

It was interesting to note that fluorescence intensity of copolymers was related to the ratio of
fluorene and ferrocene (Figure 5). The fluorescence intensity of copolymer 1 was gradually enhanced
with the increasing number of fluorene units. The fluorescence intensity of monomer D was the
strongest. The emission spectra of copolymer 1 with different ratios of ferrocene and fluorene all
showed two emission bands, which were attributed to the ferrocene unit and fluorene segment,
respectively [47]. With the increasing of ferrocene units in copolymer 1, the sharp band gradually
widened and passivated. There was only an emission peak when the number of ferrocenes was too
high (x = 5, y = 25, Figure 5) in the copolymer because of serious band passivation. Oligomer A without
the fluorene segment eventually turned like a parabola. Figure 5 showed the emission of polymer
D in the 375 nm, whereas the emission of the copolymer with one or two fluorene units which were
assigned to the content of the ferrocene unit was at 460 nm. Owing to increasing content of ferrocene,
we could notice that the emission peak became a long wavelength. Meanwhile, it was also found
that the color of the copolymer had a significant change from yellow-green to red (Figures S33 and
S34) with the monomer D/monomer A feed ratio being 4/1 to 1/4. As shown in Figure S33, we could
observe that the state of the copolymer has a gradient process from an oily, semi-solid to a solid with a
varying incorporation ratio of monomer D/monomer A. The reason for this phenomenon could be that
monomer D was an oil and monomer A was solid. When the relative amount of monomer A in the



Polymers 2019, 11, 1334 11 of 15

copolymer was more than that of monomer D, the copolymer would tend to exhibit a solid-like state.
Conversely, the copolymer would behave in an oil-like state.
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Electrochemical properties are intrinsic properties of ferrocene, so the electrochemical properties
of copolymer 1 were probed using cyclic voltammetry (Figure S35). As shown in Table 5, when the
number of ferrocenes in polymer was certain, the redox capacity of ferrocene decreased with the
increasing number of fluorene units. Therefore, it suggested that the redox ability of copolymers could
be adjusted by regulating the ratio of fluorene in the copolymer. This property may be beneficial for
the future application of ferrocene-containing polymers.

Table 5. Oxidation–reduction potential of copolymer 1 with different molecular weights.

Entry x a y b E (V)

1 2 4 0.627
2 2 12 0.577
3 3 1 0.663
4 3 2 0.661

a x = number of ferrocene units; b y = number of fluorene units.

3.8. SEM and TEM Studies

The morphology of oligomers was investigated using SEM and TEM (Figure 6). The morphology
of oligomer A basically presented as a regular sphere under SEM and the diameter of the nanosphere
was estimated to be about 400 nm from TEM. As shown in Figure 6, because the outer layer of oligomer
A was encased in a small molecule oligomer with a lower density, the surface of oligomer A had a
10 nm shell. Oligomer B was layered and oligomer C was a heterogeneous spherical shape with a
diameter ranging from 50 to 200 nm. It can be seen in the TEM image of oligomer C that it displayed
an orderly arrangement as a chain. The reason for the huge difference in morphology of oligomer B
and oligomer C could be the different substitution position of phenyl in monomers. The morphology
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of the oligomer tending towards a lamellar structure when the phenyl group was substituted in the
para-position, corresponding to oligomer B, could be observed in TEM. Copolymer 1 was made up of
fine particles with a diameter approaching 50 nm, which was visible in Figure 6. The microstructure
and particle size of copolymer 1 after adding monomer D were further optimized in comparison to
oligomer A.
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4. Conclusions

In summary, ferrocene-containing conjugated oligomers were synthesized by ADMET
polymerization. The microstructures of oligomers were confirmed by means of 1H NMR, 13C
NMR, FT-IR, and MS. These results showed that the organic conjugated segment had formed with only
trans-configured vinylene bonds. These oligomers had a larger Stokes shift (2400 to 2600 cm−1) and both
exhibited stable and reversible electrochemistry in an organic solvent. The oligomers showed good
thermal stability, evidenced by TGA and DSC. Moreover, the copolymerization of divinylferrocene
(monomer A) and divinylfluorene (monomer D) was successful. Electrochemical properties of the
copolymer indicated a negative correlation between the redox capacity of ferrocene and the amount
of fluorene.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/8/1334/s1,
Figures S1–S11: 1H, 13C NMR spectra, and HRMS spectra of monomers and oligomer A, Figures S12–S19: GPC data,
Figures S20–S25: 1H, 13C NMR spectra of oligomer A-C, Figures S26-S28: spectral analysis, Figures S29–S32: 1H,
13C NMR spectra of copolymers, Figures S33–S37: The color variance and cyclic voltammogram spectra.
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