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Abstract: Polyether based side-chain liquid crystalline (SCLC) copolymers with distinct
microstructures were prepared using living anionic polymerization techniques. The composition,
end groups, purity, and sequence of the resulting copolymers were elucidated by matrix-assisted laser
desorption/ionization mass spectrometry (MALDI-MS) and tandem mass spectrometry (MS/MS).
MALDI-MS analysis confirmed the presence of (CH3)3CO– and –H end groups at the initiating (α)
and terminating (ω) chain end, respectively, and allowed determination of the molecular weight
distribution and comonomer content of the copolymers. The comonomer positions along the polymer
chain were identified by MS/MS, from the fragments formed via C–O and C–C bond cleavages in
the polyether backbone. Random and block architectures could readily be distinguished by the
contiguous fragment series formed in these reactions. Notably, backbone C–C bond scission was
promoted by a radical formed via initial C–O bond cleavage in the mesogenic side chain. This result
documents the ability of a properly substituted side chain to induce sequence indicative bond
cleavages in the polyether backbone.

Keywords: copolymer sequencing; side-chain liquid crystalline copolymers; charge-induced
polyether fragmentation; radical-induced polyether fragmentation; MALDI tandem
mass spectrometry

1. Introduction

Side-chain liquid crystalline (SCLC) polymers and copolymers are used in numerous technological
applications, such as sensing, transistors, optics, and optical data storage [1–4]. The mesogenic (i.e.,
liquid crystalline) side chains endow optical anisotropy, a particularly valuable property in optical
devices. Meanwhile, the low fluidity that these molecules possess augments their storage capacity
because of increased stability below their glass transition temperature [1,4]. Recent studies have
further documented that properly structured SCLC polymers can undergo reversible shape changes in
response to external stimuli, like heat, light, or humidity, such controlled deformability is desired for the
design and engineering of microactuators and soft robots [5–7]. The mentioned utilitarian applications
have spurred significant progress in the synthesis of SCLC (co)polymers with low polydispersity (Ð),
controlled chain length and chain end functionalities, and no or low amounts of byproducts [2–7].
Analytical methods that unveil the latter chemical information are essential for optimizing the synthetic
routes and conducting meaningful structure-property correlations to design SCLC macromolecules
with the desired properties.

The physical properties of SCLC macromolecules can be modulated by introducing two different
types of liquid crystalline side chains [8,9]. In such cases, the resulting copolymer may have random,
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block, alternating, or tapered architecture, depending on polymerization technique and comonomer
reactivity. In addition to the structural attributes mentioned above, the sequence of mesogenic
comonomers must also be known to understand and improve the physical properties of the synthesized
SCLC systems.

In this study, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) [10]
and tandem mass spectrometry (MS/MS) [11–14] are employed to elucidate the compositions,
end groups, comonomer content, and sequence of linear SCLC polyether copolymers prepared
by anionic ring-opening polymerization of epoxides functionalized with two different liquid crystalline
side chains [9,15,16]. Simultaneous as well as sequential addition of the comonomers were employed
to generate random versus block architectures, respectively. In earlier studies, the average number
of comonomers in such polymers was appraised by 1H and 13C NMR spectroscopy, their average
molecular weights were measured by gel permeation chromatography (GPC) and multi-angle light
scattering (MALS), their thermal properties were evaluated by calorimetry, and their self-assembly
behavior was examined by X-ray scattering techniques [9,15,16]. Unlike the mentioned analytical
methods, mass spectrometry probes individual oligomers, not the average state [14]. It is used here
to investigate the SCLC copolymer distributions arising under different experimental conditions.
Additionally, MS/MS is applied for the first time to select SCLC oligomers to analyze their comonomer
sequences and gain detailed insight about the SCLC microstructures produced by the examined
polymerization designs. MS/MS has the sensitivity and selectivity necessary to characterize the
comonomer sequence across the entire chain [14,17–26], which is an important determinant of the
ensuing assembly behavior and resulting morphology of the SCLC copolymers.

2. Materials and Methods

2.1. Materials

Tetrahydrofuran (THF) and methanol (MeOH) solvents were acquired from Thermo Fisher
Scientific (Fair Lawn, NJ, USA), and sodium trifluoroacetate (NaTFA) cationizing agent and
trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) matrix were acquired
from Sigma-Aldrich (St. Louis, MO, USA); all were used as received.

The polymers analyzed were prepared by anionic ring-opening polymerization as has been
described in detail in earlier publications [9,16]. Scheme 1 summarizes the synthetic steps used to form
block copolymers. Briefly, a given amount of monomer A (determined by the desired length of the An

block) was polymerized in toluene using 18-crown-6 and potassium tert-butoxide as initiator system.
The reaction was maintained for 5 days to consume all A monomer. Monomer B was then transferred
into the reaction mixture and the reaction continued for 5 more days. The polymerization was
finally terminated by adding MeOH. For a random sequence, equimolar amounts of the comonomers
were copolymerized and the reaction was terminated after completion of the polymerization process
(i.e., after all monomers had reacted). All products were precipitated into methanol several times and
dried before analysis.
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Scheme 1. Anionic ring-opening copolymerization of epoxides giving rise to polyethers with liquid 
crystalline side chains [9,16]. 

2.2. NMR and GPC Experiments 

GPC with a multi-angle laser light scattering detector (Wyatt Dawn HELEOS II, Wyatt 
Technology, Santa Barbara, CA, USA) plus a differential refractometer detector (Waters Model 2414, 
Waters Corp., Milford, MA, USA) was utilized to determine the molecular weight and polydispersity 
of the copolymers (in THF solvent). 1H NMR spectra were recorded on a Varian MERCURY plus-400 
(400 MHz) spectrometer (Agilent, Santa Clara, CA, USA) using CDCl3 solutions, with chemical shifts 
reported in ppm relative to the residual deuterated solvent. 

2.3. MALDI-MS and MS/MS Experiments 

MALDI-MS and MS/MS experiments were performed with a Bruker UltraFlex III tandem time-
of-flight (ToF/ToF) mass spectrometer (Bruker Daltonics, Billerica, MA, USA) equipped with an 
Nd:YAG laser (355 nm). Solutions of the polymer and DCTB matrix were prepared in THF at 
concentrations of 10 and 20 mg mL−1, respectively. The NaTFA cationizing agent was dissolved in 
MeOH at 10 mg mL−1. The matrix and cationizing agent solutions were mixed in the ratio 10:1 (v/v), 
and approximately 0.5–1.0 μL of the resulting mixture were spotted onto a 384-well ground steel 
MALDI target plate and allowed to dry under ambient conditions; 0.5–1.0 μL of sample solution was 
then deposited on top of the dried matrix/salt spot, followed by an additional 0.5–1.0 μL of matrix/salt 
solution on top of the dried sample spot (sandwich method) [26]. MS/MS experiments were 
performed using the instrument’s LIFT (laser-induced fragmentation) mode [26,27] with no 
additional collision gas [28]. Bruker’s FlexAnalysis software was used for data analysis. 

2.4. Molecular Weight and Comonomer Content Analysis 

Average molecular weights (Mn, Mw), polydispersities (Ɖ = Mw/Mn), and comonomer content in 
the copolymers were calculated using the Polymerix software (Sierra Analytics, Modesto, CA, USA). 
Raw mass spectral data are input into this program, which deconvolutes homo- and copolymer 
mixtures to render the chemical formulae of the comonomers and end groups as well as information 
about the comonomer distributions present across the observed molecular weight range and the 
corresponding average copolymer compositions. 

3. Results and Discussion 

3.1. MALDI-MS Analysis of SCLC Copolymers 

The copolymers investigated contain two types of repeat units, viz. A (side chain R1) and B (side 
chain R2). They include one block copolymer (sample 1) with the putative average block sizes A5B13, 
suggested by NMR (cf. Figure S1 in Supplementary Material), as well as a random copolymer with 

Scheme 1. Anionic ring-opening copolymerization of epoxides giving rise to polyethers with liquid
crystalline side chains [9,16].

2.2. NMR and GPC Experiments

GPC with a multi-angle laser light scattering detector (Wyatt Dawn HELEOS II, Wyatt Technology,
Santa Barbara, CA, USA) plus a differential refractometer detector (Waters Model 2414, Waters Corp.,
Milford, MA, USA) was utilized to determine the molecular weight and polydispersity of the
copolymers (in THF solvent). 1H NMR spectra were recorded on a Varian MERCURY plus-400
(400 MHz) spectrometer (Agilent, Santa Clara, CA, USA) using CDCl3 solutions, with chemical shifts
reported in ppm relative to the residual deuterated solvent.

2.3. MALDI-MS and MS/MS Experiments

MALDI-MS and MS/MS experiments were performed with a Bruker UltraFlex III tandem
time-of-flight (ToF/ToF) mass spectrometer (Bruker Daltonics, Billerica, MA, USA) equipped with
an Nd:YAG laser (355 nm). Solutions of the polymer and DCTB matrix were prepared in THF at
concentrations of 10 and 20 mg mL−1, respectively. The NaTFA cationizing agent was dissolved in
MeOH at 10 mg mL−1. The matrix and cationizing agent solutions were mixed in the ratio 10:1 (v/v),
and approximately 0.5–1.0 µL of the resulting mixture were spotted onto a 384-well ground steel
MALDI target plate and allowed to dry under ambient conditions; 0.5–1.0 µL of sample solution was
then deposited on top of the dried matrix/salt spot, followed by an additional 0.5–1.0 µL of matrix/salt
solution on top of the dried sample spot (sandwich method) [26]. MS/MS experiments were performed
using the instrument’s LIFT (laser-induced fragmentation) mode [26,27] with no additional collision
gas [28]. Bruker’s FlexAnalysis software was used for data analysis.

2.4. Molecular Weight and Comonomer Content Analysis

Average molecular weights (Mn, Mw), polydispersities (Ð= Mw/Mn), and comonomer content
in the copolymers were calculated using the Polymerix software (Sierra Analytics, Modesto, CA,
USA). Raw mass spectral data are input into this program, which deconvolutes homo- and copolymer
mixtures to render the chemical formulae of the comonomers and end groups as well as information
about the comonomer distributions present across the observed molecular weight range and the
corresponding average copolymer compositions.
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3. Results and Discussion

3.1. MALDI-MS Analysis of SCLC Copolymers

The copolymers investigated contain two types of repeat units, viz. A (side chain R1) and B
(side chain R2). They include one block copolymer (sample 1) with the putative average block sizes
A5B13, suggested by NMR (cf. Figure S1 in Supplementary Material), as well as a random copolymer
with unknown composition (sample 2), prepared using a 1:1 molar mixture of comonomers A and B;
all were formed using tert-C4H9OK for initiation and CH3OH for termination to instill tert-C4H9O–
and –H groups at the initiating and terminating chain ends, respectively.

The MALDI-MS spectra of 1 and 2 (cf. Figure 1 and Table S1) confirm the formation of copolymers
with the composition tert-C4H9O-AnBm-H, which are detected as sodiated [Mp + Na]+ ions (p = n + m).
A peak group is observed for each degree of polymerization (p), containing oligomers with the same p
but differing in comonomer content (i.e., in n and m); the peak groups arising from p = 7 (heptamers)
are shown in the insets of Figure 1. Within each peak group adjacent AnBm oligomers are 51 Da apart,
which is the mass difference between repeat units A (323 Da) and B (374 Da); expectedly, the content
in the heavier comonomer B increases with increasing mass, as is clearly evident for the heptamers.
No other peaks are detected, attesting high product purity.
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The MALDI-MS spectrum of the random copolymer 2 includes [Mp + K]+ ions with very low 
relative intensities (cf. inset in Figure 1b), presumably from potassium salt entrapped in the sample 
during synthesis. Conversely, the block copolymer 1 shows methanol adducts in its MALDI-MS 
spectrum. Interestingly, this product is not formed from the random copolymer 2, indicating that a 
block architecture is necessary to form a stable adduct with methanol, which is most likely attached 
noncovalently via hydrogen bonding. 

The dispersive nature of mass spectrometry allows for monitoring the copolymer composition 
at the oligomer level (cf. Figure 1). The comonomer content of all AnBm polymer chains detected in 
the MALDI-MS spectra of samples 1 and 2 is listed in Table S2 and S3, respectively. Average values 
and important statistical data extracted from these Tables are summarized in Table 1. 

Table 1. Average molecular weights and comonomer content of side-chain liquid crystalline (SCLC) 
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Copolymer Mn Mw � Comonomer Composition 
 (Da) (Da)  Most Abundant Average 

block copolymer 1 a 2874.4 3251.9 1.13 A3B3 A3.9B4.1 

random copolymer 2 b 3538.7 4184.7 1.18 A3B5 A4.8B5.1 

Figure 1. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) spectra of (a)
block copolymer 1 and (b) random copolymer 2. All peaks correspond to [Mp + Na]+ ions. The insets
show the structure of the block copolymer (top right) and expanded views of the m/z range 2400–2800,
in which heptamers are observed. Calibrated monoisotopic masses and comonomer contents are
marked on top of the peaks in the insets (see also Table S1). The sign @ designates methanol adducts
with the composition [Mp + Na + CH3OH]+. The sign $ designates [Mp + K]+ ions.

The MALDI-MS spectrum of the random copolymer 2 includes [Mp + K]+ ions with very low
relative intensities (cf. inset in Figure 1b), presumably from potassium salt entrapped in the sample
during synthesis. Conversely, the block copolymer 1 shows methanol adducts in its MALDI-MS
spectrum. Interestingly, this product is not formed from the random copolymer 2, indicating that
a block architecture is necessary to form a stable adduct with methanol, which is most likely attached
noncovalently via hydrogen bonding.

The dispersive nature of mass spectrometry allows for monitoring the copolymer composition at
the oligomer level (cf. Figure 1). The comonomer content of all AnBm polymer chains detected in the
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MALDI-MS spectra of samples 1 and 2 is listed in Tables S2 and S3, respectively. Average values and
important statistical data extracted from these Tables are summarized in Table 1.

Table 1. Average molecular weights and comonomer content of side-chain liquid crystalline (SCLC)
copolymers 1 and 2.

Copolymer Mn Mw Ð Comonomer Composition

(Da) (Da) Most Abundant Average

block copolymer 1 a 2874.4 3251.9 1.13 A3B3 A3.9B4.1
random copolymer 2 b 3538.7 4184.7 1.18 A3B5 A4.8B5.1

a Putative average block size was A5B13 (by NMR). b Prepared using an equimolar mixture of comonomers A and B.

Both monomers A and B are glycidyl ether derivatives which have been shown to exhibit
very similar anionic polymerization kinetics irrespective of their side chain substituent [29]. This is
corroborated by the random copolymer 2, which was prepared from an equimolar mixture of A and B.
Its MALDI-MS data indicate an average copolymer composition with approximately equal numbers of
comonomers A and B (cf. Table 1), in agreement with the similar reactivities expected for the glycidyl
ether structures A and B.

For the block copolymer, the difference observed in the average block sizes measured by MALDI-MS
(Table 1) and NMR (see footnote a in Table 1) is attributed to potential partial overlap in the NMR signals
characteristic for blocks An and Bm (cf. Figure S1). There is also a discrepancy between the average
molecular weights measured by GPC (cf. Figure S2) and MALDI-MS (Table 1). MALDI-MS may
underestimate the molecular weights, although the narrow polydispersity of the copolymers, which is
evident from their Poisson-like molecular weight distributions (cf. Figure 1), makes this scenario
unlikely [30]. Conversely, GPC may narrow the molecular weight distributions [31,32] and overestimate
the average molecular weights [33,34] due to poor detection of the low-mass oligomers [31–34].

The data in Tables S2 and S3 were also used to construct 3D intensity maps that graphically
display the AnBm comonomer content of the two copolymers (Figure 2). These graphs clearly illustrate
the compositional similarity between block copolymer 1 and random copolymer 2. The graphs
and MALDI-MS in general do not reveal the sequence of A and B in the AnBm polymer chains.
This architectural information can be provided by MS/MS experiments, however, which exploit the
intrinsic (unimolecular) fragmentation chemistry of individual cationized oligomers [14]. The sequence
indicative dissociations of samples 1 and 2 depend on the structural features of both the polymer
backbone as well as the side-chain pendants, as discussed in the following section.
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copolymer 2.

3.2. MALDI-MS/MS Fragmentation Pathways of the SCLC Copolymers

The sequences of copolymers 1 and 2 can be decoded by the fragments generated upon MS/MS
via bond cleavages in the polyether backbone chain. The MALDI-MS/MS spectrum of block copolymer
1 (Figure 3) contains two major contiguous fragment series from such dissociations, one including the
initiating tert-butyl chain end (AnBmcpt”) and the other the terminating hydrogen substituent (AnBmypt).



Polymers 2019, 11, 1118 6 of 12

A second, minor fragment series with the terminating hydrogen substituent (viz. AnBmxpt) is also
observed. In the fragment nomenclature used, the letter code (c, x, or y) designates which bond in the
polyether chain was broken (cf. inset of Figure 3) and whether the fragment retains the initiating (c)
or terminating (y and x) chain end. The subscripted p gives the total number of complete or partial
comonomer units in the fragment and the superscripted AnBm provides the number of complete A
and B repeat units in the fragment. The subscripted t tags truncated fragments that are missing part
of the side chain or end group, while ” indicates that the dissociation resulted in the formation of
a new saturated chain end (otherwise, a double bond was formed at the new chain). For example,
fragment B2y3t was produced by C–C bond scission in the polyether chain and contains the segment
with the terminating hydrogen substituent; it includes two complete B repeat units plus a truncated
unit missing part of the side chain (which could have been A or B); and its new chain end includes
a double bond (hence, no ”).
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Figure 3. MALDI-MS/MS spectrum of sodiated tert-C4H9O-A2B4-H from block copolymer 1 (m/z
2239.9). The inset explains the letter code for the fragments from an –O–C–C–O– polyether chain [12].

Fragment series AnBmcpt”, which comprises the tert-C4H9 substituent from the initiator, is accounted
for by random charge-induced dissociations at the backbone ether bonds, catalyzed by the Na+ Lewis
acid (cf. Scheme 2) [12]. Na+ coordination at an ether oxygen can promote heterolytic O–C bond
cleavage to form a sodium alkoxylate and a carbocation that interact electrostatically. The incipient
carbocation can readily rearrange via 1,2-hydride shift (rH−) to a more stable tertiary oxocarbenium
cation. Proton abstraction from the latter ion by the alkoxylate anion (rH+) gives rise to fragments
composed of An and Bm comonomer units plus tert-C4H9O– and –H end groups (i.e., series AnBmcp”).
Only one such fragment is observed, viz. A1c1” at m/z 419.4 in Figure 3. All other fragments in
this series are truncated by CH2O (30 Da), indicating that consecutive loss of CH2=O is facile under
MALDI-MS/MS conditions [35]. This reaction is rationalized by a rearrangement elimination of
formaldehyde from the initiating chain end (cf. Scheme 2 bottom), which leads to the observed
truncated AnBmcpt” fragments, like A1c1t” (m/z 390.2) in Figure 3.
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Scheme 2. Charge-induced fragmentation pathway leading to the AnBmcpt” fragments. It is illustrated
for the cleavage of the first backbone ether bond, but can occur at any other O–C bond in the
polyether chain.

The most abundant fragment series (AnBmypt) carries the terminating chain end and is attributed
to charge-remote homolytic bond cleavages (cf. Scheme 3) [12]. All AnBmypt fragments are missing
one piece of the mesogenic side chain, viz. either NC-C6H4-C6H4-O (from repeat unit A) or
C5H11-C6H10-C6H4-O (from repeat unit B), strongly suggesting that dissociation is initiated by
homolytic O–C bond scission at the aromatic ether of the side chain (cf. Scheme 3). The free radicals
created in this step can rearrange to more stable secondary, α-alkoxy functionalized radicals (rH�),
from where they can induce β C–C bond scission in the polyether chain to form the ultimately observed
fragment ions (as depicted for B1y2t in Scheme 3). Note that the resulting fragments contain one
truncated mesogenic side chain and their overall composition is AnBm + 116 Da + Na+.
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The α-alkoxy functionalized radicals (third structure in Scheme 3) may undergo further hydrogen
transfer before β bond scission. This alternative mechanism can explain the removal of an additional
side chain segment to eventually form the minor fragments AnBmxpt via the series of hydrogen
rearrangements and homolytic bond cleavages shown in Scheme 4. These fragment ions contain two
truncated side chains and have the overall composition AnBm + 186 Da + Na+.
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3.3. Sequence Analysis of the SCLC Copolymers by MALDI-MS/MS

For the oligomer A2B4 from copolymer 1 (Figure 3), the progression A1c1t” (m/z 390)→ A2c2t” (m/z
713)→ A2B1c3t” (m/z 1088)→ A2B2c4t” (m/z 1462)→ A2B3c5t” (m/z 1836) reveals the sequence AABBB-
starting from the initiating chain end. Conversely, the progression B1y2t (m/z 513)→ B2y3t (m/z 888)
→

B3y4t (m/z 1262)→ B4y5t (m/z 1636) reveals the sequence -BBBB starting from the terminating chain
end, which is corroborated by the progression B1x3t (m/z 584)→ B2x4t (m/z 958)→ B3x5t (m/z 1332)→
B4x6t (m/z 1706). Combined, these data establish the block sequence AABBBB. Similar analysis of the
MS/MS fragmentation pattern of oligomer A2B3 from copolymer 1 confirms the block sequence AABBB
(cf. Figure S3).

A common characteristic of the MS/MS spectrum of the block copolymer is the generation of
only one fragment of a given degree of polymerization within a series. For example, only one c-type
fragment with three comonomer units is observed from A2B4 (A2B1c3t” at m/z 1088). This allows
a straightforward decoding of the sequence based on the mass differences between adjacent fragments
of the same series (as discussed above). The fragmentation pattern becomes much more complex
for random copolymers, as is evident from the MALDI-MS/MS spectrum of the A3B5 oligomer from
sample 2 (cf. Figure 4). Now, several fragments with the same degree of polymerization but different
comonomer content are detected within each fragment series. For example, the MS/MS spectrum of
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sodiated A3B5 includes three different c-type fragments with three comonomer units, viz. A2B1c3t” (m/z
1088), A1B2c3t” (m/z 1139), and B3c3t” (m/z 1190) and two different y-type fragments with two complete
side chain pendants, viz. A1B1y3t (m/z 836) and B2y3t (m/z 888). Such behavior diagnoses a random
sequence for the A3B5 oligomer from sample 2. A completely analogous behavior is observed for
oligomer A4B3 from sample 2 (cf. Figure S4).Polymers 2019, 10, x FOR PEER REVIEW  9 of 12 
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4. Conclusions

Two different SCLC copolymers were analyzed to gain insight into their compositions and
architectures. These important structural features could be conclusively determined by MALDI-MS
and MALDI-MS/MS experiments, which require very small sample amounts (<1 mg per copolymer)
and short analysis times (a few seconds per spectral acquisition from each copolymer). Sample 2
was confirmed to have a random distribution of the comonomers, while samples 1 was found to be
a diblock copolymer.

Sequence analysis requires that the copolymer undergoes bond cleavages in the backbone [14,26,36].
Fortunately, the SCLC polyether copolymers investigated underwent such dissociations under
MALDI-MS/MS conditions, thus rendering the sought connectivity information. It is noteworthy,
however, that the mesogenic side chains affected the homolytic bond dissociation pathways taking
place upon MS/MS. Whereas polyethers with no side chain substituents dissociate preferentially via
homolytic C–O bond scissions [12], the SCLC copolyethers underwent homolytic C–C bond scissions
in their backbone, which were promoted by radicals created at the mesogenic side chains through facile
initial cleavage of (aryl-O)-CH2 bonds (cf. Scheme 3). Such a concept, i.e., conjugation of a substituent
that can induce homolytic bond cleavages in polymer chains during MS/MS, has been long sought for
biopolymer sequencing [37,38]. Our results point out that a long mesogenic substituent, like the side
chains in 1 and 2, may open such fragmentation channels.

The present study showed that MALDI-MS/MS can provide the fragmentation data needed to
derive the sequence of singly charged SCLC oligomers with m/z ratios up to ~3000. MS/MS analysis of
multiply charged ions formed by electrospray ionization (ESI) may extend sequencing capabilities
beyond this range [39]. Moreover, multiply charged ions can be energized to dissociate not
only thermally (as done here), but also by electron-based activation methods such as electron
capture dissociation and electron transfer dissociation [40,41], which often improve sequence
coverage [42,43]. Finally, MS/MS can be interfaced with ion mobility separation of either the
precursor oligomers and/or their fragments to gain more insight into the microstructures and
architectures of SCLC materials [14,39,42]. Future studies will assess the potential of these alternative
characterization approaches.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/7/1118/s1.
Figure S1: 1H NMR spectra of copolymers 1 and 2. Figure S2: GPC-RI chromatograms of copolymers 1
and 2. Figure S3: MALDI-MS/MS spectrum of sodiated tert-C4H9-A2B3 from block copolymer 1. Figure S4:

http://www.mdpi.com/2073-4360/11/7/1118/s1
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MALDI-MS/MS spectrum of sodiated tert-C4H9-A4B3 from random copolymer 2. Table S1: Accurate mass
analysis of major oligomers in the MALDI-MS spectra of copolymers 1 and 2. Table S2: Comonomer content
of the tert-C4H9O-AnBm-H oligomers observed in the MALDI-MS spectrum of block copolymer 1 (Figure 1a).
The most abundant oligomer has the comonomer composition A3B3 (100%). Table S3: Comonomer content of
the tert-C4H9O-AnBm-H oligomers observed in the MALDI-MS spectrum of random copolymer 2 (Figure 1b).
The most abundant oligomer has the comonomer composition A3B5 (100%).
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