Supporting Information

Copolymerization of Norbornene and Styrene with Anilinonaphthaquinone-ligated Nickel Complexes

Synthesis of Anilinonaphthoquinone ligand 1c: The ligand was synthesized by applying the literature procedure [39]. First, aniline (8.6 mmol) was added drop wise into a solution of 2-hydroxy-1,4-naphthoquione (1.50 g, 8.6 mmol) in *m*-cresol (30 mL) in the presence of trifluoroacetic acid (0.20 mL, 2.69 mmol) as a catalyst. The mixture was heated with stirring at 100 °C, for 4 h and then poured into 900 mL of 5 wt.-% aqueous sodium hydroxide. The precipitate formed was filtered, washed with water, and dried under a vacuum at 80 °C for 6 h. The ligand powder was purified by recrystallization using acetic acid. The yield was 1.37 g (5.43 mmol, 63%).

¹H NMR (CDCl₃, 500 MHz): δ = 8.13 (dt, 2H), 7.78 (dt, 1H), 7.69(dt, 1H), 7.58(br, 1H), 7.44(dt, 2H), 7.30 (d, 2H), 7.23 (d, 1H), 6.44 (s, 1H),

¹³C NMR (CDCl₃, 500 MHz): δ = 184.1, 181.7, 144.9, 137.1, 134.9, 133.2, 132.3, 130.4, 129.7, 126.5, 125.9, 125.5, 122.6, 103.3.

Figure S1. ¹H NMR spectrum of ligand 1c (*H₂O).

Figure S2. ¹³C NMR spectrum of ligand1c.

Synthesis of Complex 1c: The nickel complex was synthesized by applying the literature procedure [39]. The ligand (1.01 g, 3.03 mmol) in THF (20 mL) was slowly added through a dropping funnel into a reactor containing a slurry of NaH (0.08 g, 3.31 mmol) in THF (10 mL) cooled using an ice-water bath at 0 °C, and the resultant slurry was stirred for 3 h at room temperature. The slurry thus obtained was filtered off under a nitrogen atmosphere. The residue was washed with THF, and dried under a vacuum at room temperature for 6 h. The sodium salt of the ligand contained 1 eq. of THF. The sodium salt of the ligand (0.72 g, 1.68 mmol) and trans-[Ni(PPh₃)₂PhCI] (1.18 g, 1.68 mmol) [1], which was prepared according to the literature [39], were mixed in a Schlenk tube with THF (10 mL) at room temperature and stirred for 1 d. The reaction mixture was filtered off under a nitrogen atmosphere, and the filtrate was evaporated to dryness under a vacuum. The solid thus obtained was purified with a mixture of THF/hexane in a 1/5 volume ratio. The powder was determined by ¹H and ³¹P NMR. The yield was 0.37 g (0.57 mmol, 33%). ¹H NMR (C₆D₆, 500 MHz): δ = 8.15 (d, 1H), 7.65 (br, 2H), 7.35(m, 7H), 6.99(m, 19H), 6.4 (s, 1H), 3.5 (THF).

Elemental analysis calculated: C, 74.33; H, 4.68, N, 2.17. Found: C, 74.19; H, 5.01; N, 2.23.

-28.96

³¹P NMR (C₆D₆, rt, 125 MHz)

Figure S4. ³¹P NMR spectrum of complex 1c.

Figure S5. ¹H NMR spectra of N/S copolymers obtained by (1) Run15, (2) Run 9, and (3) Run 3 [CDCl₃, 500 MHz].

Figure S6. GPC traces N/S copolymers: a, Run 7; b, Run 8; c, Run 9.

Figure S7. ¹H NMR spectra of N/S copolymers obtained by (1) Run 25, (2) Run 22, and (3) Run 19 [CDCl₃, 500 MHz].

Figure S8. DSC curves of N/S copolymers obtained by (a) Run 6 and (b) Run 17.

Figure S10. GPC traces N/S copolymers: a, Run 30; b, Run 33.

Fig. S11. Fineman-Ross plot for N/S copolymerization by 1c-MMAO.

Table S1. Effects of monomer ratio of N/S copolymerization by 1b-B(C₆F₅)₃

Run	(N/S) ^[a] (mmol/mmol)	Yield (g)	Activity ^[a]	f _{S^[b] (mol%)}	<i>M</i> _n ^[c] (10 ³)	<i>M</i> _w / <i>M</i> _n ^[c]	$T_g^{[d]}$
29	40/10	0.088	18	18	38	2.0	251
30	40/20	0.110	22	27	33	1.7	197
31	40/30	0.133	27	33	30	1.7	175

Copolymerization conditions: Ni = 5 μ mol, B/Ni = 4 (molar ratio), toluene (total volume 25 mL), temperature = 70 °C, time = 1 h. [a] Activity = kg_(polymer)mol_(Ni)-1h⁻¹. [b] *f*_S are the content of S in the N/S copolymer determining by ¹H NMR spectrum. [c] Determined by GPC. [d] Determined by DSC.

Figure S12. DSC curve of N/S copolymer (Run 31).

Figure S13. Transmittance of N/S copolymer thin film obtained by Run 35.

Reference:

(1) Hidai, M.; kashiwagi, T.; Ikeuchi, T.; Uchida, Y.; Oxidative Additions to Nickel (0): Preparation and Properties of a new Series of Arylnickel(II) Complexes. *J.Organometal. Chem.* **1971**, *30*, 279-282.

(39) Okada, M.; Nakayama, Y.; Ikeda, T.; Shiono, T.; Synthesis of Uniquely Branched Polyethylene by

Anilinonaphthoquinone Ligated Nickel Complex Activated with Tris(pentafluorophenyl)borane. Macromol. Rapid

Commun. 2006, 27, 1418-1423.