Catalyst Speciation During ansa-Zirconocene-Catalyzed Polymerization of 1-Hexene Studied by UV-vis Spectroscopy – Formation and Partial Re- Activation of Zr-Allyl Intermediates.

Valentina N. Panchenko 12, Dmitrii E. Babushkin 1, John E. Bercaw 3 * and Hans H. Brintzinger 4

¹ Boreskov Institute of Catalysis, Russian Academy of Sciences, Siberian Branch, RU-630090 Novosibirsk, Russian Federation; panchenko@catalysis.ru, dimi@catalysis.ru

² Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk, Russian Federation

³ Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, USA; bercaw@caltec.edu

⁴ Fachbereich Chemie, Universität Konstanz D-78464 Konstanz, Germany; hans.brintzinger@uni-konstanz.de

* Correspondence: hans.brintzinger@uni-konstanz.de

Supporting Information

Contents:

¹ H NMR signals ascribed to species C-2	S-1
¹ H-NMR signals of CH₃D	S-2
UV-vis spectrum of SBIZr-CH ₂ SiMe ₃ ⁺	S-3
UV-vis spectra of SBIZr(μ -Me) ₂ AIMe ₂ ⁺ at +40°C and –20°C	S-4
Plot of ln[C-0] _t vs. t	S-5
Plot of $\ln[C-1]_t$ vs. t	S-6
Effects of initial [Al]/[Zr] ratio	S-7

Figure S-1. ¹H NMR signals arising during polymerization of 1-hexene by the catalyst system described in Figure 1. First 4 traces (2.0, 3.6, 5.2 and 6.7 min mean time). Signals at 6.36, 5.67, 4.87 and 4.48 ppm (marked by *), possibly due to polymer-carrying cations of type SBIZr- π -(1-R-2-pol-C₃H₃)⁺ (**10**).

Additional traces after ca. 20 min.

Figure S-2. ¹H NMR spectra of CH₄ and CH₃D in solutions obtained by addition of an equivalent amount of trityl perfluorotetraphenyl borate to a solution of SBIZrMe₂ in toluene-d₈, as described in Figure 3, after reaction times of ca. 4 h (bottom) and ca. 10 h (top).

Figure S-3. UV-vis spectra of a 0.8 mM solution of SBIZr(Me)-CH₂SiMe₃ after addition of ca. 0.8 equiv. of trityl perfluorotetraphenyl borate.

Figure S-4. UV-vis spectra of a ca. 0.5 mM toluene solution of $(SBI)Zr(\mu-Me)_2AIMe_2^+$ B(C₆F₅)₄⁻ at +40°C (broken line) and at – 20°C (solid line).

Figure S-5. Plot of $\ln[C-0]_t$ vs. *t* for reaction stage 1 (*t* < 120 s):

Figure S-6. Plot of ln[C-1]_{*t*} vs. *t* for 300 s < *t* < 600 s

Figure S-7. Effects of initial [AI]/[Zr] ratio on the re-conversion of **C-2** (λ_{max} = 560 nm) to **C-0** (λ_{max} = 495 nm), conditions as described in Figure 1.