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Abstract: Excellent wound dressing is essential for effective wound repair and regeneration. However,
natural polymeric skin substitutes often lack mechanical strength and hydrophilicity. One way to
overcome this limitation is to use biodegradable polymers with high mechanical strength and low
skin-irritation induction in wet environments. Bacterial cellulose (BC) is an attractive polymer for
medical applications; unlike synthetic polymers, it is biodegradable and renewable and has a strong
affinity for materials containing hydroxyl groups. Therefore, we conjugated it with resveratrol (RSV),
which has a 4′-hydroxyl group and exhibits good biocompatibility and no cytotoxicity. We synthesized
BC scaffolds with immobilized RSV and characterized the resulting BC/RSV scaffold with scanning
electron microscopy and Fourier-transform infrared spectroscopy. We found that RSV was released
from the BC in vitro after ~10 min, and immunofluorescence staining showed that BC was highly
biocompatible and regenerated epithelia. Additionally, Masson’s trichrome staining showed that
the scaffolds preserved the normal collagen-bundling pattern and induced re-epithelialization in
defective rat epidermis. These results indicated that RSV-conjugated BC created a biocompatible
environment for stem cell attachment and growth and promoted epithelial regeneration during
wound healing.

Keywords: bacterial cellulose; biodegradable polymer biomaterials; epidermal reconstruction; tissue
engineering scaffolds; wound healing

1. Introduction

Successful wound treatment depends on competent care and continuous monitoring during the
healing process. Deeper, wider, and chronic wounds require a higher level of clinical care. In the
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management of wound healing, the medical team collaborates to monitor and treat serious wounds;
however, this approach entails considerable expenditures of time and money. In wound healing,
immune cells are attracted to injury sites that are revascularized by hemostasis, and the connective-tissue
matrix is produced by fibroblasts and keratinocytes to eventually induce re-epithelialization.
This complex process is stimulated and regulated by various growth factors and cytokines. A previous
study indicated that, compared with dry wound-treatment environments [1], wet conditions accelerate
re-epithelialization and reduce pain and scar formation.

Cellulose, the most abundant known carbohydrate polymer, is naturally occurring, ubiquitous,
and inexpensive. Bacterial cellulose (BC) is a biocompatible extracellular polysaccharide produced
and secreted by the aerobic Gram-negative bacterium Acetobacter xylinum [2]. Previous studies of BC
focused on its structure and physicochemical properties. An important property of BC is its chemical
purity. BC is an unbranched polymer of β-1,4-linked glucopyranose residues [3–5]. The polymer chains
of BC aggregate to form ~1.5-nm wide subfibrils as some of the thinnest naturally occurring fibers,
with only sub-elemental cellulose fibers in the cambium of certain plants having comparable thickness.
BC subfibrils crystallize into microfibrils and then into bundles and ribbons, which are typically 3 nm
to 4 nm thick and 70 nm to 130 nm wide. Microbial cellulose ribbons are 1 nm to 9 nm long and
form a dense reticulated structure stabilized by extensive hydrogen bonding. These unique structural
properties enable BC use in paper, textile, and food industries and as a biomaterial in cosmetics and
medicine. However, the range of its applications is largely dependent on cost and production scale.
Therefore, basic studies are focused mainly on bacterial strains and improvements in the production
process. BC has been investigated by several research groups as a scaffold for cartilage [6,7], wound
dressing [8], dental implants [9,10], nerve regeneration [11], vascular grafts [12], and as a temporary
skin substitute [13]. BC has excellent characteristics and a pore size (0.2 µm) appropriate for numerous
applications. Nevertheless, it has inadequate bacterial and radiation resistance. Moreover, BC per se
has no antimicrobial activity and does not prevent wound infection. Previous studies have attempted
to confer antimicrobial efficacy upon BC by immersing it in silver nitrate solution or reducing it
with zinc [14]; however, the products derived from these treatments exhibit low biocompatibility
and are harmful to the environment. BC in wound dressings shows good cytocompatibility and
histocompatibility [15] and provides a constantly moist environment conducive to skin regeneration.
Additionally, BC enhances exudate absorption, which in turn increases fibrinous clotting and the
uptake of necrotic tissue. Furthermore, the porous cellulose structure mimics the extracellular matrix
(ECM) of skin and promotes tissue regeneration [15,16] as a result of the presence of highly porous,
biocompatible, and biodegradable architecture. Unfortunately, these properties alone are insufficient
to enable BC to serve as a wound dressing or skin-tissue substitute, as wound dressing must also
simulate the ECM of the wound bed, accelerate wound healing, and reduce scar formation. In this
study, we focused on the ability of BC applications for skin-regenerative medicine and wound healing
by evaluating its efficacy in an animal model.

Type I collagen (COL) is the most abundant ECM component in skin. COL is responsible for the
tensile strength of connective tissue and enables it to be stretched extensively without breaking [17].
Highly porous COL producing substantial quantities of ECM stimulate regeneration after severe
injury of the skin [18,19], peripheral nerves [20], and conjunctiva [21]. Moreover, COL has replaced
autografts during the treatment of skin loss in acutely burned patients [22], burn-scar revision [23],
hand surgery [24], and skin wounds [25]. COL and BC are the most widely used biopolymers, because
they target antibacterial, anti-inflammatory, proliferative, and remodeling processes and either directly
interact with cells or are mediated by ECM during wound healing. Biopolymers modulate cellular
behavior and trigger cell growth, differentiation, and the secretion of ECM components by fibroblasts
and keratinocytes. Moreover, they are chemotactic for macrophages [15]. ECM proteins such as
fibronectin activate immune cells such as macrophages, which remove neutrophils and debris from the
wound site. Fibronectin induces monocytes to differentiate into macrophages, which in turn produce
various cytokines and chemoattractants for fibroblasts and keratinocytes [26]. Furthermore, fibronectin
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activates the Wnt/β-catenin, the transforming growth factor (TGF)-β, the mitogen-activated protein
kinase, and the phosphoinositide 3-kinase/Akt pathways in wound tissue [27]. However, ECMs alone
have certain limitations in skin-wound repair. Their anti-inflammatory and antioxidant capacities
are weaker than those of several drugs, and they can also exacerbate or prolong the inflammatory
state and hinder wound healing and remodeling [28]. Inflammation is important in the elimination of
infection and debris; however, protracted inflammation can cause tissue damage, increase scarring,
and retard wound healing. Therefore, suitable regulation of the inflammatory response is necessary to
ensure accelerated wound healing.

Resveratrol (RSV) has a 4′-hydroxyl group and exhibits good biocompatibility and no cytotoxicity.
As a polyphenolic compound, RSV occurs naturally in red grape skins, red wine, peanuts, cranberries,
and other fruits and reportedly exhibits low toxicity and is well tolerated in humans [29]. Additionally,
RSV upregulates endothelial nitric oxide synthase (eNOs) and vascular endothelial growth factor (VEGF)
and promotes angiogenesis in wound-healing experiments. Moreover, various RSV concentrations
and longer treatment periods demonstrate efficacy on aged wounds [30]. We hypothesized that RSV
could regulate inflammatory responses in wound healing. To test this hypothesis, we investigated the
effects of BC and COL combined with RSV on epithelial regeneration and cutaneous wound healing.
We evaluated the biocompatibility of various biopolymers with human adipose stem cells and the
influences of these substances on epithelial differentiation. This pilot study revealed whether stem
cells and epidermal tissue-engineering techniques regenerate epithelium in the urinary bladder and
other organs. One of the major issues in tissue regeneration is the safety of cell therapy and polymer
reconstruction; however, it is already recognized that relatively low health risks are associated with the
aforementioned biopolymers and stem cell methods according to animal studies.

2. Materials and Methods

2.1. BC Fabrication

BC sheets were purchased from the Far Eastern Group (BF10005; The Far Eastern Group, Taipei,
Taiwan, ROC). The BC was produced by Acetobacter xylinum cultured in Buffered Schamm and Hestrin’s
broth for 2 d. The BC was transferred to coconut juice (pH 4.0–4.4; 30 ◦C) for 2 d then washed in 0.1 M
NaOH (aq) at 90 ◦C to 95 ◦C to remove bacterial toxins. BC fibers were then bleached with 0.25% H2O2

at 45 ◦C for 30 min then washed in water, followed by compression into a sheet and dehydration with
acetone until their water content was <15% and their thickness was 2 mm. BC was stored in an electric
drying cabinet.

2.2. Preparation of BC Scaffolds Containing RSV

RSV (R5010; MW 228.2) was purchased from Sigma-Aldrich (St. Louis, MO, USA). A stock
solution was prepared by dissolving 50 mg RSV in absolute ethanol and stirring at 200 rpm for 1 h.
This solution was dispersed in 0.1 M phosphate-buffered saline (PBS; pH 6.8) and adjusted to a 50-µM
working solution. RSV solution was applied to the BC scaffolds with a syringe, with a final RSV
concentration on each BC scaffold of 1.43 µg cm−2. The RSV-doped BC scaffold (BC/RSV) was placed
under a laminar flow hood, dried, and stored in the dark at 25 ◦C.

2.3. Preparation of a Type I COL Scaffold Containing RSV

Type I COL solution (C9791; 0.25% w/v; Sigma-Aldrich) was dissolved in 1% (v/v) acetic acid.
An 8 µg mL−l RSV solution was prepared by dissolving the stock RSV solution in 100% ethanol,
followed by combining the COL and the RSV solutions with stirring for 24 h at 25 ◦C. COL/RSV
aliquots of 0.275 mL were placed in glass vials and gradually cooled at a rate of 2 ◦C min−l until
the samples reached −20 ◦C. The frozen aliquots were then placed in a freeze-drying chamber and
further cooled at a rate of 2 ◦C min−l until they reached −45 ◦C. The samples were then processed in a
freeze-dryer (FD24-4S; Kingming, Taipei, ROC) at −45 ◦C under a 300-mbar vacuum for 24 h, followed
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by the addition of 0.5 mL of 2.5% (w/v) PCL/dichloromethane solution to each frozen COL or COL/RSV
scaffold and incubation for 30 min. The vial lids were then removed to allow solvent evaporation.

2.4. Scanning Electron Microscopy (SEM)

The surface morphology of the lyophilized scaffolds and the cells grown on them was examined
with a Hitachi S–3000N SEM (Hitachi High Technologies, Krefeld, Germany). The samples were
fastened to carbon stubs and mounted on aluminum stubs. SEM images were acquired under an
accelerating voltage of 1.5 kV at a working distance of ~15.0 mm and at 500× to 1000×magnification.

2.5. Fourier-Transform Infrared (FT-IR) Spectroscopy

Attenuated total reflectance (ATR) FT-IR spectra of the samples were recorded on a Nicolet
8700 spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) fitted with a high-performance
diamond single-bounce ATR accessory (wavenumber range, 4000–400 cm−1; resolution, 1 cm−1;
16 scans/spectrum). Mercury-cadmium-telluride was used for infrared detection.

2.6. Efficiency of RSV Release from the Scaffold

BC/RSV or COL/RSV scaffolds were immersed in artificial saliva solution (Biotène; GlaxoSmithKline,
London, UK) and shaken at ±37 ◦C. The medium was sampled at 0 min, 2 min, 4 min, 8 min, 16 min, 30
min, and 60 min, and RSV absorbances were measured at 350 nm by UV spectrophotometry (SYNERGY
HTX; BioTek, Winooski, VT, USA). All assays were performed in triplicate.

2.7. In Vitro Biocompatibility

Human adipose stem cells line (hASCs) provided by Dr. Cherng were cultured in supplemented
keratinocyte serum-free medium (Life Technologies Ltd., Paisley, Scotland, UK) with 10% fetal bovine
serum (Hyclone, Logan, UT, USA) at 37 ◦C in humidified air containing 5% CO2. The scaffolds were
sterilized by UV irradiation for 18 h, followed by hASC seeding onto the scaffolds at a density of
1 × 106 cells cm−2 and incubating under 5% CO2 at 37 ◦C. The culture medium was replaced every 2 d,
and the samples were observed by immunocytochemical staining. Experiments were performed in
triplicate and repeated three times with similar results.

2.8. Animal Model of a Surgical Epidermal Defect

Eighteen male Sprague-Dawley rats (250–300 g) were purchased from Bio-LASCO Co. Ltd. (Taipei,
Taiwan). Two animals were housed per cage in a pathogen-free facility. The experimental protocol was
reviewed and approved by the Institutional Animal Care and Use Committee: IACUC-17-059 at the
National Defense Medical Center. The rats were anaesthetized with intraperitoneal chloral hydrate
(0.4 mg g−1). For the wound-healing experiment, rats were randomly separated into five groups: lesion
control, BC, BC/RSV, COL, and COL/RSV. Two wounds 1 cm in diameter were created on the dorsum
of each rat, and the experimental scaffolds were bound to the wounds with biocompatible mucilage.
The control wounds were left untreated and covered with plain medical gauze. Medical gauze was
also used to bind the dressings onto the wounds and replaced every 2 d as required. Rats were kept in
individual cages, and on days 3, 7, and 14 after wound creation, the lesions were photographed, and
the rats were euthanized by anesthesia overdose. All experiments were performed in duplicate and
repeated at least three times.

2.9. Histologic Examination

The wounds and their surrounding skin tissues were excised and used for histologic evaluations.
Samples collected on days 3, 7, and 14 were fixed in 10% formalin with sucrose, and the tissues were
snap-frozen on dry ice in optimal cutting temperature embedding medium. The frozen tissues were
sectioned into slices 30-µm thick and treated with hematoxylin and eosin and Masson’s trichrome
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(HT-1079+HT-15; Sigma-Aldrich) stains. The tissue sections were observed under a light microscope
and photographed with a SPOT-RT digital camera (Diagnostic Instruments, Detroit, MI, USA).
Re-epithelialization and COL deposition were the criteria used for histochemical examinations.
All staining was performed in triplicate and repeated three times with similar results.

2.10. Immunofluorescence

Both hASC seeding in the scaffolds and the skin-wound sites were subjected to
immunocytochemical/histochemical examinations. The samples were fixed with 4% paraformaldehyde
and cut into slices 30-µm thick by cryosection. The samples were treated with 0.2% Triton X-100 for
30 min, followed by three washes with PBS for 5 min/wash. Nonspecific binding sites were blocked
with 10% normal goat serum (Vector Laboratories Ltd., Burlingame, CA, USA), and the samples
were incubated with the primary antibodies anti-fibronectin (1:500, monoclonal rabbit), anti-CK-14
(1:500, monoclonal mouse), anti-involucrin (1:500, monoclonal rabbit), anti-octomer-binding protein
4 (OCT4; 1:500, polyclonal rabbit), and anti-nestin (1:500, monoclonal mouse) (all from Santa Cruz
Laboratories, Dallas, TX, USA) and incubated for 2 h at room temperature. The samples were washed
three times with PBS for 5 min/wash, followed by incubation with the secondary antibodies fluorescein
isothiocyanate-conjugated anti-rabbit (1:1000; Jackson ImmunoResearch, West Grove, PA, USA) and
rhodamine-conjugated anti-mouse (1:1000; AnaSpec, Fremont, CA, USA) at room temperature for 1 h.
To visualize nuclei, sections were counterstained with Hoechst 33342 (1:5000; AnaSpec) for 15 min.
Fluorescent images were obtained with an inverted fluorescent microscope (Axio Lab.A1; Carl Zeiss
AG, Oberkochen, Germany) fitted with a camera (Zeiss AxioCam ICm1; Carl Zeiss AG). All staining
was performed in triplicate and repeated three times with similar results.

2.11. Wound-Area Measurements and Statistical Analysis

Wound area was documented with a digital camera (Nikon Coolpix 4100; Nikon, Tokyo, Japan)
on days 3, 7, and 14, and images were analyzed using ImageJ software (National Institutes of Health,
Bethesda, MD, USA) by calculating the wound margin area and pixel area. Data are expressed as the
mean ± standard deviation of the respective replicates (n = 3 or 4). Statistical differences between
treatment means were determined with Student’s t test and one-way analysis of variance. All statistical
analyses were performed in Microsoft Excel 2016 (Microsoft Corp., Redmond, WA, USA), and a P < 0.05
was considered statistically significant.

3. Results and Discussion

3.1. FT-IR

The molecular interactions of the BC and the COL scaffolds (Figure 1) containing RSV were
qualitatively investigated by FT-IR spectroscopy. The spectra for the BC and the BC/RSV scaffolds
(Figure 1A) revealed strong bands for structures, such as H–O–H near 1490 cm−1 and the C–H
deformation (CH3 or OH in-plane bending) at 1330 cm−1. Bands at 1170 cm−1 and 1040 cm−1

corresponded to antisymmetric C–O–C bridge stretching and symmetric C–O stretching, respectively.
These results corroborated previous studies indicating that A. xylinum produces cellulose with an IR
spectrum in the region of 3400 cm−1 to 3200 cm−1, which indicates a relative abundance of cellulose
Iα [31–33]. The RSV spectrum in the BC/RSV scaffold (Figure 1B) was characterized by C–C ring
stretching at 1300 cm−1, a –C=C–H band corresponding to trans olefinic bands at 900 cm−1, and C–C
aromatic double-bond stretching at ~1500 cm−1 to 1700 cm−1 [34]. The COL scaffold (Figure 1C)
presented absorption peaks at 1035 cm−1 and 1039 cm−1, which were associated with C–O stretching
vibrations and C–O–C stretching, respectively [35]. The C–C aromatic double bond and the olefinic
stretching showed peaks overlapping at 1000 cm−1 to 1600 cm−1 (Figure 1C). These were attributed to
the absorption of CH2, CH3, C–N, and N–H moieties of COL [35]. Strong absorptions in the region of
3000 cm−1 to 2800 cm−1 and 1800 cm−1 to 1600 cm−1 were assigned to amides A and B and amides I
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and II of COL, respectively [36,37]. This region corresponded to the alkene carbon–hydrogen bond.
The regions of the structures are listed in Figure 1E. The 900 cm−1 peak was absent from the COL/RSV
scaffold (Figure 1D) as compared with the BC/RSV group; however, the COL/RSV scaffold was a
freeze-dried biopolymer. Therefore, it remains to be determined whether the RSV functional group
was altered after the freeze-drying process.
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3.2. SEM

In tissue engineering, SEM analysis discloses the morphological structure of polymers in
biomaterials (Figure 2). The BC scaffold (Figure 2A) comprised fibers with a pore diameter of
~0.2 µm, and the surface of the COL scaffold (Figure 2C) had pores with a diameter of ~8 µm. The RSV
spread evenly on the biomaterial surfaces after application (Figure 2B,D; red arrows), with a size
range of 0.1 µm to 2 µm. The COL/RSV scaffold (Figure 2D) was larger than the BC/RSV scaffold,
with the former having relatively looser holes and small- to medium-sized pores with undefined
shapes. The SEM image showed fewer RSV particles in the COL scaffold relative to the BC scaffold.
This discrepancy might account for the apparent absence of the –C=C–H band observed by FT-IR
(Figure 1D).
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In tissue engineering, scaffolds serve as temporary platforms for tissue formation and promote
cellular migration, new ECM formation, tissue ingrowth, and nutrient and metabolic waste
transport [38]. Therefore, the scaffold must be biocompatible (nontoxic) and provide an environment
conducive to cell adhesion and function. We incubated hASCs on the biomaterials for 7 d and
inspected them by SEM. Our analysis revealed that the cells adhered and grew well on the biomaterials,
suggesting their biocompatibility for ex vivo stem cell attachment. We then compared the SEM images
of hASCs seeded on the BC (Figure 3A), the BC/RSV (Figure 3B), the COL (Figure 3C), and the COL/RSV
(Figure 3D) scaffolds. All tested biomaterials were highly biocompatible with hASCs, and their surfaces
fostered cell expansion.
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3.3. Measurement of RSV Release over Time

In clinical applications, the release time of natural pharmacologically active biomaterials from
human tissues needs to be evaluated in order to assess their efficacy. We incubated the BC/RSV
and the COL/RSV scaffolds with artificial saliva solutions at 37 ◦C to simulate human body fluids.
Acute inflammation responses, including fluid and plasma exudation into tissue and neutrophil
and macrophage accumulation, commonly occur at the start of the healing process. RSV is a potent
anti-inflammatory modulator [39]; therefore, it must be released in a timely manner to ensure its
inhibition of severe inflammation. Equilibria of the release of RSV from the BC/RSV and the COL/RSV
scaffolds were achieved after 60 min (Figure 4A) and 30 min (Figure 4B), respectively, with RSV
concentrations released from the BC/RSV and the COL/RSV scaffolds of 8.6 µM (P < 0.05) and 8.8 µM
(P < 0.01), respectively. Our results suggested that RSV-treated COL was more appropriate for medical
applications as compared with RSV-treated BC, because the former releases RSV faster and at a higher
concentration than the latter. Because BC harbors multiple hydroxyl groups, it exhibits a strong affinity
for RSV, thereby precluding its rapid release [40].
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3.4. Functional Biocompatibility In Vitro

Trypan blue staining was used to observe the cells in the biomaterials and confirm scaffold
biocompatibility with the cells (Figure 5). Compared with the BC and the COL scaffolds (Figure 5C,E),
stronger positive Trypan blue staining was detected in the BC/RSV (Figure 5D) and the COL/RSV
(Figure 5F) scaffolds, suggesting that the latter two harbored relatively more living cells. The addition
of RSV to BC or COL apparently enhanced cell growth, which agreed with previous studies [41–43].
This observation might be explained by RSV promoting cellular self-renewal by inhibiting apoptosis
and senescence. In the present study, we used octamer-binding transcription factor 4 (OCT-4) and bone
morphogenic protein (BMP)4-positive staining of hASCs to confirm stem cells by immunofluorescence
staining (Figure 5A,B).
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Figure 5. Immunofluorescence staining of stem cells in the presence of hASCs. (A) Octamer-binding
transcription factor 4 (OCT-4) and (B) bone morphogenic protein (BMP)4. Trypan blue staining of
hASCs grown on biomaterials for 7 d. (C) BC, (D) BC/RSV, (E) COL, and (F) COL/RSV scaffolds. Scale
bar = 50 µm.

3.5. Immunostaining

An in vitro study was conducted using the BC and the COL scaffolds with and without RSV, and
stem cell and keratinocyte differentiation biomarkers β-actin, OCT4, nestin, and involucrin were used
to visualize activation of cells implanted into the BC, the COL, the BC/RSV, and the BC/COL scaffolds,
respectively. β-actin is a cytoskeleton marker that indicates the position and the shape of the stem cells
on the scaffolds [44]. OCT4 and nestin are stem cell markers, with OCT4 expressed in the early stages
of stem cell development and again in the later stages [45]. Involucrin is expressed in the late stages
of stem cell development during terminal diffraction and also represents a keratinocyte-precursor
marker [46]. Relative to the BC and the COL scaffolds alone (Figures 6A and 7A), we observed
an increased positive staining of stem cell markers on the BC/RSV (Figure 6B) and the COL/RSV
(Figure 7B) scaffolds after a 14-d incubation, suggesting both more stem cells and more mature cells
on the RSV-treated scaffolds than on the untreated scaffolds. A previous study reported that RSV
facilitates mesenchymal stem cell viability, osteogenesis, and paracrine secretion in vitro [47]. Another
study indicated that RSV used in stem cell-aggregate engineering generated stem cells attached to
newly formed ECM [48]. These results indicate that the RSV on the BC and the COL scaffolds provided
a high level of biocompatibility and a suitable microenvironment for cell growth. Several studies
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reported that RSV might regulate stem cell survival, self-renewal, and differentiation and prevent
stem cell damage, carcinogenesis, and aging while also promoting the regeneration of other types
of tissue [48–50]. For example, RSV might support regeneration and reconstruction of the urinary
bladder [51].
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Figure 7. Representative images showing COL and COL/RSV biocompatibility with hASCs. (A) COL
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keratinocyte-differentiation marker involucrin. β-actin was used as an internal staining control. White
arrows indicate positive antibody expression in the scaffold. Nuclei were counterstained with Hoechst
33342 (blue). Scale bar = 500 µm.
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3.6. Skin Reconstruction in An Animal Epidermal-Defect Model

Tissue homeostasis and the protective function of the skin are restored by wound healing, which
involves several complex cellular and biochemical processes. Dermal collagen remodeling and
scar budding are important tissue-repair processes during the maturation phase [52]. Therefore,
we examined the influences of the BC/RSV and the COL/RSV scaffolds on a rat epidermal-defect model
(Figure 8A–E). The BC/RSV and the COL/RSV scaffolds were embedded in the wound sites, and the BC
and the COL scaffolds were used as controls. Representative images of wound healing associated with
different treatments and at various time intervals are shown in Figure 8F–K. After 14 d, the wound
site was smallest in the BC scaffold and the surrounding normal skin shrank (Figure 8H), whereas the
tissue around the wound site was smooth in the COL and the COL/RSV scaffolds, and wound closure
was delayed (Figure 8K). Quantitative analysis of the wound area (mm2) in each material group is
shown in the radar chart (Figure 8L,M), which shows a trend of wound healing. The results indicated
that, regardless of RSV incorporation in the BC or the COL scaffolds, we observed maximal decreases in
wound area at 14 d after dressing. Masson’s trichrome staining used to highlight COL fiber formation
and epidermal histology during the healing process revealed that, although the RSV-containing
scaffolds did not display excellent performance in reducing wound area, the wound-healing capacities
of these materials were confirmed.

To further analyze whether RSV improves wound healing, we evaluated the level and the quality
of epithelial regeneration in wound tissue. During wound healing, fibroblasts and myofibroblasts
modulate cellular functions, maintain cellular-tensional homeostasis, and shrink and reorganize the
COL matrix during tissue development and repair [53]. Wound contraction is affected by COL synthesis
and compaction of granular tissue. Masson’s trichrome staining revealed that the BC/RSV scaffolds
induced COL synthesis in skin tissues over time (Figure 9A,B). A dense blue color appeared in the
BC/RSV-treatment area after 14 d (Figure 9B), and there was a uniform distribution of the stratum
spinosum, which integrated with the granular tissue in the epidermis. RSV has an affinity for estrogen
receptor (ER)α and ERβ found on keratinocytes, fibroblasts, and macrophages and stimulates the
production of COL types I and II and ECM [54,55]; however, progressive COL production might also
induce scar formation (Figure 8H) [56]. The COL scaffold promoted early stratum-corneum-barrier
regeneration and synthesis of a COL matrix in the wound; however, granular tissue did not form
until 14 d after the injury. Histologic analysis confirmed that RSV on the COL scaffold inhibited COL
synthesis in the skin tissue over time (Figure 9A,B). Indeed, loose COL-fiber staining was detected after
14 d (Figure 9B), with histological images suggesting that the epidermal regeneration was suboptimal.
Therefore, we evaluated re-epithelialization and wound-tissue regeneration via immunofluorescence
staining in order to assess the potential of RSV and the scaffolds to promote wound-healing regeneration.
Staining results confirmed the mechanism by which RSV-incorporated BC or COL scaffolds affected
wound healing.
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Figure 8. Effect of scaffolds on dermal wound healing. (A) Skin defects induced on the back of a rat
and filled with scaffolds; (B) wound contraction observed in each scaffold group on days 3, 7, and 14
after injury. [(L),(M)] Semi-quantitatively measure the wound area of the epidermal defect in each
material group.
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Figure 9. Histological assessment of scaffold implants in skin defects after 7 and 14 d. (A) Masson’s
trichrome staining demonstrated that COL bundles formed after 7 d in the wound treated with
RSV-loaded BC and COL scaffolds; (B) after 14 d, remodeling progress was improved in the presence
of the BC/RSV scaffolds relative to the COL/RSV scaffolds. Relatively greater COL accumulation and
deposition were observed in the COL scaffolds. Light micrographs of Masson’s trichrome staining
show that the BC/RSV scaffolds preserved normal COL-bundling patterns and orientation.

3.7. Re-Epithelialization of the Epidermal Debride Area in Skin Reconstitution

Re-epithelialization is a vital part of wound closure. Fibroblasts are recruited to rebuild the
dermal layer while keratinocytes migrate from the edges of the wound and re-epithelialize the
provisional matrix [45]. Immunohistochemical analysis indicated the presence of markers involucrin
and CK-14 in the regenerative area, suggesting keratinocyte differentiation [57], and the presence of
fibronectin suggested dermal-fibroblast cell behavior during wound repair [27]. Immunostaining
(Figure 10A,B) revealed that the BC scaffold expressed involucrin, which is indicative of keratinocyte
renewal, although expression was delayed until 14 d after induction of the epidermal defect. CK-14,
a marker of mature keratinocytes, was expressed in the BC/RSV group, and the fibroblast marker
fibronectin was expressed in the BC and the BC/RSV scaffolds at 14 d after implantation. Therefore,
these scaffolds promoted both epidermal tissue regeneration and re-epithelialization during wound
repair. Additionally, the BC/RSV scaffold (Figure 10B) upregulated the epithelial biomarkers to a
greater degree than the BC scaffold alone. This finding suggested that the combination of BC and RSV
attracted fibroblasts and keratinocytes to the wound site and induced their differentiation. RSV might
enhance re-epithelialization by activating sirtuin-1 (SIRT1) [58], which plays vital roles in wound
repair by regulating epidermal re-epithelialization, dermal granular-tissue formation, keratinocyte
migration, cytokine expression, TGF-β signaling, and oxidative stress [59]. The functionality and
the long-term performance of native tissue depend on its successful integration with biomaterials or
implants. One motivation for the present study was the ability of BC to be absorbed and integrated
into various living tissues [60]. In the present study, we found that the BC scaffold was biocompatible
and did not induce immune reactions, chronic inflammatory responses, or neurotoxicity.
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Figure 10. Keratinocyte differentiation on BC- and BC/RSV-scaffold implants in skin defects after 7
and 14 d. Implant areas were detected by immunofluorescence staining for involucrin (green) and
CK-14 (red) in wound tissue for different groups at 7 d after implantation. The BC/RSV group showed
relatively higher levels of involucrin- and CK-14-positive keratinocytes. The re-epithelialization marker
fibronectin (green) was present in the BC-scaffold group at 14 d after implantation. Nuclei were
counterstained with Hoechst 33342 (blue). Scale bar = 100 µm.

Involucrin, CK-14, and fibronectin were upregulated on the COL scaffold, although their levels
did not differ from those on the COL/RSV scaffold at 14 d after treatment (Figure 11A,B). COL-based
material accelerates wound closure by improving the quality of healing, increasing COL deposition
and maturation [61], and enhancing macrophage recruitment to the wound site. In the present study,
we found that the COL/RSV scaffold (Figure 11B) did not induce re-epithelialization during wound
healing any more effectively than the BC/RSV scaffold. Inclusion of RSV with either COL or BC was
used in subsequent wound-healing experiments, because each displayed a different effect on epithelial
cells in treated wounds.
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Figure 11. Keratinocyte differentiation on COL- and COL/RSV-scaffold implants in skin defects after
7 and 14 d. The COL/RSV group showed relatively higher levels of involucrin- (green) and CK-14-
(red) positive keratinocytes. Nuclei were counterstained with Hoechst 33342 (blue). Scale bar = 100
µm. The COL and the COL/RSV scaffolds displayed fibronectin (green) expression, indicating ECM
formation and re-epithelialization during wound healing.

4. Conclusions

Here, we described the development of stable, composite, RSV-based polymers for use as potential
wound dressings to promote healing. Our data revealed that both BC and COL scaffolds containing
RSV displayed excellent biocompatibility. RSV-based tissue engineering might effectively improve
functionality in epidermal defects and facilitate their regeneration. BC and COL polymers differ
in terms of their optimal functional properties as wound dressings. One limitation of the present
study is the need to clarify whether the freeze-drying procedure changes the functional groups in the
RSV-containing scaffolds. Our findings might enhance the clinical application of various regenerative
treatments. It is necessary to elucidate the progression and the development of cellular differentiation
in the stratified epithelial layer during tissue regeneration. Our future research will investigate highly
plastic biological materials co-cultured with autologous stem cells for use in therapeutic urinary
tract regeneration. Moreover, our quantitative validation of the infectious, the toxicological, and the
immunological safety of the BS/RSV and the COL/RSV scaffolds promotes their use in human clinical
trials. These procedures could promote the use of such scaffolds as surgical dressings and carriers for
cell therapy, as well as for other clinical applications.
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