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Abstract: The thermoplastic poly(propylene carbonate) (PPC) containing cross-linked networks
was one-pot synthesized by copolymerization of carbon dioxide, propylene oxide (PO), maleic
anhydride (MA), and furfuryl glycidyl ether (FGE). The copolymers were characterized by Fourier
transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), differential scanning
calorimetry (DSC), and thermogravimetric analysis (TGA) measurements. The thermal and
dimensional stability of the copolymers were improved. When the MA and FGE load increased
from 1 mol% to 4 mol% of PO, the copolymers contained the gel contents of 11.0%–26.1% and their
yields were about double that of the PPC. The 5% weight-loss degradation temperatures (Td,-5%)
and the maximum weight-loss degradation temperatures (Td,max) increased from 149.7–271.3 ◦C
and from 282.6–288.6 ◦C, respectively, corresponding to 217.1 ◦C and 239.0 ◦C of PPC. Additionally,
the hot-set elongation tests showed that the copolymers exhibited elasticity and dimensional stability
with the minimum permanent deformation of 6.5% which was far less than that of PPC of 157.2%,
while the tensile strengths were a little lower than that of PPC because of the following two conflicting
factors, cross-links and flexibility of the units formed by the introduced third monomers, MA and
FGE. In brief, we provide a novel method of one-pot synthesis of PPC containing cross-linked
networks. According to this idea, the properties would be more extensively regulated by changing
the cross-linkable monomers.

Keywords: poly(propylene carbonate); networks; copolymerization; modification

1. Introduction

Poly(propylene carbonate) (PPC) derived from carbon dioxide and propylene oxide (PO) has
been drawing much attention in both academic and industrial fields [1,2] as a biodegradable polymer.
However, PPC still has considerable limitations, for example, its low decomposition temperature,
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low glass transition temperature (Tg), and its amorphous nature that severely limits its thermal stability
and practical application [3,4]. It becomes brittle at low temperature and quickly loses strength at
elevated temperature. For these reasons, significant efforts have been devoted to the modification of
PPC. Crystallization of PPC was first expected to improve its properties, however it is very difficult
to crystallize PPC even the stereoregular PPC was synthesized [5,6]. Regarding the thermal stability,
end-capping with maleic anhydride, benzoyl chloride, ethyl silicate, acetic anhydride, and phosphorus
oxychloride, or phosphoric ester can improve the decomposition temperature of PPC by converting
PPC’s end-hydroxyl groups into other groups and suppressing the unzipping degradation of PPC [7,8].
In addition, terpolymerization with co-monomers [9–12], cross-linking [13–15] and fabrication with
other polymers [16–20], inorganic fillers [21–25], or organic compounds [26–29] have been used to
improve its thermal and mechanical performance. In all methods, cross-linked PPCs, whether physical
or chemical, display good thermal stability and mechanical strength, especially dimensional stability
at high temperature. These methods can effectively solve the cold-flow problem of PPC although
the Tg is low. For example, a small amount of graphene oxide nanosheets (1 wt%) can form physical
cross-links in a PPC matrix, which greatly enhances PPC [21]. The PPC chemically cross-linked
with allyl glycidyl ether displayed excellent dimensional stability with the hot-set elongation at
65 ◦C of 17.2% and permanent deformation approaching zero compared with 35.3% and 17.2%
for uncross-linked PPC, respectively [13]. Cross-linking customarily requires two steps, including
introducing a cross-linkable moiety like double bonds into the PPC backbone and subsequently
cross-linking using radical initiators. As an alternative, the reaction between PPC and isocyanate
can produce partially cross-linked PPC [30]. It was also prepared by the electron-beam irradiation of
blending of PPC and polyfunctional monomers such as trimethylopropane triacrylate, pentaerythritol
triacrylate, and poly(ethylene glycol) dimethyl methacrylate [31]. Organic silylated PPC following
hydrolysis reaction can also form cross-linked PPC [32,33]. Compared with the two-step method,
PPC can be obtained directly by one-step terpolymerization of PO and CO2 with diepoxides [15,34],
dianhydrides [35,36], or mixed monomers [37]. Sometimes, the addition of diepoxides in the CO2/PO
copolymerization does not form cross-linked PPC [38,39], which may be related to the reactivity of
the diepoxides.

Hilf and coworkers prepared cross-linked poly((furfuryl glycidyl ether)-co-(glycidyl methyl ether)
carbonate) (P((FGE-co-GME)C)) copolymers using a two-step method [40]. They first prepared the
P((FGE-co-GME)C) copolymers with furyl pandants by terpolymerization of CO2, FGE, and glycidyl
methyl ether (GME). Cross-linking was conducted via a Diels–Alder (D–A) reaction between the
furyl pandants of P((FGE-co-GME)C) and maleimide derivatives which were introduced in the second
step. They focused on the synthesis of P((FGE-co-GME)C) and there was no mention of the thermal
stability or mechanical properties of the copolymers. Inspired by their research, we realized the
one-pot synthesis of PPC with cross-linked networks by the copolymerization of CO2, PO, MA,
and FGE. Unlike diepoxides or dianhydrides reported previously, the additional monomers contain
both epoxide/anhydride and other mutually reactive groups. The former participate in the CO2/PO
copolymerization and introduce the reactive groups into PPC’s pendants. In this case, MA and FGE
can introduce both the C=C double bonds and furan groups into the PPC’ chains. They react with each
other and generate the networks during the copolymerization. The thermal and mechanical properties
and dimensional stability of the obtained copolymers were fully investigated in this work.

2. Materials and Methods

2.1. Materials

PO was refluxed over calcium hydride for 8 h, distilled under dried nitrogen gas and stored over
0.4 nm molecular sieves prior to use. CO2 of 99.99% purity was commercially obtained without further
purification. MA, glycerol, furfuryl alcohol (FA), tetrabutylammonium bromide (TBAB), glutaric acid,
and zinc oxide were all purchased from Aladdin Industrial Corporation and directly used without
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further purification. FGE was synthesized according to the literature [41]. The 1H NMR spectrum is
seen in Figure S1. Zinc glutarate (ZnGA) was synthesized according to the literature [42]. All other
reagents and solvents were of analytical grade and used without further purification.

2.2. General Copolymerization Procedure

The copolymerization was conducted in a 100 mL autoclave reactor equipped with a magnetic
stirrer. The 0.1 g zinc glutarate (ZnGA) catalyst and a certain proportion of MA and FGE were added
to the autoclave quickly. After sealing the autoclave, the catalyst, MA, and FGE were further dried for
8 hours at 100 ◦C under a vacuum and then cooled to 15 ◦C. Subsequently, the autoclave was carefully
purged with nitrogen, and nitrogen was alternately emptied and filled three times. Then 30 mL PO
was injected into the autoclave with a syringe. The autoclave reactor was then pressurized to 5.0 MPa
through a carbon dioxide cylinder. The copolymerization reaction was stirred at 60 ◦C for 40 hours,
then the reactants were cooled to room temperature to release pressure. The obtained hard block
product was dissolved in chloroform containing 5% hydrochloric acid solution to decompose the
catalyst. The organic layer was washed to become neutral and slowly dripped into six times the
volume of strongly stirred ethanol to precipitate the copolymer, which is called PPC-MF. The PPC-MF
was alternately dissolved in chloroform and precipitated three times in ethanol to remove a small
amount of propylene carbonate, then dried to constant weight at 80 ◦C in a vacuum, and the yield
was calculated.

2.3. Characterization and Measurements

Fourier transform infrared spectroscopy (FT-IR) measurements were carried out on a Thermo
Scientific Nicolet 6700 spectrometer equipped with attenuated total reflection (ATR) accessories.

1H NMR spectra were determined by Bruker DRX-400 spectrometer (Bruker Co., Rheinstetten,
Germany) with chloroform-d as the solvent.

The average molecular weights of polymers were determined by gel permeation chromatography
(GPC) system (Waters 515 HPLC pump, Waters 2414 detector) with tetrahydrofuran as an eluent.
Polystyrene standards with a polydispersity of 1.02 were used to calibrate the GPC system.

The gel contents were determined by ASTM D2765 method. The sample was refluxed in boiled
chloroform for 24 hours. The insoluble part was dried to constant weight at 80 ◦C in a vacuum. The gel
content is defined as the weight percentage of the insoluble part in the sample. Data were recorded as
the average of three parallel measurements.

Thermogravimetric analysis (TGA) was measured on a PerkinElmer simultaneous thermal
analyzer (STA 6000). Samples were tested under 40 mL·min-1 nitrogen flow from 25–400 ◦C at a heating
rate of 20 ◦C·min-1.

Differential scanning calorimetry (DSC) measurements were carried out under high-purity
nitrogen flow in the temperature range of –25–200 ◦C, at a heating rate of 10 ◦C·min-1, using a Q100
TA instrument (New Castle, DE, USA). The onset of the change of heat capacity with temperature is
regarded as the Tg.

The hot-set test was carried out in an oven. The dumbbell-shaped specimen was loaded with
0.14 MPa and the reference length was marked as L0 (L0 = 20 mm). The load specimen was placed in
an oven at 60 ◦C. After 15 minutes, the length between the markers was measured and recorded as L1.
Then the load was released. After 5 minutes of relaxation at 60 ◦C, the specimen continued to relax to
no longer shorten at room temperature. The length between the markers was measured and recorded
as L2. The hot-set elongation and permanent deformation were calculated according to (L1 − L0)/L0 ×

100% and (L2 − L0)/L0 × 100%, respectively.
The mechanical properties were tested at 23 ◦C using a CMT 6104 electronic tensile tester according

to ASTM D368. The cross-head speed was 50 mm·min−1. The data were recorded as the average value
of five parallel determinations. The dumbbell-shaped specimens for the tensile tests were prepared by
hot-pressure molding followed by cutting by a dumbbell cutter.
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3. Results and discussions

3.1. Synthesis

As expected, when PO/CO2/MA/FGE copolymerization was conducted, a unit linked to four
CO2/PO copolymer arms forms once MA and FGE participate in the reaction, and random joining of
these many units produces connected PPC chains (Scheme 1). The copolymerization results indicate
that the gel really forms after introducing MA and FGE (Table 1). The gel contents increase from
11.0%–26.1% with the increase of MA and FGE from 1–4 mol % of PO, respectively, and the yields
of copolymers roughly doubled. The presence of gel contents combined in the IR spectra indicates
that MA and FGE are inserted into the backbone of PPC and the networks are successfully formed in
one pot.
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Scheme 1. The formation of networks in the CO2/propylene oxide (PO) copolymerization in the
presence of maleic anhydride (MA) and furfuryl glycidyl ether (FGE).

The FT-IR and 1H NMR measurements were used to characterize the structure of the copolymers.
As shown in Figures S2 and S3, compared with PPC, the copolymer had new characteristic FT-IR
absorption peaks at 1636 and 757 cm-1 that were assigned to the C=C stretching vibration and C–H
out-of-plane bending vibration in the cis-disubstituted alkene of the bridged-ring units generated
from the D-A reaction, respectively [43,44]. The other peaks at 2986, 1741, 1456, 1381, 1230, 1070,
977, and 788 cm-1 were similar to those of PPC and were ascribed to carbonyl and the open ring of
PO [10,36]. It indicates that the MA and FGE monomers were incorporated into PPC successfully.
The soluble fraction of copolymers had similar 1H NMR peaks with PPC (δ, ppm): 5.00 (s, CH),
4.20–4.27 (m, CH2), and 1.31 (s, CH3) (Figure S4). They were attributed to carbonate linkages formed
by alternating CO2/PO copolymerization. In addition, there exist two peaks at 3.72, 3.57, and 1.18 ppm,
which were assigned to CH, CH2, and CH3 from ether linkages, respectively [42,45]. The absence of
signals of incorporated MA or FGE unit displays that they were almost confined to the gel which is
not soluble in chloroform-d. The number-average molecular weights (Mns) of uncross-linked parts
of the copolymers was slightly higher than that of PPC (Table 1). This further demonstrates that the
uncross-linked parts of the copolymers contained almost no MA and FGE units. At the same time,
there were no 1H NMR signals (C=CH) such as the peak at 7.05 ppm of MA [46] or 6.27 ppm of FGE
(Figure S1). This demonstrates that the above mentioned FT-IR peaks at 1636 and 757 cm-1 were not
from the monomer MA or FGE but instead the incorporated units generated from them.

Table 1. The results of copolymerization.

Sample Feed Molar Ratio of
MA, FGE, and PO

Yield
(g Copolymer/g ZnGA)

Mn
(g/mol) Mw/Mn Gel (%)

PPC 0:0:100 26.5 74503 4.5 0
PPC-MF-1 1:1:100 45.4 87443 3.7 11.0 ± 0.8
PPC-MF-2 2:2:100 47.3 84525 4.3 17.4 ± 1.1
PPC-MF-3 3:3:100 50.8 85705 4.4 24.2 ± 1.4
PPC-MF-4 4:4:100 56.5 99367 4.1 26.1 ± 1.5

3.2. Thermal Properties

The degradation temperatures of the PPC-MFs were significantly improved compared with that
of PPC. As shown in Figure 1, Figure S5 and Table S1, the 5% weight-loss degradation temperature
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(Td,−5%) of PPC-MFs was from 249.7–271.3 ◦C with various feed content of MA and FGE from 1–4
mol% of PO, whereas it is only 217.1 ◦C for PPC. Two maximum weight-loss degradation temperatures
(Td,max) of 239.0 ◦C and 254.2 ◦C arose in the DTG curve of PPC (Figure S5). They generated from chain
scission and unzipping reaction, respectively, based on the decomposition mechanism of PPC that
was explored using thermogravimetric analysis/infrared spectrometry techniques [47]. Accordingly,
the Td,max of copolymers increased from 282.6–288.6 ◦C with an increase in MA and FGE. Combined
with the fact that the gel content also increased gradually, the great improvement in thermostability
was attributed to the formation of cross-links in PPC matrix because the cross-links obviously restricted
the unzipping reaction. On the other hand, the Tgs of the copolymers is lower than that of PPC after
introducing MA and FGE. The former is 11.1–13.4 ◦C and the latter is 25.7 ◦C (Figure 2 and Table S1).
The decrease of Tg can be explained from the following facts. First, in the case of CO2/other monomer
copolymerization, the monomer MA or FGE had a negative influence on the Tg of the copolymer
due to their flexible structure [10,48]. For example, the Tg of P((FGE-co-GME)C) copolymers was
–25–2 ◦C with various FGE contents [40]. On the other hand, cross-linking modification of PPC reported
previously has a slightly positive impact on Tg [13,14,30,35,36]. Moreover, the content of MA/FGE was
low with less than 4 mol% of PO in this case, so the Tgs were less than that of PPC but do not fall below
0 ◦C.
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3.3. Dimensional Stability

It is well known that there is a severe cold-flow phenomenon for PPC because of both its low Tg

and amorphous phase, so that it softens and deforms while being held in hand. Therefore, it is urgent
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to improve the dimensional stability of PPC. This performance was explored by hot-set elongation
tests. As shown in Figure 3 and Table S2, the hot-set elongations and permanent deformations of
PPC-MFs reduced to 62.5% and 6.5%, respectively, with an increase in the feed contents of MA and
FGE. In contrast, it was 310.7% and 157.2% for PPC, and the latter was 2318% more than that of
PPC-MF-4. It was also observed that PPC-MF-1 had more hot-set elongation than PPC. The cross-links
had a positive effect on dimensional stability while the low Tg had a negative effect. When the gel
content was less, the low Tg played a major role, leading to the above phenomenon. It is clear that
the permanent deformation of PPC-MF-4 reduced significantly as the gel content increased further.
The improvement in dimensional stability was also observed intuitively by applying intense heat to the
polymers, such as burning them (Video S1 and S2). Melting droplets emerged during PPC combustion
while no droplets dropped for PPC-MF-4, even though its Tg was lower by almost 50% compared with
that of PPC. These phenomena also prove that the networks formed in the copolymers and that these
networks enabled the copolymers to have more dimensional stability at higher temperatures than PPC.
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3.4. Mechanical Properties

The tensile results are listed in Table 2 and the stress–strain curves are seen in Figure S6.
It was unexpected that the tensile strengths of copolymers decreased compared with that of PPC
and the fracture strengths were greater than the yield strengths, unlike when rigid cross-linkable
third monomers such as pyromellitic dianhydride or bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic
dianhydride were used to prepare cross-linked PPC that exhibits enhanced mechanical strengths
than PPC [35,36]. The flexibility of MA and FGE incorporated into PPC chains significantly reduced
the Tgs of the copolymers (Figure 2 and Table S1), which had a negative effect on the mechanical
strength but a positive effect on the toughness. In this case, the low Tg played the dominant role,
nevertheless the cross-linking helped to enhance mechanical strength. This indicates that the structures
of the cross-linkable third monomers also had a significant effect on the mechanical strength of PPC,
which did not necessarily increase after cross-linking.

Table 2. The tensile results of PPC and PPC-MFs.

Sample Tensile Strength/MPa Elongation at Break/%

PPC 11.0 ± 1.2 559 ± 13
PPC-MF-1 6.6 ± 0.4 513 ± 9
PPC-MF-2 6.8 ± 0.3 429 ± 6
PPC-MF-3 6.8 ± 0.5 334 ± 4
PPC-MF-4 8.3 ± 0.6 273 ± 5
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4. Conclusions

We present a novel one-pot synthesis of PPC with cross-linked networks by introducing two
cross-linkable monomers, MA and FGE, in the PO/CO2 copolymerization. The obtained copolymers are
thermoplastic and displayed good elasticity and thermal and dimensional stability. They have potential
applications as thermoplastic elastomers. Here the D–A reaction was selected as a way for constructing
cross-links networks. We inferred that other reactions will also play the same role. That is, the two
cross-linkable monomers contain reactive groups with each other and epoxy, carboxylic anhydride
or lactone groups which can participate in the PO/CO2 copolymerization. Combined with our
previous research on cross-linked PPC [35,36], the structures of cross-linkable monomers, like rigidity
or flexibility, have an obvious effect on Tg and mechanical strength of copolymers. However, the
cross-links always improve the thermal and dimensional stability whether the cross-linkable monomers
are rigid or flexible.

Supplementary Materials: The following are available online at www.zenodo.org/record/2815729#
.XNq9C6SxWUk, Figure S1: The 1H NMR spectrum of FGE; Figure S2: The FT-IR spectrum of PPC; Figure S3:
The FT-IR spectrum of PPC-MF-3; Figure S4: The 1H NMR spectra of PPC (top) and PPC-MF-3 (below); Figure
S5: The DTG curves for PPC and PPC-MFs; Figure S6: The stress–strain curves for PPC and PPC-MFs; Table S1:
The thermal properties of PPC and PPC-MFs; Table S2: The results of the hot-set elongation tests. Video S1: PPC
combustion; Video S2: PPC-MF-4 combustion.
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