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Abstract: Gambogenic acid (GNA) has been demonstrated with outstanding antitumor activity as
a potential antitumor drug in recent years. However, the low solubility and deficient bioavailability
of GNA seriously hinder its practical application in the clinic area. In this study, a novel amphiphilic
block copolymer, poly (acrylic acid)-b-polycaprolactone (PAA-b-PCL) is prepared and assembled into
pH-responsive polymeric micelles (PMs) as one mold of drug delivery system (DDS) with unique
properties. Relevant investigation on PMs exhibits excellent carrying potential and pH-dependent
release performance for GNA. The drug loading capacity (DLC) and drug loading efficiency (DLE)
for GNA-loaded PMs can be achieved as high as 15.20 ± 0.07% and 83.67 ± 0.49%, respectively.
The in vitro experiments indicate that the GNA releasing time, cytotoxicity, and cellular uptake are
significantly enhanced. Especially, the peak concentration (Cmax) and area under the curve (AUC) are
promoted sharply in the GNA-loaded PMs concentration-time curve. This study not only provides
a novel way to widen the application of anticancer GNA in the future, but also extends the potential
of stimuli-responsive copolymers to biomedical applications.

Keywords: amphiphilic block copolymer; gambogenic acid; pH-sensitive

1. Introduction

Gambogenic acid (GNA), as a kind of weakly acidic ingredient, extracted from Chinese traditional
medicine Gamboge, has been proved with outstanding inhibition on proliferation and growth of
various tumor cell [1–3]. Compared with other basic anticancer drugs (doxorubicin, paclitaxel,
Camptothecin, et al.) in the clinic, GNA can be much easier to cross the tumor cell membrane in
the form of molecules [4]. However, great limits have been found in its potential applications, such
as inflammation to blood vessel, low solubility, deficient bioavailability, or property of toxicity [5,6].
To conquer these problems mentioned above, much effort has been devoted to explore effective carriers,
such as PEGylated Niosomes [7], solid lipid nanoparticles [8], and nanostructured lipid carriers [9].
Nevertheless, the drug loading efficiency (DLE) and drug loading capacity (DLC) of nanocarriers
obtained through those strategies are still limited.

Polymer micelles (PMs), composed of an outer hydrophilic shell and inner lipophilic core, have
appealed arousing attention due to its unique performances when performed as nanocarriers, for
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example, improved drug encapsulation ability and lipophilic drug solubility exceeding other molds
of nanocarriers [10–13]. Jiang et al. reported that supramolecular copolymer micelles composed of
poly(DL-lactide) as hydrophobic core and 7-armed star poly(2-methyl-2-oxazoline) as hydrophilic shell
could be used as carriers of cabazitaxel with excellent drug loading content (17.5%) [14]. However,
the therapeutic efficacy of traditional micelles was queried because of the laggard biodegradation of
the nanoparticles, extending the time between the encapsulated drugs being released from micelles
and arriving at the tumor site. Recently, stimuli-responsive PMs have exhibited great promise on the
enhancing efficiency of drug delivery [15,16]. For instance, Chen et al. developed polymer micelles
by PEG and poly (L-lactide) with remarkable pH-dependent association/dissociation, which had
been successfully employed as carriers for doxorubicin (DOX) with significantly improved antitumor
efficacy [17]. Ji et al. constructed polymeric prodrug micelles with acid and near-infrared (NIR)
light dual-responsive properties through the strategy of introducing photo-sensitizer IR-780 in the
pH-responsive polymer micelles for the effective drug delivery system, showing fast DOX release in
acid condition and effective hyperthermia effect when exposed to NIR laser [18]. Wang et al. reported
intelligent PMs system of Mpeg-P (TPE-co-AEMA) copolymer with pH and redox dual-responsive
properties for bioimaging and smart drug release behaviors, such as high loading and enhanced
efficacy of drugs [19]. Among the various stimuli, the pH-stimulus is relative popular due to its
broad application in anticancer drugs delivery [20–25]. There are numerous differences between
tumor tissues and the normal, such as pH varying in a wide range from about 7.4 (physiological),
6.8 (extracellular in tumor tissues), 5.5–6.0 (endosomes), to 4.5–5.0 (lysosomes). Therefore, exploration
of novel pH-responsive PMs with controlled drug release behavior for GNA has a very important
significance and would meanwhile exhibit great promises for effective cancer therapy.

In recent years, bio-adhesive poly (acrylic acid) (PAA) and poly (methacrylic acid) (PMAA) have
been demonstrated to be the representative pH-sensitive segments performed in stimuli-responsive
systems [26]. For example, Wang et al. reported a smart nanocarrier based on a poly (acrylic
acid-co-spiropyran methacrylate) nanogel for delivery anticancer drugs, which could provide
chemotherapy and fluorescence imaging to cancer cells [27]. Liu et al. developed poly (methacrylic
acid)/poly (N-isopropylacrylamide) (PMAA/PNIPAM) to form independent pH and temperature
dual-stimuli responsive microgels, which showed excellent drug-loading efficiency and smart controlled
release performance [28]. As a member of polyesters, polycaprolactone (PCL) possessing distinctive
advantages of biodegradable and miscible properties had been found to be significant in the medicinal
applications and would be an outstanding candidate as the hydrophobic block in the amphiphilic
polymer [29]. Hence, the functional amphiphilic block copolymers with PAA and PCL segments used
for medical application is highly desired.

In this study, we have developed a novel amphiphilic block copolymer poly (acrylic
acid)-b-polycaprolactone (PAA-b-PCL) synthesized via successive reactions of reversible
addition-fragmentation chain transfer (RAFT), ring-opening polymerization (ROP) and hydrolytic
reaction. The target copolymer could be self-assembled into a pH-sensitive nanoparticle for the
delivery of anticancer drug GNA (Scheme 1). On this basis, drug-loading, in vitro release, cytotoxicity,
intracellular uptake, and pharmacokinetic properties from GNA-loaded PAA-b-PCL micelles were
investigated systematically for evaluation. Noteworthy is that this study was the first report on the
GNA delivery system based on pH-responsive copolymers, revealing great potential in smart Chinese
Medicine delivery systems.
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Scheme 1. Schematic illustration of the fabrication of pH-sensitive Polymer Micelles and GNA release 
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2. Materials and Methods

2.1. Materials

The generation of GNA was obtained by extraction and isolation from the gamboge’s resin
(98%). ε-Caprolactone (CL, 99%) was treated with distillation under reduced vacuum. Tert-butyl
acrylate (tBA, 98%, Alfa Aesar) was purified through a basic alumina column. Stannous octoate
(Sn (Oct) 2, 97%) was used as received. 2,2′-azobis (isobutyronitrile) (AIBN) was recrystallized
twice from ethanol. Prop-2-ynyl-3-(5-cyano-5-phenylthiocarbonylsulfanyl) pentanoyloxy-2-(2,2-dihyd
-roxymethyl)-propionyloxymethyl-2-methylpropanoate (PCBP) was prepared and purified in reference
to literature procedures [30].

2.2. Preparation of PAA-b-PCL

First, tBA (3.67 g, 28.6 mmol), PBCP (0.200 g, 0.286 mmol) and AIBN (0.009 g, 0.057 mmol)
were dissolved in toluene (9.5 mL). The contents were flushed with nitrogen for 20 min followed by
polymerization at 60 ◦C for 20 h. The solution was cooled down and precipitated into the mixed solution
of methanol and deionized water for three times. 2.55 g of PtBA (64.1% conversion) was obtained after
vacuum drying. Gel permeation chromatography (GPC) was carried out to estimate apparent molecular
weight (Mn,GPC) and polydispersity (PDI), 1H NMR was performed to determine number-average
molecular weight (Mn,NMR), the results of GPC and 1H NMR analysis were Mn,GPC = 9880 g mol−1 and
PDI = 1.12. Mn,NMR = 11100 g mol−1. And PtBA:1H NMR (CDCl3): δ7.92, 7.57, 7.40 (m, PhH), 4.74 (s,
2H, CH2O), 2.3–2.8 (m, 5H, CH and CH2CH2COO), 2.23 (m, CH2CH of PtBA), 0.6–2.0 (m, CH, CH2 and
CH3 resulting from CTA, CH3 of PtBA). Second, the prepared PtBA (1.406 g, 0.200 mmol), CL (1.136 g,
10.0 mmol) and Sn (Oct)2 (0.041 g, 0.100 mmol) were also dissolved in toluene and total volume was
3.3 mL. With little change, the procedures were performed under nitrogen. The reactor was degassed
by three freeze-pump-thaw cycles to remove the residual gas within reaction solution and then heated
to 110 ◦C for polymerization. After 20 h, the prepared polymer solution was precipitation into hexane
and 1.86 g of PtBA-b-PCL diblock copolymer with 39.6% conversion was obtained. In this part, GPC
and 1H NMR analyses: Mn,GPC = 13,700 g mol−1, PDI = 1.20, Mn,NMR = 26,100 g mol−1. PtBA-b-PCL:
1H NMR (CDCl3): δ 7.92, 7.57, 7.40 (m, PhH), 4.74 (s, 2H, CH2O), 4.06 (t, CH2O of PCL), 2.31(t, CH2CO
of PCL), 2.23 (m, CH2CH of PtBA), 0.6–2.0 (m, CH, CH2 and CH3 resulting from CTA, CH2 of PCL and
CH2, CH3 of PtBA). Last, the hydrolysis of PtBA-b-PCL copolymer (0.50 g) was conducted in 15 mL
of dichloromethane and trifluoroacetic acid (0.25 mL) were added. The reaction was maintained in
room temperature for 40 h. After concentration, precipitation, and drying, 0.40 g PAA-b-PCL diblock
copolymer was isolated.
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2.3. Formation of Blank and GNA-Loaded PMs

1.0 mL of dimethyl-sulphoxide (DMSO) containing 21.0 mg PAA-b-PCL was added dropwise into
of distilled water (14.0 mL) followed with vigorous stirring. 3 h later, the mixture was transferred into
a dialysis bag (MWCO 3500) to remove the residual DMSO and complete blank PMs could be obtained
after 24 h. The diameter of blank PMs was analyzed by dynamic light scattering (DLS, Zetasizer
Nano-ZS, Malvern Panalytical, Malvern, England) and transmission electron microscope (TEM, Hitachi
H-600, Hitachi, Japan) was applied to investigate the morphology. The preparation for GNA-loaded
PMs was similar with that of blank PMs, but the only difference was that DMSO (1.0 mL) was needed.
The concentration of GNA was measured by UV-vis spectrophotometry (UV-2550, Shimadzu, Japan)
with the measuring wavelength at 360 nm. On the basis of UV-vis analysis, the DLC and DLE of
micelles could be determined through the following equations:

DLC (wt.%) = mloading drug/mtotal amoumt of micelles × 100% (1)

DLE (wt.%) = mloading drug/mdrug in feed × 100% (2)

2.4. pH-Triggered Reassembly of PMs and GNA-Loaded PMs Releasing Behavior

The reassembled behavior of PMs in response to pH was monitored by DLS and TEM, respectively.
A final solution with pH 5.3 was achieved by direct dripping of 0.1 M HCl into 2.0 mL of blank and
GNA-loaded PMs solution, followed by the stirring the solution at 37 ◦C. GNA-loaded PMs were
subjected to show the GNA releasing behavior in vitro. Typically, free-GNA and GNA-loaded PMs
solution (5 mL) were separately filled into a dialysis bag (MWCO 8000–14,000) and placed into 40 mL
of prepared media consisted of phosphate buffered saline (PBS, pH = 7.2) and 1% (v/v) Tween 80 at
37 ◦C. 200 µL of materials were sampled and same volume of fresh medias were refilled in various
time points (2, 4, 6, 8, 12, and 24 h). Then, the samples were achieved through centrifugation at
speed of 12,000 rpm/min and measured by high performance liquid chromatography (HPLC). Finally,
the cumulative release profiles could be plotted.

2.5. Cell Viability Assay (MTT)

HepG2, with a density of 3 × 104 cells for each well, was seeded at 96-well plates and cultivated
in 100 µL of fresh DMEM medium. The cell viability was detected by the MTT assay. An atmosphere
with 37 ◦C and 5% CO2 were provided to keep cells growth. 24 h later, the cells containing
varied concentrations of free-GNA, blank and GNA-loaded PMs were exposed to 100 µL of fresh
mediawhich for 24 h. Then, each well was added with 20 µL of 3-(4, 5-dimethylthiazol-yl)-2 and
5-diphenyltetrazolium bromide (MTT) solution (5 mg/mL) and stained for 4 h. 150 µL of DMSO was
employed to remove the medium and dissolved the formazan. At last, the cell viability determined by
the optical density (OD) was measured at 490 nm by a multilabel counter.

2.6. Cellular Uptake

6-well cell culture plates were seeded with HepG2 cells (3 × 105 cells/well) and then incubated
in 1 mL of medium at 37 ◦C under atmospheres of 5% CO2, respectively. After being incubated for
48 h, the medium was removed and an equal volume of flesh medium (containing 10 µg free-GNA or
GNA-loaded PMs) was added to co-culture with HepG2 cells for 5, 15, 30, 45, 60, 120, and 240 min,
respectively. At the predetermined time point, the drug-contained medium was removed and washed
with 4 ◦C PBS directly for three times. Subsequently, the samples were lysed by cell lysis solution and
then the cell lysate granted was stored under refrigeration at −20 ◦C. The intra-cellular GNA contents
were determined by HPLC.
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2.7. In Vivo Studies of GNA-Loaded PMs

Two randomized groups of Sprague-dawley (SD) rats were designed, of which six healthy male
SD rats (Laboratory Animal Center of Anhui Medical University, Hefei, China) weighing from 200 to
220 g were included. GNA and GNA-loaded PMs solution with certain concentration (equivalent to
a 1.5 mg/Kg GNA dose) were administrated to rats via the lateral tail vein. Then the blood was collected
from orbital plexus at prespecified time points (3, 5, 10, 30, 45, 60, 120, 240 min). The pharmacokinetic
parameters of GNA were determined by DAS 2.0. This animal experiment has followed the National
Institutes of Health guide for the care and use of Laboratory animals.

2.8. Statistical Analysis

All results mentioned in this study were represented as mean ± S.D. Additionally, SPSS 17.0 was
carried out for statistical analyses and t-test or ANOVA analysis were included. When the value of *p
was lower than 0.05, the level of significance could be accepted.

2.9. Characterization

The TEM images were carried out on a Hitachi H-600 transmission electron microscope. The Mn,GPC

were investigated on a Waters 150-C GPC (bead size of 10 µm in the ultrastyragel columns, THF as
eluent at a flow rate of 1.0 mL min−1) at 35 ◦C. The samples were calibrated with the standard samples.
The 1H NMR analyses were conducted on a Varian spectrometer (400 MHz, Varian, Walnut Creek, CA,
USA) at 25 ◦C using CDCl3 as a solvent. The DLS analyses were performed on a Zetasizer Nano-ZS
(Malvern Instruments, Malvern, England) equipped with He-Ne laser (633 nm) using back-scattering
detection. The FT-IR spectra were measured on a Perkin-Elmer 2000 spectrometer using KBr discs.

3. Results and Discussion

3.1. Synthesis and Characterization of PAA-b-PCL

A multifunctional agent PCBP with alkyne, bromide, dithiobenzoate and hydroxyl groups
was employed to synthesize PtBA-b-PCL diblock copolymer. Alkyne and bromide functionalized
PtBA-b-PCL diblock copolymer could be achieved by successive RAFT and ROP polymerization
(Figure 1). As shown in Table 1, PtBA with well-controlled molecular weight and relatively low
PDI was obtained with PCBP as a functional initiator in the RAFT polymerization. In the 1H NMR
spectrum of PtBA, 7.92, 7.57, 7.40 (PhH) were the characteristic resonance signals of PCBP initiator
and 2.23 (CH2CH of PtBA) and 1.44 ppm (CH3 of PtBA) were the resonance signals of PtBA segment
(Figure S1). By comparing integration areas at 2.23 (CH2CH) and 4.74 ppm (CH2O), the Mn,NMR was
determined to be 11,100 g mol−1 and Mn,GPC and PDI were estimated to be 9880 g mol−1 and 1.12 by
GPC analysis. To obtain a PtBA-b-PCL diblock copolymer, ROP polymerization of CL was mediated
by introducing PtBA (as a macro CTA). In 1H NMR spectra (Figure 2), 4.06 (CH2O) and 2.31 ppm
(CH2CO) were the typical resonance signals of the PCL block and 2.23 ppm (CH2CH) were represent
the PtBA block. Besides, the Mn,NMR values were determined by comparing integration areas of
characteristic protons of CH2O (4.74 ppm) and CH2CO (2.31 ppm for PCL). The result were shown
that there were only little difference between Mn,NMR and Mn,GPC values and the PDI indices were
relatively low, with GPC traces wholly shifted to the higher molecular weight side (Figure S2), which
reveals that the chain extension polymerization was performed with high efficiency. To obtain the
targeted PAA-b-PCL diblock copolymer, a selective hydrolysis of the PtBA segment was performed in
dichloromethane. Additionally, the IR spectrum of PAA-b-PCL as shown in Figure S3, the absorption
bands of various segments appeared at 1783 (C = O of PAA) and 1729 cm−1(C = O of PCL). To sum up,
the results of GPC, 1H NMR and FT-IR were employed to confirm that a PAA-b-PCL block copolymer
with well-controlled chemical compositions was successfully synthesized and the selective hydrolysis
could efficiently achieve.
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Figure 1. Synthetic Scheme of pH responsive diblock copolymer PAA-b-PCL.

Table 1. Results for synthesis of PtBA and PtBA-b-PCL diblock copolymer a.

Run Polymer I M Dp0 C b Mn,th
c Mn,gpc

d Pdi d Mn,nmr (dppm) e

1 PtBA PCBP tBA 100 0.641 8920 9880 1.12 11,100 (81)
2 PtBA-b-PCL PtBA CL 50 0.480 10,720 13,700 1.20 26,100 (132)

a Reaction conditions: [tBA]0:[PCBP]0:[AIBN]0 = 100:1:0.2, [M]0 = 3.0 mol L−1 (run 1); [CL]0:[PtBA]0:[Sn (Oct)2]0
= 50:1:0.5, [M]0 = 1.0 mol L−1 (run 2). b Monomer conversion (C, runs 1–2) determined by gravimetry. c

Theoretically calculated molecular weight. d Number-average molecular weight estimated by GPC (Mn,GPC, runs
1–2). e Number-average molecular weight determined by 1H NMR analysis.
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3.2. Formation and Stimuli-Triggered Morphological Transition of PMs

To show the impact exerted by pH on polymer aggregate behaviors, amphiphilic block copolymer
PCL-b-PAA was selected as a standard sample. The pH-dependent size variations of PCL-b-PAA
aggregates at different buffer solution were investigated by DLS, in which hydrodynamic diameter
(Dh), the highest intensity of peak size (Dpeak), distribution of particle size (PD) could be easily
observed. Merely the unimodal distribution of the micelles was indicated in DLS plots (Figure 3) and
it was attained that the particle parameters (Dh, Dpeak, PD) of these aggregates were 190 nm, 208 nm,
and 0.031 (blank PMs in pH 7.2), 232 nm, 244 nm and 0.083 (GNA-loaded PMs in pH 7.2), 442 nm,
484 nm, and 0.177 (blank PMs in pH 5.3) and 684 nm, 706 nm and 0.257 (GNA-loaded PMs in pH 5.3).
Corresponding TEM images revealed that PCL-b-PAA aggregates (pH 7.2, Figure 4a) and GNA-loaded
PMs (pH 7.2, Figure 4c) were multicompartment micelles and spherical micelles, respectively. And the
results were showed that the hydrodynamic diameters of blank PMs estimated by DLS and TEM were
completely different (Dh,TEM ≈ 90nm and Dh,DLS = 190 nm). As is well known, a dried nanostructure
would be shrunk significantly. The presence of hydrogen-bonding interactions among PCL and PAA
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and the bulky building blocks tended to form co-aggregates, while the filling of polymer chains was
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Figure 3. Influence of pH on DLS plots of PCL-b-PAA aggregates (c = 1.4 mg mL−1) (a and b) and
treated with HCl (0.1 mol L−1) for 2 h (b and d).
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Figure 4. TEM images of PCL-b-PAA aggregates (c = 1.4 mg mL−1) in different environment: (a) Blank
PMs at neutral environment; (b) blank PMs at weakly acid environment; (c) GNA-loaded PMs at
neutral environment; and (d) GNA-loaded PMs at weakly acid environment.

Based on the pH-sensitive behavior of PAA-b-PCL, pH-triggered morphological transition of blank
or GNA-loaded aggregates were preliminarily investigated. With buffer solution changing from neutral
to weakly acidic, the morphology of PAA-b-PCL evolved from multicompartment micelles to spherical
vesicle (Figure 4a,b), which explained by the synergistic effect of increased hydrophobicity of PAA
chains at a lower pH and various strength and proportion of inter-and intra-molecular interactions, such
as hydrophobic and hydrogen-bonding interactions. With the pH of buffer solution being decreased
to 5.3, significant increases on size and size distribution were found for the GNA-loaded aggregates
(Figure 3c,d). Further destruction of the micelle core forces the micelle to be dissociated and aggregated
into a larger formation (Figure 4d) [32].
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3.3. DLC, DLE and In Vitro Releasing Behavior

The DLE of GNA-loaded PMs was 83.67 ± 0.49% and the DLC was achieved to 15.20 ± 0.07%,
which was the highest among the nanocarrier for GNA reported before [7–9]. Then the release kinetics
of GNA encapsulated by the polymeric particles was measured by a dialysis method (37 ◦C, pH 7.2).
As shown in Figure 5a, free-GNA were released about 77.02% within 12 h and then a plateau was
reached. Conversely, the GNA released from micelle systems was found to be much slower, only16.64%
of GNA were released within the first 12 h, which could be concluded that the speed of GNA releasing
in PMs was significantly lower than that of free-GNA (Figure 5b). These results might originate from
the hydrophobic GNA being preferred to retain in the micelles. Hence, it could be inferred that the
GNA-loaded PMs could keep a prominent stability in the course of systematic circulation.
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Figure 5. In vitro release studies of GNA from PMs. (a) GNA cumulative release in PBS at pH 7.4;
(b) total release of different GNA formulation after 24 h. * p < 0.05. (Mean ± S.D., n = 3).

3.4. Cytotoxicity and In Vitro Cellular Uptake Assays

Cytotoxicity of PAA-b-PCL and different GNA formulation was estimated through adopting
MTT assay. Previous reports have proved that GNA could efficiently inhibit the growth of cell tumor,
such as human hepatoma cell. In this study, HepG2 cells as the most common cells in the study of
anti-cancer activity were employed and treated with GNA in the research. As shown in Figure 6,
after cultured with the blank micelles in the concentrations ranging from 23.33 to 116.67 µg/mL,
cell viabilities of HepG2 still remained at 95%, indicating that PCL-b-PAA was almost no-toxicity
at this dose. Therefore, PCL-b-PAA could be a safe delivery tool with prominent biocompatibility.
Not surprisingly, the cytotoxicity was improved with the amount of GNA increasing, both the free and
loaded in PMs (Figure 6). And the half-maximal inhibitory concentration (IC50) values of GNA-loaded
PMs and the free GNA could be seen in Table 2, the GNA-loaded PMs was lower, which might be due
to the increased cellular uptake of GNA by HepG2 [33,34]. This speculation could be confirmed by the
cell viability change. When the amount of GNA was more than 10 µg mL-1, there were no obvious
cytotoxicity change in GNA-loaded PMs with increasing dose, but the free GNA could further decline
until the final concentration reached 15 µg mL-1. Those results of cytotoxicity tests were indicated
that the encapsulation of GNA into PCL-b-PAA micelles could increase the cytotoxicity of GNA and
the same therapeutic effect would be achieved with the reduced dosage of GNA-loaded PMs when it
comes to tumor treatment.
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Figure 6. Cell viability of HepG2 cells incubated with GNA, GNA-loaded PMs and blank PMs at
various concentrations at 37 ◦C for 24 h. Error bars denote standard deviations from six parallel trials
* p < 0.05, ** p < 0.01.

Table 2. IC50 (µg/mL) of HepG2 incubated with GNA solution and GNA-loaded PMs (n = 6).

Formulation GNA Solution GNA-Loaded PMs

IC50 (µg/mL) 7.029 5.040

To evaluate GNA-loaded PMs and the free PMs further, in vitro cellular uptake assays were
carried out and the efficiency of intracellular drug uptake was estimated through HPLC (Figure 7).
The maximum amounts of GNA in cells incubated with GNA-loaded PMs and free-GNA were
achieved at the same time (120 min) and the GNA-loaded PMs was much higher than that of free-GNA
(24.27 versus 14.66 µg mL-1). It could be concluded that the intracellular uptake was increased when
GNA was encapsulated in PMs and the GNA-loaded PMs with higher cytotoxicity could be also well
interpreted. Previous literatures have proved that PMs have similar structures with the cell membranes,
which would help PMs to pass through cell membranes and promote intracellular accumulation of
drugs [35–37]. Besides, there were many other factors to promote the cellular uptake efficiency of PMs.
For instance, micelles with size over 20 nm were internalized via multiple pinocytosis pathways [38].
As time went by, the concentration of GNA in the HepG2 were decreased after 2 h, which could be
explained by the metabolized and eliminated GNA in the cell being higher than absorbed.
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Intracellular GNA was assayed by HPLC (Mean ± S.D., n = 3).
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3.5. Pharmacokinetic Study

The quality of GNA-loaded PMs was furtherly evaluated by pharmacokinetic study. Relative
pharmacokinetic parameters were obtained through a non-compartment model and shown in Table 3,
the GNA concentration in plasma were presented by mean± S.D. and illustrated in Figure 8, respectively.
As indicated for overall time points, the GNA plasma concentrations outstripped those performed
with GNA solution in rats performed with GNA-loaded PMs (p < 0.05). Bioavailability, an indicator
used to evaluate the clinical potential of drugs, could be associated with the area under the curve
(AUC). The results were shown that AUC0→t values of GNA-loaded PMs were 3.94 times than that of
free-GNA, therefore PMs could promote the bioavailability sharply. In addition, the peak concentration
(Cmax) value of GNA-loaded PMs was 2.75 times higher than GNA, which could be attributed to
that free-GNA without protection was fast metabolized after the drug injected into rats for 3 min
(the first take blood point). Not surprisingly, the MRT of GNA-loaded PMs was declined slightly
with no statistically marked, which could be inferred that micelles were absorbed into the blood after
performance [39]. Briefly, the result of pharmacokinetic study proved that the PMs could contribute to
the circulation of GNA in body. The results of this part could be clearly observed that the time GNA
existed in the plasma was much shorter than that of drug releasing. The possible mechanisms for
the difference between the vitro and vivo could be that: (1) The steady structure of micelles might be
destroyed by the numerous ingredients in the plasma; (2) the blood vessels could be passed through
micelles, but dialysis bags cannot; and (3) the area of blood vessels was much larger than that of the
dialysis bags.

Table 3. Pharmacokinetic parameters after performance of GNA formulations for 1.5 mg/Kg dose as in
rats (n = 6).

Pharmacokinetic Parameters
Formulations

GNA Solution GNA-Loaded PMs

Cmax (mg L−1) 5.77 ± 2.26 15.89 ± 6.86 *
AUC(0-t) (mg L−1

·min−1) 97.64 ± 20.50 254.85 ± 67.31 *
AUC(0-∞) (mg L−1

·min−1) 116.05 ± 21.59 287.53 ± 98.80 *
MRT(0-t) (min) 45.49 ± 8.30 33.49 ± 12.28
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4. Conclusions

In summary, a novel amphiphilic block copolymer poly (acrylic acid)-b-polycaprolactone
(PAA-b-PCL) with excellent pH-triggered morphological transition performance has been successfully
synthesized through successive reactions of RAFT, ROP, and hydrolytic reaction. The target copolymer
has been found with well-controllable chemical composition and a low polydispersity from the analyses
of GPC, 1H NMR, and FT-IR. The segment of PAA as the hydrophilic shell in the micelle is the key to
its pH-responsive performance and the segment of PCL as a biodegradable block plays a significant
role on its biocompatibility. Furthermore, the nanoparticles self-assembled by the copolymer delivers
the highest DLE and DLC value (83.67 ± 0.49% and 15.20 ± 0.07%) and the slow and stable releasing
behavior (16.64% within the first 12 h) when performed as the nanocarrier for GNA. Our preliminary
experiments indicated that the encapsulation by micelles could enhance both the cytotoxicity and the
circulation of GNA in the body, providing great potential in smart Chinese Medicine delivery systems
for tumor treatment further.
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