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Abstract: Lithium-sulfur batteries have received intensive attention, due to their high specific capacity,
but the shuttle effect of soluble polysulfide results in a decrease in capacity. In response to this issue,
we develop a novel tannic acid and Au nanoparticle functionalized separator. The tannic acid and
gold nanoparticles were modified onto commercial polypropylene separator through a two-step
solution process. Due to a large number of phenolic hydroxyl groups contained in the modified layer
and the strong polarity of the gold nanoparticles, the soluble polysulfide generated during battery
cycling is well stabilized on the cathode side, slowing down the capacity fade brought by the shuttle
effect. In addition, the modification effectively improves the electrolyte affinity of the separator. As a
result of these benefits, the novel separator exhibits improved battery performance compared to the
pristine polypropylene separator.
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1. Introduction

The ever-increasing demand for a secondary battery with high energy density has significantly
promoted the development of Lithium-Sulfur (Li-S) battery. Through electrode and/or electrolyte
engineering, Li-S battery can deliver a much higher discharge capacity in the initial charge/discharge
cycles compared to that for a typical lithium ion battery [1–3]. However, the cyclability of a Li-S battery
has yet to be improved to meet the performance requirements posed by practical applications, such as
electric vehicles. The root for the poor cyclability of a Li-S battery is the shuttle of soluble polysulfides
(LiPSs) between the electrodes, which not only causes a rapid loss of active S, but also accelerates
the failure of the battery [4]. Thus, the key to further enhance the performance of a Li-S battery is to
prevent the shuttling of LiPSs [5].

Functionalization of the separator with a barrier layer against soluble LiPSs is a cost-effective
approach toward high-performance Li-S battery [6–11]. The functionalized barrier layer could act
like a sieve that prevents the transport of soluble LiPSs through the membrane physically [12,13].
When using a conductive matrix for such functionalization, the functionalized barrier layer could
further enhance the battery performance by acting as a secondary current collector [14,15]. Despite
the effectiveness of such functionalization, it is also recognized that only physical blocking of soluble
LiPSs might not be sufficient to secure a complete suppression of shuttling. The chemically active
component is suggested to incorporate into the functionalization layer to further restrict the shuttling
of soluble LiPSs [16]. These active components provide strong anchoring sites for stabilization of
soluble LiPSs [17,18]. In addition, they also propel the conversion of soluble LiPSs, which further
improves battery performance [19–21]. Therefore, a composite functionalization layer that offers both
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physical and chemical interactions with soluble LiPSs is favorable for separator modification of a Li-S
battery [22–26].

Tannic acid (TA) is a widely-existing natural polyphenol with both high surface affinity and redox
ability [27–29]. The high surface affinity of TA can be used for the modification of PP separator to
endow the separator with physical barrier properties. The redox property of TA can be exploited
to generate sulphiphilic nanoparticles on the TA coating to further block soluble LiPSs. Inspired by
these merits of TA, we develop a bioinspired functionalization of polypropylene (PP) separator, which
results in a modified separator with a tannic acid/Au functionalization layer. The composite separator
effectively suppresses LiPSs shuttling and enhances the electrolyte affinity of the PP substrate, thus
improving the performance.

2. Materials and Methods

To fabricate the functionalized separator, commercial PP separator (Celgard 2400, thickness:
25 µm; pore size: 0.043 µm; porosity: 41%) was pretreated by immersing in methanol solution for
30 min, followed by washing and subsequent incubation in Tris-HCl (FEIYANG BIO, Xi’an, China)
buffer solution (pH 8.5) of tannic acid (5 mg·mL−1) (Alfa Aesar, Lancashire, England). The solution
was stirred gently at room temperature for 24 h to form a uniform coating layer. The residual tannic
acid was washed away with deionized water. Finally, the separator was dried in a vacuum oven at
40 ◦C for 24 h to obtain a tannic acid-modified PP separator (abbreviated as PP-TA in the following).
In the second step, the PP-TA separator was directly immersed in an aqueous solution of HAuCl4
(0.2 mg·mL−1) (Innochem, Beijing, China) and stirred slowly for 24 h. Finally, the modified separator
was rinsed with deionized water and dried at 40 ◦C for 24 h. The mass of the coating layer, determined
by weighting, was ~0.10 mg·cm−2.

The surface characteristic functional groups of the modified separator were confirmed by
Fourier transformed infrared spectroscopy (FT-IR, Nicolet AVATAR 370) with a resolution of 4 cm−1.
The TGA measurement was conducted with Thermogravimetric analysis equipment (SDT Q600).
The measurement was conducted from room temperature to 800 ◦C in the air, at a ramping rate of
10 ◦C per minute. The wettability of the separators was tested by a contact angle apparatus. A water
droplet of 1 µL was used for each measurement. The surface of the separator was subjected to X-ray a
Bruker D8 Advance diffractometer (D/MAX-RB RU-200B, Rigaku) with a Cu Kα radiation (λ=1.5406Å)
to determine the crystal structure of the modified layer (scan rate: 10◦ min−1). The surface morphology
of the modified separator was characterized by electron microscopy (SEM) in SE2 mode with an
accelerating voltage of 10 kV.

The performance of lithium-sulfur battery was characterized by CR-2016 type cells. To prepare
the sulfur cathode, pure sulfur, Super P, and LA133 binder were mixed in a ratio of 6:3:1, and an
appropriate amount of deionized water was added as a solvent. Then, the mixed slurry was pasted
on the aluminum foil and dried at 50 ◦C for 24 h. Finally, the cathode was cut into 10 mm electrode
pieces. The loading of the active material of the electrode sheet was controlled to be 1.0–1.5 mg·cm−2.
The electrolyte used for the cell assembling was 1 M LiTFSI in 1:1 (v/v) 1,2-dimethoxyethane (DME) and
1,3-dioxacyclopentane (DOL) with 0.1 M LiNO3 as additive. The electrolyte content of the battery was
controlled to be 25 µL·mg−1 sulfur. For the ionic conductivity test, stainless steel/electrolyte-soaked
separator/stainless steel cell was assembled, and the measurement was conducted on an Autolab (PG
302N) workstation (frequency range: 105–10−2 Hz, amplitude: 5 mV). To test the electrochemical
stability of the separator, a “lithium foil/separator/stainless steel” cell was first assembled and linear
sweep voltammetry (LSV) was then collected using the CHI 660D electrochemical workstation. The test
voltage window was 1-6 V and the scan rate was set to be 5 mV s−1. The cycle performance of Li-S
batteries was characterized by LAND battery test system (Wuhan, China) and the voltage window was
1.5–2.8 V (current density was 0.2 C (1 C = 1,675 mA·g−1)). The cyclic voltammetry test (CV) is consistent
with the battery cycle performance test conditions with a sweep rate of 0.1 mV/s. Electrochemical
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impedance spectroscopy (EIS) spectra of the batteries were measured on the Autolab workstation from
105 to 10−2 Hz with an amplitude of 5 mV.

3. Results

The tannic acid and Au nanoparticles functionalized PP separator (PP-TA/Au) was prepared with
a two-step process. In the first step, TA was modified onto the PP substrate through a simple solution
process without any pretreatment of the separator. Normally, binder-free surface functionalization of a
PP separator requires a pretreatment process to introduce active sites for subsequent functionalization,
due to the inert nature of PP. Benefiting from the high surface affinity brought by the rich phenol
groups, TA can be readily introduced onto the PP separator under a mild condition. In the second step,
TA functionalized PP was immersed in a HAuCl4 bath for 24 h, resulting in a PP-TA/Au separator.
Since the pH value of HAuCl4 bath influences the formation of Au nanoparticles on the PP substrate,
HAuCl4 solutions with different pH values were used and compared. As shown in Figure 1, little Au
nanoparticles are formed on PP at alkaline conditions. When the pH value was lowered to 4, dense
Au nanoparticles with small sizes were generated on PP without blocking of the pore structures of
PP. Thus, we expect that a pH of 4 was the optimal pH and this pH value was used for following
investigations. The color change of the separator after each modification step is shown in Figure 2A.
The mass loading of TA and Au nanoparticles on PP-TA/Au, determined by weighing the separator after
each modification step, was calculated to be 0.06 and 0.10 mg cm−2, respectively. Thermogravimetry
characterizations show that PP separator experienced a rapid weight loss in the air, until its complete
decomposition at 500–600 ◦C (Figure 2B). For PP-TA/Au separator, a residual weight of ~5.4% is
retained after heating up to 800 ◦C, which indicates that the weight percentage of Au nanoparticle in
the composite separator is ~5.4%.
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Figure 2. (A) picture of pristine polypropylene (PP) separator (left), PP-TA separator (middle) and
PP-TA/Au separator (right). (B) TG curve of PP separator, PP-TA separator and PP-TA/Au separator.

To prove the successful modification of TA on PP in the first step, FTIR measurements were
conducted. A broad peak assigned to hydroxyl groups were present on the spectra of TA-PP (Figure 3A),
suggesting successful modification of TA onto the PP separator. The presence of Au nanoparticles on
the PP-TA/Au was verified with XRD analysis. Characteristic peaks assigned to Au (111), (200), (220)
and (311) peak (at 2θ = 38.2◦, 44.4◦, 64.6◦ and 77.5◦, respectively) were found in the XRD spectra of
PP-TA/Au (Figure 3B). [30] The presence of these nanoparticles clearly demonstrates the reductive
formation of Au nanoparticles on PP separator. Furthermore, XPS measurements also confirmed the
existence of Au on the modified separator. The surface Au concentration determined from XPS was
3.14 at%, close to the result from the TG measurements.
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The effect of functionalization on the separator’s electrolyte affinity was evaluated with a water
contact angle (WCA) measurement (Figure 4A). The pristine PP separator had a high WCA of 113◦.
After TA modification, the separator turned into a hydrophilic one and the WCA was reduced to 60◦.
When Au nanoparticles are further decorated onto PP-TA, the WCA of the separator lowered down to
32◦. The high hydrophilicity of PP-TA/Au suggests that the separator had a high electrolyte affinity,
which is important for an improved electrode-electrolyte interface. The ionic conductivity of a separator
is crucial for its battery performance. Hence, the conductivity of the separators is characterized by
a stainless steel/electrolyte saturated separator/stainless steel cell (Figure 4B). The measured ionic
conductivity was 0.76, 0.81 and 0.94 mS·cm−1 for PP, PP-TA, PP-TA/Au, respectively. The enhanced
ionic conductivity upon TA/Au modification is originated to the improved electrolyte affinity of
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the functionalization layer. The electrochemical stability of the separator was also assessed by LSV
measurements with a Li/electrolyte saturated separator/stainless steel cell (Figure 4C). It was observed
that PP-TA and PP-TA/Au separator was stable up to ~5.0 V, securing their application in Li-S battery.
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Figure 4. (A) Water contact angle of PP, PP-TA and PP-TA/Au separator. (B) EIS spectra of stainless
steel/electrolyte saturated separator/stainless steel cell assembled with PP, PP-TA and PP-TA/Au
separator. (C) LSV curve of Li foil/electrolyte saturated separator/stainless steel cell assembled with PP,
PP-TA and PP-TA/Au separator.

Li-S battery was assembled with PP separator and functionalized PP separators and characterized
to show the benefits of functionalization. The CV curves of the separators were firstly recorded
(Figure S1). As shown in the CV curves of PP battery in the first cycle, two cathodic peaks centered
at ~2.18 V and 1.71 V were present, which could be ascribed to the reduction of sulfur to Li2Sx

(4 ≤ x ≤ 8) and reduction of to Li2S2 and Li2S.The anodic peak at ~2.55 V corresponded to oxidation of
Li2S2 and Li2S to element sulfur. In subsequent cycles, the CV curves tended to overlap with each
other, due to the formation of a stable SEI layer on the electrode after the first cycle. Apparently, the
battery with PP-TA/Au separator showed better reversibility and the lower gap between anodic peaks
and cathodic peaks. These changes indicate that the TA/Au functionalization may improve battery
performance. The charge-discharge performance of the separators was tested at 0.2C (Figure 5A).
The first cycle discharge capacity of the battery with PP, PP-TA and PP-TA/Au separator was 733.0,
816.9 and 860.8 mAh·g−1, respectively. The discharge capacity of the batteries dropped significantly,
due to a series of irreversible reactions, such as electrolyte decomposition and SEI formation. During
the whole cycling, PP-TA/Au separator shows the highest discharge performance with a capacity of
597.8 mAh·g−1 after 100 cycles. The rate performance of the batteries was also quantified (Figure 5B).
Battery assembled with pristine PP separator exhibited discharge capacities of 798.6, 513.4, 337.3, 234.9,
197.4, 179.5 mAh·g−1 at 0.2 C, 0.5 C, 1 C, 1.5 C and 2 C, respectively. When the battery was cycled
back to 0.2 C, a discharge capacity of 495.7 mAh·g−1 was retained. PP-TA separator shows similar
rate performance with PP separator. In contrast, PP-TA/Au separator had an enhanced discharge
performance. Its discharge capacities at 0.2 C, 0.5 C, 1 C, 1.5 C and 2 C were measured to be 850.5,
486.6, 309.8, 246.5, 225.3 and 202.8 mAh·g−1, respectively. A high discharge capacity of 533.4 was kept
when cycled back to 0.2 C, proving the good reversibility of the battery.
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(B) Rate performance of Li-S battery assembled with PP, PP-TA and PP-TA/Au separator. (C) EIS
spectra of uncycled Li-S battery assembled with PP, PP-TA and PP-TA/Au separator. (D) EIS spectra of
cycled Li-S battery assembled with PP, PP-TA and PP-TA/Au separator.

To understand the excellent battery performance of the separator, EIS spectra of the batteries
before and after battery cycling was recorded (Figure 5C). The EIS curve of the battery before cycling
was composed of a depressed semicircle and an inclined line, which are associated with the charge
transfer resistance and diffusion related resistance (Figure 5D). Notably, the battery with PP-TA/Au
separator had the lowest charge transfer resistance (117.8 Ω) among the batteries. This result clearly
demonstrated that the use of PP-TA/Au separator improved the interface compatibility between the
electrode and electrolyte, due to the improved electrolyte affinity of the separator. After cycling, an
additional depressed semicircle corresponding to the overall film resistance appeared in the high
frequency region of the EIS spectra. The Rfilm and Rct of the battery with PP-TA/Au separator was
determined to be 20.29 Ω and 102.1 Ω, respectively, which were lower than those for PP (71.32 Ω and
76.11 Ω). The decreased Rfilm for PP-TA/Au indicates that a more uniform SEM layer was formed in
both sulfur cathode and lithium anode, which is possibly resulted from the suppressed shuttling of
soluble LiPSs. Such a low Rfilm and small Rct explains the high battery performance of PP-TA/Au.

Finally, XPS analysis was conducted with the separators disassembled from the cycled battery to
gain more insight into the interaction between the functionalization layer and sulfur species. First of
all, the peak intensity of the Au 4f peak decrease after battery cycling (Figure 6A,B), suggesting that the
Au nanoparticles were still stabilized on the separator after cycling. In addition, the position of Au 4f
peak shifted toward high binding energy, which suggests that Au chemically interacts with polysulfide
species during battery cycling. Furthermore, the S 2p peak of the cycled PP separator and cycled
PP-TA/Au separator was analyzed (Figure 6C,D). As shown in the figure, there are multiple sulfur
species of different chemical states identified from the S 2p spectra. A detailed peak fitting proves that
PP-TA/Au separator had a higher peak component from lithium polysulfide (LiPS) [7]. This observation
directly demonstrates that the functionalization layer helps to anchor the LiPS during battery cycling
and explains the improved performance of the functionalized separator. From the results above, it



Polymers 2019, 11, 728 7 of 9

can be concluded that the polysulfide shuttling across PP-TA/Au separator is successfully suppressed.
As a result, the battery performance is improved. Compared with the representative functionalization
approaches, which includes blade coating, polymerization etc., the current approach relies on a simple
solution process, which is advantageous for a cost-effective production process. In addition to its facile
functionalization process, the functionalization results in a bifunctional coating that can realize the
suppression of shuttling through the synergy of physical blockage and chemical adsorption. Such a
strategy is also beneficial for the efficient prevention of polysulfide shuttling.
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4. Conclusions

A bioinspired functionalization is developed to enhance the electrolyte compatibility, as well as the
barrier property of polypropylene separator for Li-S battery application. The novel functionalization is
based on the use of a natural polyphenol which has a high surface affinity and reducing capability and
can proceed under mild solution condition. Such a functionalization results in a composite separator
with a TA/Au layer. Benefiting from the high polarity and excellent LiPSs adsorption capability of
the TA/Au layer, Li-S battery assembled with the functionalized separator delivers a much-improved
discharge capacity in both cycling tests and rate performance evaluation. Due to the generality,
simplicity and the effectiveness of the functionalization method, we expect that the functionalization
method reported herein can be potentially used as a general approach for the modification of separators
in advanced battery systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/4/728/s1,
Figure S1: CV curves of the Li-S battery assembled with PP or PP-TA/Au separator.
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