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Abstract: Main-chain polybenzoxazines containing amide linkages were successfully prepared in
one pot. Three different polymers were synthesized by reacting 3,4-dihydrocoumarine (DHC) and
paraformaldehyde with 1,3-diaminopropane or 1,6-diaminohexane or Jeffamine ED-900. The one-pot
reaction proceeded through the combination of the ring-opening of DHC with amines, and subsequent
Mannich and ring-closure reactions occurring in a cascading manner. The obtained polymer from
Jeffamine exhibited good film-forming properties, and free-standing flexible films were easily solvent-
casted on Teflon plates. All polymeric precursors were characterized by spectroscopic analysis, and
their curing behavior and thermal stability were investigated by differential scanning calorimetry
(DSC) and thermogravimetric analysis (TGA).
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1. Introduction

Polybenzoxazines, as contenders to classical phenolic resins, have gained interest in material and
polymer chemistry due to their unique properties, including low water sorption, high thermostability,
char yields and glass transition temperatures, resistance against acids and bases, and good mechanical
performance [1–3]. Therefore, polybenzoxazines have found applications especially in the aerospace
industry, where high performance materials are needed. Another important aspect of polybenzoxazines
is the ease of preparation from their 1,3-benzoxazine monomers. Generally, the polymerization of
these monomers can be performed without using any catalyst at temperatures between 160 and 250 ◦C,
depending on the functionalities of the benzoxazines [4–7]. The polymerization proceeds through the
cationic ring-opening of oxazine by cleavage of the C–O bond in the N–CH2–O bridge (Scheme 1) [8,9].
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Scheme 1. Polymerization of a benzoxazine monomer to produce polybenzoxazine.

Although ring-opening polymerization (ROP) is considered to be a non-catalytic process, the
phenolic impurities in the benzoxazine monomers initiate ROP by protonating either the O or N atom of
the oxazine ring. Then, the C–O bond of oxazine is cleaved to produce a carbocation that immediately
attacks to the aromatic region of the neighbor benzoxazine via Friedel–Crafts reaction [10,11]. By
contrast, a highly pure benzoxazine polymerizes significantly at higher temperatures due to the lack
of phenolic residues, and the ROP temperature of such a monomer could increase as much as 60 ◦C
compared to a regularly prepared identical benzoxazine [12].
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Another advantage of polybenzoxazines, apart from facile polymerization, is the synthetic
design flexibility of their monomers, since a typical synthesis is based on any suitable phenolic, a
primary amine, and formaldehyde. Hence, a vast number of benzoxazines could be designed by only
altering the phenols and amines, and there are many different commercially available variants of the
aforementioned reagents. Thus, the method allows for generation of a large monomer library that
would be useful for obtaining designed polybenzoxazines for a range of possible applications [13–18].
Accordingly, several different benzoxazines were synthesized in order to arrange the properties of
polybenzoxazine end-products. For example, monomers containing alkyl, allyl, alkene, alcohol,
carbonyl, carboxyl, coumarine, propargyl, amide, and sulfone were successfully synthesized [16,19–32].
Alternative to monomer design, main-, side- and end-chain polybenzoxazine precursors were also
produced by using Mannich-type polycondensation, polyesterification, carbon–carbon couplings,
and free radical polymerization [33–45]. Among those, amide-functional benzoxazines emerged,
attracting considerable attention due to their structural resemblance to benzanilides. As is well
known, polyamides are considered to be an important polymer class because of the presence of strong
hydrogen bonding that grants good mechanical and thermal properties to the corresponding polymer.
Similarly, amide linkages containing polybenzoxazines would exhibit numerous hydrogen bonding
interactions between phenolic –OH, tertiary amines, carbonyl, and amide –NH functionalities [46–49].
In order to benefit from the properties of amides, different synthetic approaches were used to obtain
amide-functional benzoxazines. In the first place, syntheses of primary amine-functional benzoxazines
were attempted in order to use them in classical amidation reactions. However, the direct synthesis
of amine-functional benzoxazines from phenols and amines by arranging the stoichiometry failed
due to the complicated side reactions, such as triazine and aminomethylol formation, or uncontrolled
oligomerizations. For that reason, sequential synthesis of primary amine-functional benzoxazines
was performed by using protective groups. This approach yielded the desired benzoxazines, and
then amide-functional benzoxazines were obtained by reacting these aminobenzoxazines with acid
chlorides [50,51]. However, the synthetic path contains at least four steps with workup and purification
procedures that limit the practical usage. Therefore, hydroxybenzamides, as amide-functional phenols,
were prepared from acid halides and aminophenols to reduce the number of synthetic stages. Eventually,
these hydroxybenzamides were reacted with different primary amines and formaldehyde to obtain the
amide-functional benzoxazines, and a series of amide benzoxazines were synthesized [46,52]. On the
other hand, the requirement of aminophenols and acyl halides could be considered as a drawback that
limits the synthetic diversity of amide-functional benzoxazines. Recently, a novel synthetic approach
was reported to span the variety of amide-functional benzoxazines by using 3,4-dihydrocoumarines
(DHCs) as starting reagents. A DHC was reacted with primary amines to obtain amide-containing
phenols for further benzoxazine synthesis [53]. Although this recent approach yielded the desired
products, the yields were relatively low due to the inevitable formation of triazines [54] as byproducts.
Nonetheless, this synthetic path has the potential to be expanded for the synthesis of main-chain
polybenzoxazines. Hence, in this paper, by taking the advantage of DHC chemistry, a one-pot synthesis
of main-chain poly(benzoxazine amide) precursors was successfully performed, and the versatility of
the approach is presented.

2. Materials and Methods

2.1. Characterization

1H NMR spectra were recorded using an Agilent VNMRS 500 MHz (Santa Clara, CA, USA),
and chemical shifts were recorded in ppm using tetramethylsilane as an internal standard. FTIR
spectra were recorded on a PerkinElmer FTIR Spectrum One spectrometer (MA, USA). Differential
scanning calorimetry (DSC) was performed on PerkinElmer Diamond DSC (MA, USA) from 20 to
320 ◦C with a heating rate of 10 ◦C min−1 under nitrogen flow. Thermal gravimetric analysis (TGA) was
performed on PerkinElmer Diamond TA/TGA with a heating rate of 10 ◦C min−1 under nitrogen flow.
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Molecular weights were determined by gel permeation chromatography (GPC). The measurements
were performed on a TOSOH EcoSEC GPC system (MA, USA) equipped with an autosampler system,
a temperature-controlled pump, a column oven, a refractive index (RI) detector, a purge and degasser
unit, and a TSKgel SuperHZ2000, 4.6 mm i.d. × 15 cm × 2 cm column. Tetrahydrofuran was used as
an eluent at a flow rate of 1.0 mL min−1 at 40 ◦C. The refractive index detector was calibrated with
polystyrene standards which had narrow molecular weight distributions. Data were analyzed using
EcoSEC analysis software.

2.2. Materials

3,4-Dihydrocoumarine (DHC) (Alfa Aesar, 99%, Tewksbury, MA, USA), o,o′-bis(2-aminopropyl)
polypropylene glycol-block-polyethylene glycol-block-polypropylene glycol (Sigma-Aldrich, Jeffamine®

ED-900, St. Louis, MO, USA), paraformaldehyde (Aldrich, 95.0−100.5%, St. Louis, MO, USA),
acetonitrile (ACN, Merck, 99.9%, Kenilworth, NJ, U.S.), ethanol (EtOH, Aldrich, ≥99.5%), methanol
(MeOH, Sigma-Aldrich, ≥99.8%), diethyl ether (DEE, VWR Chemicals, ≥99.5%, West Chester, PA, USA),
toluene (Carlo Erba, 99.5%, Barcelona, Spain), and acetone (Carlo Erba, >99.8%, Barcelona, Spain) were
used as received.

2.3. Synthesis of the Main-Chain Polybenzoxazine Precursors

A representative procedure is as follows: A mixture of 3,4-dihydrocoumarine (0.772 g, 0.003 mol),
bisamine (Jeffamine ED-900) (6 g, 0.003 mol), was placed in a 250 mL round-bottom flask containing
60 mL of toluene and 30 mL of ethanol or acetonitrile. This mixture was refluxed for 24 h. Then,
paraformaldehyde (0.360 g, 0.012 mol) was added to the reaction mixture and refluxed for a further
12 h. Thereafter, the contents of the flask were concentrated using a rotary evaporator. The remaining
solution was added into cold methanol (200 mL) dropwise, and kept in a refrigerator for 24 h. The
solvent was decanted and the polymer washed with cold methanol. Finally, the polymer was dried
at ambient temperature in a vacuum chamber for 24 h to obtain a transparent orange-colored oily
polymer. Typically, conversions were between 60% and 80% depending on the diamine.

2.4. Film Preparation

To obtain polybenzoxazine film, 1 g of main-chain polybenzoxazine precursor was dissolved in
10 mL of acetone and charged into a Teflon mold. The solvent was evaporated at room temperature for
3 days. Then, the film was subjected to a heat treatment at 120 ◦C for 10 min in an ordinary oven for
the removal of solvent residues, and then gradually heated up to 180 ◦C and cured for 0.5 h. After
curing, a dark-orange, transparent, and flexible crosslinked film with a smooth surface was obtained.

3. Results and Discussion

DHCs are prone to react with amines in benign conditions without a catalyst requirement
(Scheme 2) [55,56]. Correspondingly, ring-opening reactions of DHC have gained interest, especially in
medicinal chemistry, where the synthesis of amide precursors using mild and non-catalytic conditions
are preferred, in order to meet the requirements of green chemical synthesis [57]. More specifically,
DHCs are suitable reagents for the preparation of amide-functional phenolics at room temperature,
either quantitatively or with high yields. Therefore, such phenolics can be prepared without significant
effort being used to select suitable amines.
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The presence of several different commercially available amines provides a vast design capacity to
obtain phenolics for further use in benzoxazine synthesis. Besides, the ring-opening aminolysis of two
moles of DHC with one mol of difunctional amine in a medium having four moles of formaldehyde
would also trigger concomitant Mannich and ring-closure cascade reactions to form 1,3-oxazines.
Hence, main-chain polybenzoxazines with amide linkages would eventually be synthesized under such
a condition. Accordingly, DHC was reacted with three different diamines, and paraformaldehyde and
polybenzoxazines precursors with different molecular weights were obtained successfully (Scheme 3).
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The reaction between DHC and diamines was performed at 80 ◦C in both CH3CN and
toluene–ethanol mixtures (2:1 (v/v)) for 24 h to complete the ring-opening aminolysis reaction,
and then paraformaldehyde was added into the mixtures under reflux for a further 12 h to form
the benzoxazine ring. 1,3-Diaminopropane, 1,6-diaminohexane, and Jeffamine® ED-900 were
selected as diamines for regulating the flexibility of the main-chain polybenzoxazine precursor.
The obtained polymers were abbreviated as poly(DHC-Bz-propylamide), poly(DHC-Bz-hexylamide),
and poly(DHC-Bz-jeffamide), respectively.

The chemical structures of the polybenzoxazine precursors were evaluated by 1H NMR
and FTIR spectral analysis. In Figure 1, the 1H NMR spectra of poly(DHC-Bz-hexylamide) and
poly(DHC-Bz-jeffamide) were presented. It should be noted that poly(DHC-Bz-propylamide) was
insoluble in common solvents used for NMR characterization. The characteristic oxazine proton signals
at 4.96, 4.84 ppm (O–CH2–N), and 4.05, 3.94 ppm (Ar–CH2–N), provide clear evidence for the formation
of benzoxazine in poly(DHC-Bz-jeffamide) and poly(DHC-Bz-hexylamide), respectively. Moreover, the
triplet peaks at 2.61, 2.58 ppm (–CH2–NH), and 2.47, 2.40 ppm (Ar–CH2–) also verify the ring-opening
of DHC. Besides, in Figure 1b, the peak at 2.68 ppm indicates that poly(DHC-Bz-hexylamide) contains
an end-chain primary amine. FTIR spectra of the main-chain polybenzoxazines disclose the formation
of amide functionality and the oxazine ring (Figure 2). The stretching vibration bands of aromatic
C–H (3136–3038 cm–1) and aromatic C=C (1461–1598 cm–1) bonds, and the out-of-plane bending of
aromatics and oxazine ring vibrations of C–H bonds (925–941 cm–1), can be considered as convincing
spectral evidence for the formation of benzoxazine moieties. Besides, stretching vibrations of the
amide carbonyl group are clearly visible at ca. 1630–1653 cm–1, and for amide N–H with water residue,
emerge at ca. 3288–3313 cm–1. Moreover, Figure 2a exhibits strong C–O stretching vibration of the
poly(propylene glycol) segment at 1100 cm–1. Apart from the spectral characterization, molecular
weights (Mn) and polydispersity index (PDI) of the polymers were determined as being ca. 4600
Da, 1.3 for poly(DHC-Bz-hexylamide), and ca. 3000 Da, 1.2 for poly(DHC-Bz-hexylamide) using
GPC. These spectral and chromatographic data confirm the successful synthesis of amide-functional
main-chain polybenzoxazines.
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As stated, polybenzoxazines can be synthesized by ring-opening polymerization (ROP) of
benzoxazines at temperatures between 160 and 260 ◦C. The polymerization of these monomers
is exothermic and can be monitored easily by differential scanning calorimetry (DSC). Figure 3
and Table 1 show the DSC results of poly(DHC-Bz-propylamide), poly(DHC-Bz-hexylamide), and
poly(DHC-Bz-jeffamide). Accordingly, all of the precursors are curable and exhibit broad curing
exotherms starting from 168 ◦C for hexylamide, 172 ◦C for Jeffamide, and 185 ◦C for propylamide-based
precursors. These onset values are relatively low compared to the curing temperatures of classical
benzoxazine monomers. The main reason for low onset temperatures might be the presence of some
ring-opened oxazine repeat units, since it is well known that unreacted phenols in benzoxazine
formulations could catalyze ROP and reduce the curing temperatures [5,58]. Moreover, the precursor
poly(DHC-Bz-propylamide) that was synthesized from a shorter amine exhibits the largest amount of
exotherm among the three examples because of the larger oxazine mass per repeat unit. Conversely,
poly(DHC-Bz-jeffamide) has the smallest amount of exotherm due to the large Jeffamide units per
oxazine ring. Therefore, it could be concluded that the amount of polymeric benzoxazine precursor
exotherm is directly proportional to the mass ratio of the oxazine ring per total mass of the related
precursor. However, this generalization may not be applicable for the two different types of main-chain
precursors due to functional group effects. Also, without considering the structure, the success of
the ring-closure reaction to form oxazine rings on the precursor would affect the extent of exotherm.
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In general, around 10% of ring-opened oxazine units remain on the polymer backbone in a classical
main-chain polybenzoxazine synthesis [37]. However, the ring-closure ratio of poly(DHC-Bz-jeffamide)
was calculated as ca. 77% by using integration ratios from proton NMR spectroscopy. This result could
be expected since the synthesis of poly(DHC-Bz-jeffamide) basically should include two successive
stages—the ring-opening of DHC and oxazine formation.
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Table 1. Differential scanning calorimetry (DSC) a characteristics of amide-functional polybenzoxazine precursors.

Polymer Tonset (◦C) Tend-set (◦C) Tmax (◦C) Enthalpy (j/g)

Poly(DHC-Bz-propylamide) 185 265 222 −122
Poly(DHC-Bz-hexylamide) 168 241 201 −56
Poly(DHC-Bz-jeffamide) 172 257 212 −49

a Analyses were performed under N2 stream (20 mL/min) with a 10 ◦C/min heating rate.

Film fabrication from benzoxazine monomers is complicated, especially for monofunctional
films. This is because casting films from powdery monomers is mostly difficult, and the formed films
are generally brittle as a result of insufficient molecular weight and an inflexible polybenzoxazine
network. Therefore, combining benzoxazines with polymeric structures to obtain main- or side-chain
polybenzoxazine precursors emerged as a solution for film-formation difficulties with additional
exploitable benefits stemming from the polymeric nature. Accordingly, processable, curable, and
flexible polybenzoxazine thermoplastics were synthesized by the Mannich condensation reaction.
Similarly obtained precursors reported in this study were solvent-casted in Teflon molds, and after
evaporating the solvent, were cured at 180 ◦C for 30 min to obtain flexible, transparent films (Figure 4).
It should be noted that the films of poly(DHC-Bz-propylamide) and poly(DHC-Bz-hexylamide) could
not be cast due to their limited solubility. Conversely, the films of poly(DHC-Bz-jeffamide) were easily
prepared, as the polypropylene glycol and polyethylene glycol blocks on the precursor contributed
immensely to the overall solubility.
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Figure 4. Images of cured poly(DHC-Bz-jeffamide) films.

Thermostabilities of the cured precursors were characterized by using thermal gravimetric
analysis (TGA). TGA thermograms and their derivatives are respectively displayed in Figure 5A,B,
and the associated thermal properties are tabulated in Table 2. The initial degradation temperatures,
T5% and T10%, of the samples differ in order of the chain length of the diamine. Shorter chains
have lower initial degradation temperatures than longer Jeffamine chains due, probably, to amine
degradation of the polybenzoxazines, where the temperature for this type of decomposition is
generally between 160 and 300 ◦C and occurs via C–N cleavage [59–61]. In poly(DHC-Bz-propylamide)
and poly(DHC-Bz-hexylamide), the number of amino groups per repeat unit is much higher than
in poly(DHC-Bz-jeffamide) and, thus, amine degradation might be severe in these polymers. In
Figure 5B (a’) and (b’), the derivative thermograms clearly exhibit this behavior as downward bands.
Conversely, the Tmax values and char yields of the short-chain precursors are significantly higher
than the Jeffamide-based precursor due to the number of aromatics per repeat units. Moreover, it is
well known that large polyether units are prone to degrading rapidly at such high temperatures. For
example, pristine Jeffamines generally have char yields below 1% at 800 ◦C, even under non-oxidizing
conditions, such as N2 or Ar atmosphere.
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Figure 5. Thermal gravimetric analysis (TGA) thermograms (A) and their derivative curves (B)
of cured precursors poly(DHC-Bz-propylamide) (a), (a’), poly(DHC-Bz-hexylamide) (b), (b’) and
poly(DHC-Bz-jeffamide) (c), (c’).
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Table 2. Thermal properties of the cured a polybenzoxazine precursors.

Cured Precursor T5% (◦C) T10% (◦C) Tc (%) Tmax (◦C)

Poly(DHC-Bz-propylamide)a 250 280 28 430
Poly(DHC-Bz-hexylamide)a 276 303 27 449

Poly(DHC-Bz-jeffamide)a 307 351 9 398
a Curing was performed at 200 ◦C for 20 min under N2. T5%: 5% weight-loss temperature, T10%: 10% weight-loss
temperature, Tc: char yield at 800 ◦C, Tmax: Maximum weight-loss temperature was calculated from the derivative
TGA graph (Figure 5B).

4. Conclusions

In this study, amide repeat units containing main-chain polybenzoxazine precursors with different
chain lengths were synthesized in one pot, starting from readily available and relatively cheap
paraformaldehyde, 3,4-dihydrocoumarine (DHC), 1,3-diaminopropane, 1,6-diaminohexane, and
Jeffamine ED-900. The polymeric precursors were obtained through cascade ring-opening aminolysis
of DHC with the selected amines, Mannich reaction, and ring-closure to form oxazine rings with amide
linkages. One of the polymeric precursors exhibited good film-forming ability and the casted films
were flexible after curing at 180 ◦C. This study reveals the potential of DHC and related compounds to
be used as precursors for several different amide-containing main-chain polybenzoxazines in one pot
by selecting suitable diamines. Accordingly, this method has a vast design capacity for these specific
types of polybenzoxazines, and can be broadened according to specific application needs.
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