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Abstract: A bio-derived monomer called 2,3:4,5-di-O-isopropylidene-galactarate acid/ester (GalXMe)
has great potential in polymer production. The unique properties of this molecule, such as its
rigidity and bulkiness, contribute to the good thermal properties and appealing transparency of the
material. The main problem, however, is that like other biobased materials, the polymers derived
thereof are very brittle. In this study, we report on the melt blending of GalXMe polyamides (PAs)
with different commercial PA grades using extrusion as well as blend characterization. Biobased
PA blends showed limited to no miscibility with other polyamides. However, their incorporation
resulted in strong materials with high Young moduli. The increase in modulus of the prepared
GalXMe blends with commercial PAs ranged from up to 75% for blends with aliphatic polyamide
composed of 1,6-diaminohexane and 1,12-dodecanedioic acid PA(6,12) to up to 82% for blends with
cycloaliphatic polyamide composed of 4,4′-methylenebis(cyclohexylamine) and 1,12-dodecanedioic
acid PA(PACM,12). Investigation into the mechanism of blending revealed that for some polyamides
a transamidation reaction improved the blend compatibility. The thermal stability of the biobased
PAs depended on which diamine was used. Polymers with aliphatic/aromatic or alicyclic diamines
showed no degradation, whereas with fully aromatic diamines such as p-phenylenediamine, some
degradation processes were observed under extrusion conditions (260/270 ◦C).

Keywords: biobased polyamides; blending; high Tg; mechanical properties

1. Introduction

Carbohydrate-based monomers constitute a very promising replacement for fossil-based building
blocks by providing a biobased alternative to some commonly used monomers [1–4], and by offering
new functionalities [5,6]. The acetal of galactaric acid (GalX) is used for polyamide synthesis and is
obtained from sugar beet pulp, a second-generation feedstock which does not compete with the food
industry [7,8]. As a monomer, GalX possesses the advantage of a rigid and bulky structure which,
upon incorporation into polyamides, can result in polyamides with high Tg [9]. On the downside,
however, like other carbohydrate-based polymers, these polyamides have the tendency to be brittle at
room temperature (Figure 1) [1,10]. Similarly, as for biobased poly(lactic acid) (PLA), the mechanical
performance of these polymers needs to be further improved. PLA is an extensively researched
biobased polyester with high potential for wide-spread applications. However, it possesses poor
ductility, with an elongation at break of only around 3% [11–13].
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Figure 1. Approach for the preparation of blends from biobased GalX polyamides (PAs). PA(6,12) – 
polyamide composed of 1,6-diaminohexane and 1,12-dodecanedioic acid, PA(PACM,12) composed 

of 4,4′-methylenebis(cyclohexylamine) and 1,12-dodecanedioic acid. 

There are several ways to improve the performance of biobased materials: copolymerization [14–
18], blending and/or reactive blending [11,19–23], or by modification through the addition of 
additives (e.g., plasticizers or impact modifiers) [24,25]. Furthermore, high-modulus polyamide 
materials can be developed using sustainable processing like electron-induced reactive processing 
[26,27] and also by creating nano-phase rubber domains in the polyamide matrix [28]. 

The most common combination for carbohydrate-based polymers is the synthesis of 
copolyesters of biacetalized galactaric acid derivatives with aromatic and aliphatic diols [14,15,17,29–
34], and, more recently, GalX (co)polyamides [9,35,36]. The conducted research demonstrates that the 
successful copolymerization gives polyesters with improved properties (i.e., higher elongation at 
break) than pure carbohydrate-based polymers themselves [15]. 

Another approach to increasing the performance of polymer materials is blending and/or 
reactive blending. In general, blending has numerous advantages over other modification methods, 
as it is considered to be cheap and industrially relevant. However, in the case of blending, the 
miscibility of the two components plays a predominant role in obtaining blends with improved 
mechanical properties compared to the separate homopolymers [37,38]. 

The blending of natural biopolymers such as starch, cellulose, proteins, chitin/chitosan or lignin 
with other (bio) polymers has been proven to be an interesting method to obtain new biomaterials 
with enhanced properties to meet the requirements of specific applications [39,40]. Another abundant 
class of biopolymers are aliphatic polyesters, such as PLA and poly(hydroxyalkanoate) (PHA), 
although they suffer from brittleness [41]. While blending with  polyamides, for example, has 
proved to be an effective way to overcome the brittleness of PLA [42–44] and PHB [45], no reports 
are known on the improvement of the mechanical properties of another class of brittle biopolymers—
namely, GalX-containing polyamides.  

Facing this lack of relevant scientific data, we want to initiate the research concerning the 
improvement of the properties of carbohydrate-based synthetic polymers, which could form the basis 
for the material development thereof. Such polymers deserve significant attention as they can offer a 
wide variety of advantageous properties, such as transparency or thermal properties for material 
design, but also the introduction of new functionalities [35]. However, as with all polymeric materials 
at the beginning of their development, broad investigation is required. Therefore, we proposed the 
melt-blending of GalX-based amorphous homopolymers with two different commercially available 
polyamides to improve the thermal properties of the latter, and the mechanical properties (i.e., 
brittleness) of the former. The polymers were mixed in an extruder at elevated temperatures and the 
properties of the blends were evaluated.  

2. Experimental Part 

2.1. Materials 

Trogamid CX9704 (Evonik, Antwerp, Belgium) was purchased from Brenntag (NL) (Mn = 6000 
g/mol, Ð = 2.20, Tg = 130 °C, viscosity number > 120 cm3/g according to ISO 307). Pentafluorophenol-

Figure 1. Approach for the preparation of blends from biobased GalX polyamides (PAs). PA(6,12)—
polyamide composed of 1,6-diaminohexane and 1,12-dodecanedioic acid, PA(PACM,12) composed of
4,4′-methylenebis(cyclohexylamine) and 1,12-dodecanedioic acid.

There are several ways to improve the performance of biobased materials: copolymerization [14–18],
blending and/or reactive blending [11,19–23], or by modification through the addition of additives
(e.g., plasticizers or impact modifiers) [24,25]. Furthermore, high-modulus polyamide materials can be
developed using sustainable processing like electron-induced reactive processing [26,27] and also by
creating nano-phase rubber domains in the polyamide matrix [28].

The most common combination for carbohydrate-based polymers is the synthesis of copolyesters
of biacetalized galactaric acid derivatives with aromatic and aliphatic diols [14,15,17,29–34], and, more
recently, GalX (co)polyamides [9,35,36]. The conducted research demonstrates that the successful
copolymerization gives polyesters with improved properties (i.e., higher elongation at break) than
pure carbohydrate-based polymers themselves [15].

Another approach to increasing the performance of polymer materials is blending and/or reactive
blending. In general, blending has numerous advantages over other modification methods, as it is
considered to be cheap and industrially relevant. However, in the case of blending, the miscibility
of the two components plays a predominant role in obtaining blends with improved mechanical
properties compared to the separate homopolymers [37,38].

The blending of natural biopolymers such as starch, cellulose, proteins, chitin/chitosan or lignin
with other (bio) polymers has been proven to be an interesting method to obtain new biomaterials with
enhanced properties to meet the requirements of specific applications [39,40]. Another abundant class
of biopolymers are aliphatic polyesters, such as PLA and poly(hydroxyalkanoate) (PHA), although
they suffer from brittleness [41]. While blending with polyamides, for example, has proved to be
an effective way to overcome the brittleness of PLA [42–44] and PHB [45], no reports are known
on the improvement of the mechanical properties of another class of brittle biopolymers—namely,
GalX-containing polyamides.

Facing this lack of relevant scientific data, we want to initiate the research concerning the
improvement of the properties of carbohydrate-based synthetic polymers, which could form the
basis for the material development thereof. Such polymers deserve significant attention as they can
offer a wide variety of advantageous properties, such as transparency or thermal properties for material
design, but also the introduction of new functionalities [35]. However, as with all polymeric materials
at the beginning of their development, broad investigation is required. Therefore, we proposed the
melt-blending of GalX-based amorphous homopolymers with two different commercially available
polyamides to improve the thermal properties of the latter, and the mechanical properties (i.e.,
brittleness) of the former. The polymers were mixed in an extruder at elevated temperatures and the
properties of the blends were evaluated.
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2. Experimental Part

2.1. Materials

Trogamid CX9704 (Evonik, Antwerp, Belgium) was purchased from Brenntag (NL) (Mn = 6000
g/mol, Ð = 2.20, Tg = 130 ◦C, viscosity number > 120 cm3/g according to ISO 307). Pentafluorophenol-d6

99.0% (PFP-d6) and polyamide 6,12 (PA(6,12), Mn = 10,000 g/mol, Ð = 1.65, Tm = 215 ◦C, viscosity
number 95 cm3/g according to ISO 307, 1157, 1628) were purchased from Sigma-Aldrich (Zwijndrecht,
the Netherlands) and used as supplied. HFIP (1,1,1,3,3,3-hexafluoro-2-propanol) was purchased
from Acros Organics (Geel, Belgium). Irgafos 168 and Irganox 1010 were purchased from BASF
(Ludwigshafen, Germany). CDCl3 was purchased from Cambridge Isotope Laboratories (Andover,
MA, USA).

2.2. Methods

The synthesis of poly(1,3-phenylenedimethanamine–co-2,3:4,5-di-O-isopropylidene-galactaramid)
PA(MXD,GalXMe), poly(5-Amino-1,3,3-trimethylcyclohexanemethanamine-co-2,3:4,5-di-O-isopropy
lidene-galactaramid) PA(IPDA,GalXMe) and poly(paraphenylene-2,3:4,5-co-di-O-isopropylidene-
galactaramid) PA(PPDA,GalXMe) was conducted according procedures described by
Wróblewska et al. [9].

A Typical Procedure for Blend Preparation

PA(MXD,GalXMe) (1.5 g, 50 wt%), PA(6,12) (1.5 g, 50 wt%) and antioxidants Irganox 1010:Irgafos
168 at a ratio of 1:2 (0.003 g, 0.1 wt%) were fed into an Xplore MC5 twin-screw mini-extruder under
nitrogen atmosphere set with three different temperature zones 270 ◦C (top), 260 ◦C (middle), and
260 ◦C (bottom) and a screw speed of 100 RPM. Polymers were mixed for 1 min followed by the
evacuation of the chamber to the injection molding hose at 270 ◦C. The mold temperature was set to
50 ◦C to obtain dog-bone-shaped specimens. Injection molding was performed with an Xplore IM5.5

2.3. Characterization

The molecular weight of polyamides was determined via gel permeation chromatography (GPC).
The polymers were dissolved in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) with 0.019% NaTFA salt.
The sample for GPC measurement was prepared by dissolving 5.0 mg of the polymer in 1.5 mL of
the solvent. The solutions were filtered over a 0.2 µm PTFE syringe filter before injection. The GPC
apparatus was calibrated with poly(methyl methacrylate) standards. Two PFG combination medium
microcolumns with 7 µm particle size (4.6 × 250 mm, separation range 100–1,000,000 Da) and a
precolumn PFG combination medium with 7 µm particle size (4.6 × 30 mm) were used in combination
with a refractive index (RI) detector in order to determine molecular weight and dispersities.

The 1D NMR spectra were recorded on a Bruker Avance 500 MHz in a mixture of CDCl3 and
PFP-d6.

The 2D-HMBC spectra were recorded on a Bruker 500 MHz using the standard Bruker
pulse program hmbcgpl2ndqf with the following parameters: acquisition TD 4096 (f2) ×128 (f1),
SW = 12.0 ppm (F2), 180 ppm (F1); O1, 12,558.27 Hz; O2, 3007.48 Hz; D1 = 1.50 s; CNST6 = 135 CNST7
= 155; acquisition time, F2 channel, 340.787 ms; F1 channel, 2.827 ms; processing, SI = 1024 (F2, F1),
WDW = SINE.

Differential scanning calorimetry (DSC) curves were recorded on a Netzsch Polyma 2014 DSC.
DSC data were obtained from about 5 mg of polymer/blend at heating/cooling rates of 10 ◦C min−1

under a nitrogen flow of 20 mL min−1. Indium, zinc, tin, and bismuth were used as standards for
temperature and enthalpy calibration. DSC heating and cooling cycles were performed from 25 ◦C to
250–300 ◦C. The melting temperatures (peak maximum) and the enthalpy values reported correspond
to the second heating cycle. Glass transition temperatures are reported as midpoint values for the
second heating cycle.
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Scanning electron microscopy (SEM) analysis of the freeze-fractured samples was done with a
PhenomPro apparatus equipped with cold cathode field-emission source and backscattered electron
detector (BSD) with optical microscopy magnification up to 135× and electron magnification of
80–15,000× with an acceleration voltage of 5 kV. The samples were sputter-coated for 4 min with Au
using a Cressington Sputter Coater 108Auto.

Mechanical properties of polymer blends were characterized by performing tensile strength tests,
with five replicates of each. Before performing the mechanical tests, the polyamide specimens were
dried for 24 h at 80 ◦C. Tensile tests were performed with a Zwick/Roell Z020 tensile tester equipped
with a 10 kN load cell. The tests were performed on injection-molded samples having dimensions
75 mm × 4 mm × 2 mm. A grip-to-grip separation of 50 mm was used. The samples were loaded
with a constant crosshead speed of 25 mm·min−1. Rheology was done on an Anton Paar MRC702
TwinDrive Rheometer with a CTD450 convection heating system. The frequency sweep was recorded
every 20 ◦C starting from 160 up to 240 ◦C and reduced to the reference temperature of 220 ◦C.

3. Results and Discussion

3.1. Preparation of Blends

Three GalX polymers were chosen to be blended with commercial polyamides, namely
semicrystalline PA(6,12) and Trogamid CX9704. The latter is an amorphous, transparent polyamide
with high glass transition temperature composed of PACM and 1,12-dodecanedioic acid. All GalX
polymers are amorphous, transparent materials and the chemical characteristics of the used polymers
are summarized in Figure 2. The GalX PAs chosen for the blending experiments differed with respect
to the incorporated diamine: alicyclic, partially aromatic, and aromatic diamine (Figure 2). The list of
the prepared blends is presented in Table S1.
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Figure 2. Structures and molecular weight data of polyamides composed of acetals of galactarate (GalX)
and diamines (PA(IPDA,GalXMe), (PA(MXD,GalXMe), and PA(PPDA,GalXMe)) as well as commercial
polyamides ((PA(6,12) and PA(PACM,12)) that were chosen for the blending experiments.
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Blends were prepared using a twin-screw mini-extruder. Polymers with alicyclic and partially
aromatic diamines were easily processable at temperatures above 260 ◦C even for an elongated time,
as confirmed by GPC analysis (Figure 3a,b). Polyamides made using the aromatic diamine PPDA,
however, visibly degraded during extrusion at 260/270 ◦C. In order to evaluate the thermal stability of
pure PA(PPDA,GalXMe) polyamide, the polymer was fed into the extruder chamber at 260/270 ◦C and
mixed for 1 min. After this time the chamber was evacuated, and the obtained polymer was in the form
of black-brownish rods. The GPC trace of this polymer showed that the whole distribution shifted
towards lower molecular weight values (Figure 3c). This was a decisive factor in the determination of
the extruding time, which was eventually limited to 1 min.
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Figure 3. Overlay of the gel permeation chromatography (GPC) traces of the two homopolymers
(GalXMe PA ___ and PA(6,12) ___), homopolymer of GalXMe after 1 min of extrusion at 260/270 ◦C
(—), and blend of the corresponding homopolymers after 1 min of extrusion at 260/270 ◦C (grey)
(a) PA(MXD,GalXMe), (b) PA(IPDA,GalXMe), and (c) PA(PPDA,GalXMe) blend. RI: refractive index.

The molecular weight distribution of the blend was bimodal when there was a big difference
in the molecular weight of the homopolymer components (Figure 3c) or became the average of the
two distributions when the difference between the molecular weight of the single components was
small (Figure 3a,b). The latter case was applicable for PA(MXD,GalXMe) and PA(IPDA,GalXMe)
blends with PA(6,12) for which the difference in molecular weight was only between 200 and
1000 g/mol. The distribution of the PA(6,12)50PA(PPDA,GalXMe)50 blend was bimodal with the
remark that the position of the peak maximum of the PA(6,12) part did not change, in contrast to the
PA(PPDA,GalXMe) peak which shifted towards lower molecular weight values. Blending with other
polymers suppressed degradation processes, which was seen as an improvement of the appearance of
the PA(6,12)50PA(PPDA,GalXMe)50 blend when compared to pure PA(PPDA,GalXMe) homopolymer
after thermal processing and as measured by GPC. Lastly, no discoloration or otherwise-manifested
degradation was observed regarding PA(IPDA,GalXMe) and PA(MXD,GalXMe) polymers during the
extrusion and blending experiments.

3.2. Thermal and Morphological Characterization of the Blends

3.2.1. Thermal Properties of PA(6,12) Blends

Figure 4 represents the DSC results recorded for homopolymers and their blends. GalX
homopolymers had Tg values of 118 ◦C for PA(MXD,GalXMe), 155 ◦C for PA(IPDA,GalXMe)
and 224 ◦C for PA(PPDA,GalXMe). For PA(MXD,GalXMe) and PA(IPDA,GalXMe) blends with
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PA(6,12) the Tg for the GalX component was clearly distinguishable, indicating incompatible blends.
Only one Tg is observed for miscible systems, and it is generally between the Tgs of the pure
components. Partial miscibility can be recognized by a shift of the Tgs compared to the parent
polymers. A partially miscible system exhibits two Tgs that are slightly shifted from that of the neat
components. An immiscible system exhibits two Tgs but exactly that of the neat components [46].
For the blend with PA(PPDA,GalXMe) no glass transition corresponding to the GalX component
could be discerned because it overlapped with the melting point of the aliphatic PA(6,12). Since only
the amorphous part in highly crystalline aliphatic polyamides like PA(6,12) contributes to the glass
transition, its Tg could not be detected under the used DSC conditions.
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3.2.2. Thermal Properties of PA(PACM,12) Trogamid CX Blends

Subsequently, blends of PA(PACM,12) with GalX PAs were investigated (Figure 5). Such
experiments were limited to using only PA(IPDA,GalXMe) and PA(PPDA,GalXMe) since we wanted
to focus on the improvement of the thermal and mechanical properties of the polyamides and
PA(MXD,GalXMe) has a lower Tg than PA(PACM,12). Initially, DSC curves were recorded for polymer
samples after one minute of blending at 260/270 ◦C. The analysis revealed that PA(PACM,C12) was
not compatible with PA(IPDA,GalXMe), as shown by the two separate glass transition regions at
130 ◦C and 155 ◦C, with the first Tg corresponding to amorphous Trogamid CX and the second to
PA(IPDA,GalXMe) (Figure 5a). Both Tgs were clearly visible, in contrast to blends with PA(6,12).
In parallel, DSC curves were recorded for PA(PPDA,GalXMe) with PA(PACM,12) blends, where
it was noticed that one Tg was present at values slightly higher than that for the commercial
component (from 130 ◦C for pure PA(PACM,12) to 133 ◦C for the blend after one minute of mixing)
(Figure 5b), an indication of partial miscibility. This small shift registered for the PA(PPDA,GalXMe)
blend stimulated further investigation of the phenomenon. In order to establish whether mixing
time influences the miscibility of the components, more samples were prepared for experiments
with different mixing times. No influence of time on the quality of mixing was observed for
PA(IPDA,GalXMe) polymer blends, which showed the same transitions corresponding to the
individual components, regardless of the mixing time. Conversely, PA(PPDA,GalXMe) blended
with PA(PACM,12) (Figure 5b) showed a correlation of the transition region with the time of mixing:
the longer the mixing was applied, the higher the transition region. After 3 min of mixing, the glass
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transition of the prepared blend was increased to 149 ◦C. However, longer mixing times led to the
degradation of the PA(PPDA,GalXMe) polymer blend. As a result of degradation after extended mixing
with PA(PPDA,GalXMe) (see GPC results in Figure 3) and no influence of time on the miscibility of
PA(IPDA,GalXMe) blends, a 1 min blending time was applied for all subsequent experiments.
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3.2.3. Morphological Study of the Blends by SEM

In principle, in order to achieve a good-quality blend, polymers should be miscible with each other.
In practice, however, the blending of biobased polyamides often results in an immiscible blend and
requires the addition of a compatibilizer to improve polymer dispersion. SEM images were collected to
investigate the miscibility, compatibility, and morphology of blends with PA(6,12) and PA(PACM,12).
Figure 6 presents the SEM images of blends with PA(MXD,GalXMe), PA(IPDA,GalXMe), and
PA(PPDA,GalXMe). The analysis of microscopic images revealed that blending of PA(MXD,GalXMe)
(Figure 6a) and PA(IPDA,GalXMe) (Figure 6b,c) resulted in a two-phase morphology in PA(6,12)
or PA(PACM,12). Unlike the aliphatic polyamides, however, PA(PPD,GalXMe) blends (Figure 6e,f)
showed partial compatibility, as was also observed by DSC.

An interesting phenomenon was observed after the analysis of PA(PACM,12) blends with
PA(IPDA,GalXMe). Under microscopic magnification of 7000× the blend appeared as a two-phase
morphology (Figure 6c) but under visual inspection the material showed strong orientation, namely the
formation of fibers (Figure 6d). The fibers could not be completely ground even when ground in liquid
nitrogen. It is suspected that the formation of fibers originated from strong phase separation that might
have been caused by intramolecular hydrogen bond formation between the acetal oxygen of GalXMe
motifs and the amide bonds of the GalXMe polyamide. The formation of hydrogen bonds between the
amide groups of both polymers in the blend might have been hampered by the bulky structure of both
the GalX and the PACM diamine. Furthermore, with diamines that are much less bulky (e.g., PPDA),
partial miscibility of the blends was observed as well as the occurrence of transamidation reactions
(see further), further confirming the significance of the diamine structure’s bulkiness.
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We also investigated how the morphology of PA(PACM,12)50PA(IPDA,GalXMe)50 blends changed
as a function of the extrusion time. DSC curves revealed the indifference of the transition temperatures
of those blends towards the extrusion time (Figure 5a). However, SEM results provided insight into
a microscopic effect of time. Figure S1 contains three SEM images of the blend after 1, 2, and 5 min
of blending. The extrusion time did indeed reduce the domain sizes. However, even after 5 min of
blending they were still not compatible.



Polymers 2019, 11, 413 9 of 14

3.2.4. Structural Transformations Induced by the Thermal Processing of PA(PPDA,GalXMe)
with PA(PACM,12)

The observed partial compatibility and degradation processes occurring during the blending of
PA(PPDA,GalXMe) might consist of different phenomena. The thermal degradation of aromatic amine
moieties present in the sample might include the oxidation of amines or imide formation [47,48], but at
the same time partial miscibility of the PA(PPDA,GalXMe) blends was observed. This suggests that
reactions between the two components might have occurred during blending. To elucidate this, 2D
1H-13C HMBC correlation NMR spectroscopy through multiple bonds was used. Spectra were recorded
for samples prepared by mixing of the two polymers (i.e., PA(PPDA,GalXMe) and PA(PACM,12)) on
the one hand at room temperature in a deuterated solvent, and on the other hand after extrusion at
260/270 ◦C for 3 min. On the 1H NMR spectrum (Figure 7a) and on the 2D spectrum (Figure 7b,c)
of the blend prepared at room temperature (RT), peaks from two components—PA(PPDA,GalXMe)
and PA(PACM,12)—are visible. Peaks correlate as follows: the carbonyl group of PA(PPDA,GalXMe)
(C=O)1 with protons H2,3, the carbonyl group of PA(PACM,12) (C=O)a with protons Hb and the
carbonyl group of the PA(PACM,C12) end group (C=O)a(end group) with protons Hb (Figure 7b).
After the extrusion, new peaks were visible (Figure 7a, top and Figure 7c), corresponding to a
transamidation reaction between the two polyamides and chain scission. In fact, chain scission
might stimulate further degradation processes, which lead to aromatic amine-terminated chains and
those end groups are the most susceptible to thermal degradation. The PA(IPDA,GalXMe) spectrum
did not show any changes caused by side reactions either before or after extrusion (Figure S2).
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3.3. Material Properties of Blends

Mechanical Performance of Blends

Polyamides derived from carbohydrates are known to be brittle, which in some cases hampers
their mechanical properties. In order to evaluate the influence of these components on the mechanical
properties of the blends, tensile tests were conducted. The samples were blended for 1 min, and
subsequently injection molded, resulting in dog-bone specimens. Table S1 in the Supporting Data
contains the compiled results of PA(PACM,12) blends and PA(6,12) blends with different GalX
polyamides. Due to the high brittleness of the GalX polyamides, it was not possible to obtain tensile bars
with more than 50 wt% of PA(IPDA,GalXMe) and PA(MXD,GalXMe). In all cases, the incorporation
of GalX-based polyamides reduced the elongation at break compared to the non-GalX-containing
polymer in the blend.

The mixing of GalX polyamides with PA(6,12) and PA(PACM,12) significantly improved the
E modulus of the prepared blends (Figure 8a). In general, with a composition of up to 25% of
carbohydrate-based polyamide, the Young’s modulus of the blends increased with respect to the pure
commercial polyamide. However, attempts to blend PA(6,12) with more than 25% PA(MXD,GalXMe)
or PA(IPDA,GalXMe) resulted in a loss of the Young’s modulus and general decay in mechanical
performance. It is suspected that this drop was caused by blend incompatibility, which started to
dominate the mechanical properties at a higher content of GalXMe polyamide.

The PA(PPDA,GalXMe) blends outperformed the PA(MXD,GalXMe) and the PA(IPDA,GalXMe)
blends, and an increased amount of PA(PPDA,GalXMe) in the blend led to a further increase
of the Young’s modulus (up to 82%). As demonstrated in Figure 8, PA(PPDA,GalXMe) was
capable of forming blends with the highest GalX content combined with good mechanical
properties. Those good mechanical properties can be correlated with the earlier observed partial
miscibility of PA(PPDA,GalXMe) blends (DSC, SEM and NMR), in contrast to PA(MXD,GalXMe) and
PA(IPDA,GalXMe) blends. Both commercial polyamides PA(PACM,12) and PA(6,12) showed high
elongation at break (see Figure 8b,c) with an E modulus around 1400 MPa. Upon the addition of
PA(PPDA,GalXMe) polyamide, the E modulus increased (51%–78% for PA(6,12) blends and 22%–82%
for PA(PACM,12) depending on the composition) and the elongation at break decreased.
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All blends with PA(6,12) (Figure 8c) could be classified as hard and brittle materials due to a very
low elongation and no yielding. However, the elongation at break of PA(PACM,12) did not drop that
drastically upon the addition of PA(PPDA,GalXMe) (Figure 8b). Conversely, blends incorporating up
to 50% PA(PPDA,GalXMe) yielded upon stretching, with an elongation dependent on the amount of
added PA(PPDA,GalXMe). Such blends can therefore be classified as hard and tough materials [49].

4. Conclusions

Blends from GalXMe polyamides with semicrystalline PA(6,12) and amorphous PA(PACM,12)
were successfully prepared by thermal processing in the extruder. The GalXMe polyamides with
alicyclic and aliphatic diamines were stable during processing conditions. However, the GalXMe
polyamides made with aromatic diamines were susceptible to degradation, particularly under extended
processing times.

The blends showed no miscibility with PA(IPDA,GalXMe) and PA(MXD,GalXMe), and partial
miscibility with PA(PPDA,GalXMe). PA(PPDA,GalXMe) blends showed no phase separation under the
SEM microscope, likely as a result of the compatibilizing effect induced by transamidation reactions
occurring during the thermal processing in the extruder.

While the incorporation of GalXMe polyamides into the composition increased the Young’s
modulus up to 82%, the elongation at break decreased, which resulted in a hard and brittle material.
On the other hand, the most promising blends with PA(PPDA,GalXMe) showed ductility when they
were blended with commercial polyamide PA(PACM,12).
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