Supplementary Materials

Influence of MoS₂ nanosheet size on

performance of drilling mud

Sung Hyun Hong¹, Hae Jin Jo², Min-Ju Choi³, Ho Won Jang³, Young Ju Kim^{4,*},

Wook Ryol Hwang ^{2,*} and Soo Young Kim ^{1,*}

¹ School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; hongthomas91@cau.ac.kr; sooyoungkim@cau.ac.kr

² School of Mechanical Engineering, Research Center for Aircraft Parts Technology (ReCAPT), Gyeongsang National University, Jinju, 52828, Republic of Korea; haejinjo@gnu.ac.kr; wrhwang@gnu.ac.kr

³Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; choiminju@snu.ac.kr; hwjang@snu.ac.kr

⁴ Korea Institute of Geoscience and Mineral Resources, 905 Yeongilman-daero, Heunghae-eup, Buk-gu, Pohang-si, Gyeongsangbuk-do 37559, Republic of Korea; kyjp7272@kigam.re.kr
* Correspondence: Young Ju Kim: kyjp7272@kigam.co.kr; Tel.: +82-54-245-3780, Wook Ryol Hwang: wrhwang@gnu.ac.kr; Tel.: +82-55-772-1628, Soo Young Kim: sooyoungkim@cau.ac.kr; Tel.: +82-2-820-5875:

Received: date; Accepted: date; Published: date

Figure S1. FE-SEM image of bentonite. (a) The particle size of bentonite is about 1 to 3 μ m. (b) The particle shape appears to have a rough spherical surface.

Table S1. Table of WBM compositions. MoS₂ was divided into 4 kinds of N-S, N-B, M-S and M-B and concentrations of 1, 3 and 5wt% were added to the base fluid.

			MoS ₂	
WBM	Bentonite	Thickness	Diameter	Concentration
Base fluid	5wt%	-	-	-
+1wt% N-S	5wt%	1-2 nm	100-400 nm	1wt%
+3wt% N-S	5wt%	1-2 nm	100-400 nm	3wt%
+5wt% N-S	5wt%	1-2 nm	100-400 nm	5wt%
+1wt% N-B	5wt%	1-2 nm	300-600 nm	1wt%
+3wt% N-B	5wt%	1-2 nm	300-600 nm	3wt%
+5wt% N-B	5wt%	1-2 nm	300-600 nm	5wt%
+1wt% M-S	5wt%	5-10 nm	100-400 nm	1wt%
+3wt% M-S	5wt%	5-10 nm	100-400 nm	3wt%
+5wt% M-S	5wt%	5-10 nm	100-400 nm	5wt%
+1wt% M-B	5wt%	5-10 nm	400-650 nm	1wt%
+3wt% M-B	5wt%	5-10 nm	400-650 nm	3wt%
+5wt% M-B	5wt%	5-10 nm	400-650 nm	5wt%

WBM	Thermal conductivity (W/m·K)	Rate of increase (%)
Base fluid	0.577	-
+1wt% N-S	0.591	2.4
+3wt% N-S	0.597	3.5
+5wt% N-S	0.609	5.5
+1wt% N-B	0.596	3.3
+3wt% N-B	0.611	5.9
+5wt% N-B	0.648	12.3
+1wt% M-S	0.597	3.5
+3wt% M-S	0.609	5.5
+5wt% M-S	0.639	10.7
+1wt% M-B	0.595	3.1
+3wt% M-B	0.609	5.5
+5wt% M-B	0.620	7.5

Table S2. The table of WBM's thermal conductivity. WBM with 5wt% nanosheets and big
 diameter MoS2 showed the highest thermal conductivity.