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Abstract: This study proposes to utilize modified Nano-SiO2/fluorinated polyacrylate emulsion
that was synthesized with a semi-continuous starved seed emulsion polymerization to improve the
hydrophobicity, thermal stability, and UV-Vis absorption of polyacrylate emulsion film. To verify the
proposed method, a series inspection had been conducted to investigate the features of the emulsion
film. The morphological analysis indicated that Nano-SiO2 was surrounded by a silane molecule
after modification, which can efficiently prevent silica nanoparticles from aggregating. Fourier
transform infrared spectra confirmed that modified SiO2 and dodecafluoroheptyl methacrylate
(DFMA) were successfully introduced to the copolymer latex. The particle size of latex increased with
the introduction of modified Nano-SiO2 and DFMA. UV-Vis absorption spectra revealed that modified
silicon nanoparticles can improve the ultraviolet shielding effect obviously. X-ray photoelectron
spectroscopy illustrated that the film–air interface was richer in fluorine than film section and the glass
side. The contact angle of modified Nano-SiO2/fluorinated polyacrylate emulsion containing 3 wt %
DFMA was 112◦, slightly lower than double that of polyacrylate emulsion, indicating composite
emulsion films possess better hydrophobicity. These results suggest that introducing modified
Nano-SiO2 and fluorine into polyacrylate emulsion can significantly enhance the thermal stability of
emulsion films.
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1. Introduction

Being widely used in aircraft, functional smart coating, building, navigation, textile, and many
other fields, hydrophobic material has attracted considerable attention in recent years [1–3]. Due to
excellent film appearance, high gloss, good mechanical properties, and ideal adhesive properties
with a wide variety of substance, acrylate polymer latex is the most popular coating material [4–6].
However, acrylate polymer latex is depreciated when waterproof performance is highly emphasized,
since it usually has low hydrophobicity [7]. Therefore, great efforts have been made to modify the
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structure of polyacrylate emulsion coating to improve its hydrophobicity. Many studies have shown
that combining the advantages of inorganic and organic materials to form organic/inorganic composite
coatings is an effective method [8–10]. Among all inorganic materials, such as SiO2, TiO2, Al2O3, ZrO2,
and CaCO3, Nano-SiO2 is considered the most promising composite [11]. It can not only significantly
improve the mechanical property, heat-resistance, and weather-resistance of a polymer, but also reduce
the cost of organic materials and emissions of volatile organic compounds. In addition, owing to the
low polarizability and strong electro-negativity of fluorine atoms, fluorine-containing polymer exhibits
various merits, such as unique surface and optical properties, high thermal, chemical, and weather
resistance [2,12,13]. Therefore, it has been widely applied to material coating [14–17] and many studies
on hydrophobic coatings have focused on silica- and fluorine-modified acrylic polymers [18].

In general, there are two common methods to synthesize Nano-SiO2/fluorinated polyacrylate
emulsion [19]. For the first method, Liao et al. [20] synthesized silica/polyacrylate hybrid latexes with
high silicon contents by directly mixing colloidal silica with polyacrylate emulsion modified by a silane
coupling agent. However, heterogeneous dispersion of the inorganic nanoparticles in the polymer
matrix is challenging [8,21–23]. In addition, the interaction between inorganic nanoparticles and the
organic components was weak in such cases. Another method is based on emulsion polymerization in
the presence of Nano-SiO2. For example, Xu et al. [24] reported a poly (methacrylic-methacrylate)/silica
hybrid material with high transparency and heat-stability via a sol-gel process. Chen et al. [25] prepared
polyester-based polyurethane/silica composite and showed that the composite obtained by in situ
polymerization had better mechanical properties than those achieved by the blending method when
silica content is high. Zhou et al. [7] synthesized organic fluorine and Nano-SiO2 modified polyacrylate
emulsifier-free latex film, via emulsifier-free emulsion polymerization. Although latex film presented
excellent mechanical properties and hydrophobicity, current synthesis of Nano-SiO2/fluorinated
polyacrylate hydrophobic emulsion still has challenges, such as the usage of organic solvent, which can
cause environmental problems. The separation and purification process is also time-consuming and can
cause secondary reunion of the Nano-SiO2, which can result in performance deterioration. Therefore,
this study intends to improve the hydrophobicity of polyacrylate emulsion film and simultaneously
decrease the amount of organic solvent used in the preparation process, coupling reagent modified
Nano-SiO2/fluorinated polyacrylate latex particles were synthesized by a semi-continuous starved
seed emulsion polymerization with TEOS as precursors for Nano-SiO2. The thermal stability and
ultraviolet shielding effect of composite and their impact on the hydrophobicity of the latex film
were investigated.

2. Material Preparation and Experiment Setup

2.1. Materials

For the raw materials of this study, the methyl methacrylate (MMA), butyl acrylate (BA),
2-Hydroxyethyl acrylate (HEA) and ethyl silicate (TEOS) of analytical grade were purchased from
Shanghai Macklin Biochemical Co. Ltd. (Shanghai, China) and used as the main monomers.
The precursors, such as SiO2, methacryloyl-propyl trimethoxysilane (KH-570), alkylphenol ethoxylates
(OP-10), and dodecafluoroheptyl methacrylate (DFMA) were provided by Aladdin Chemistry Co. Ltd.
(Shanghai, China). Potassium persulfate (K2S2O8, analytical grade) was selected as an initiator,
while ammonia and ethanol were obtained from Shanghai Resin Co. Ltd. (Shanghai, China).
The deionized water (H2O) was self-prepared in the laboratory. All agents were used without any
further purification.

2.2. Preparation and Modification of Silica Nanoparticles

The silica nanoparticles were prepared through the minor modification [26]. With this method,
ammonia and ethanol solution were mixed in a three-neck flask in a water bath. The temperature was
kept below 50 ◦C, a certain amount of TEOS was dropwise added to the above solution and stirred for
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2 h to acquire silica sol. After several centrifugations and washing with anhydrous ethanol, the silica
nanoparticles were successfully prepared. Having been redistributed in the KH-570 solution (5 vol.%
KH-570, 45 vol.% ethanol, 50 vol.% H2O) and vigorously agitated for 15 min, the Nano-SiO2 would
be successfully modified by silane. Finally, the modified Nano-SiO2 was obtained by high-speed
centrifugation followed by vacuum drying at 50 ◦C for 6 h.

2.3. Preparation of Modified Nano-SiO2/Fluorinated Polyacrylate Emulsion

The modified Nano-SiO2/fluorinated polyacrylate emulsion (for convenience, the modified
Nano-SiO2/fluorinated polyacrylate emulsion was abbreviated to Si/F polyacrylate emulsion)
was successfully synthesized by a semi-continuous starved seed emulsion polymerization. Firstly,
the mixture of MMA, BA, HEA, and modified Nano-SiO2 was introduced into OP-10 aqueous solution
under the condition of vigorous stirring at the 40 ◦C to form a pre-emulsion I. Then 1/3 pre-emulsion I,
H2O, and K2S2O8 were added to four-neck flask equipped with a reflux condenser, thermometer,
and mechanical stirrer, the reaction was kept at 70 ◦C for 30 min. Subsequently, the remaining 2/3
pre-emulsion I and K2S2O8 solution were dropwise added to the above mixture within 2 h. After
that, the reaction continued for another 1 h. Later, a certain amount of mixture containing MMA, BA,
HEA, and DFMA were dropped into the flask within 3 h. Lastly, ammonia was slowly appended into
the synthesized emulsion to adjust the pH value to between 6 and 8 to yield stable Si/F polyacrylate
emulsion after 2 h continuous reaction at 85 ◦C. The recipes of polyacrylate emulsion are summarized
in Tables 1 and 2.

Table 1. Recipes for modified Nano-SiO2/polyacrylate emulsion without fluorine.

Ingredients S1 S2 S3 S4 S5 S6 S7

MMA (g) 5 5 5 5 5 5 5
BA (g) 4.8 4.8 4.8 4.8 4.8 4.8 4.8

HEA (g) 1.4 1.4 1.4 1.4 1.4 1.4 1.4
OP-10 (g) 0.8 0.8 0.8 0.8 0.8 0.8 0.8
DFMA (g) 0 0 0 0 0 0 0
H2O (g) 100 100 100 100 100 100 100
SiO2 (g) 0 1.13 2.29 2.87 5.89 9.08 12.44

SiO2 (wt %) 0 1 2 2.5 5 7.5 10
Contact angle (θ) 59 67 79 88 90 78 75

Table 2. Recipes for Nano-SiO2/fluorinated (Si/F) polyacrylate emulsion.

Ingredients F1 F2 F3 F4 F5 F6 F7

MMA (g) 5 5 5 5 5 5 5
BA (g) 4.8 4.8 4.8 4.8 4.8 4.8 4.8

HEA (g) 1.4 1.4 1.4 1.4 1.4 1.4 1.4
OP-10 (g) 0.8 0.8 0.8 0.8 0.8 0.8 0.8
DFMA (g) 1.19 2.41 3.65 4.91 6.20 7.52 8.87
H2O (g) 100 100 100 100 100 100 100
SiO2 (g) 5.89 5.89 5.89 5.89 5.89 5.89 5.89

DFMA (wt %) 1 2 3 4 5 6 7
Contact angle (θ) 99 106 112 115 119 122 124

2.4. Preparation of Latex Film

The Si/F polyacrylate emulsion was cast onto the clean glass plate and formed a uniform latex
film at room temperature for 24 h. As shown in the above tables, the reference experiment sample for
the modified Nano-SiO2/polyacrylate latex film is S5 and for Si/F polyacrylate latex film is F3. In the
following discussions, unless otherwise stated, modified Nano-SiO2/polyacrylate latex refers to S5
and Si/F polyacrylate latex refers to F3.
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2.5. Characterization Experiments

With the experiment samples, several characterization experiments were conducted. The Fourier
transform infrared spectra (FT-IR) test was taken on EQUINOX 55 instruments. The morphologies of
Nano-SiO2, modified Nano-SiO2, and composite latex particles were observed, using a transmission
electron microscopy (TEM, JEM-2010HR, JEOL, Tokyo, Japan). The contents and elements of the
samples were examined with an X-ray photoelectron spectroscopy (XPS, Axis UltraDLD, Shimadzu,
Kratos, Japan). The latex particle size distribution was recorded by a ZetaPlus apparatus by
Dynamic Light Scattering (DLS, Brookhaven Instrument, NY, USA). The UV-line 9400 type ultraviolet
spectrometer was used to test the absorption property of latex films to ultraviolet light. Thermal
gravimetric tests (TG 209 F3, NETZSCH, SELB, Germany) were carried out under a nitrogen
atmosphere from 25 to 650 ◦C at a heating rate of 10 ◦C/min. Contact angles were measured using a
sessile drop method on a Dataphysics OCA20CA system (Dataphysics, Filderstadt, Germany) at room
temperature. The experiment used deionized water as the probe liquid and the results were acquired
30 s after the dropping of a water drop (3–5 µL) on the latex films.

3. Results and Discussion

3.1. Structure and Morphology of Nano-SiO2, Modified Nano-SiO2, and Si/F Polyacrylate Latex

Figure 1a shows the TEM image of Nano-SiO2. It can be observed that the Nano-SiO2 was densely
packed into a large area and exhibits severe aggregations. After modification by KH-570, as shown in
Figure 1b,c, the modified silica nanoparticles were presented as separated particles with a diameter
of about 50 nm. This can be explained by the silane molecules that on the surface of Nano-SiO2 can
prevent the aggregation of the particles due to the steric repulsion and a decrease in surface energy
of silica nanoparticles [27]. Therefore, it can be concluded that modification using a silane coupling
agent can help Nano-SiO2 disperse in the polyacrylate composite emulsion. Figure 1d shows that the
diameter of Si/F polyacrylate latexes are around 80 nm with core-shell structure, where the modified
Nano-SiO2 forms the core (black regions) and fluorinated polyacrylate forms the shell (grey regions).
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3.2. FT-IR Analysis

Figure 2 shows the FT-IR spectra of Nano-SiO2, modified Nano-SiO2, and Si/F polyacrylate latex.
The 1100 cm−1 and 468 cm−1 peaks in the Nano-SiO2 spectrum are the stretching and bending vibration
absorption peaks of Si–O–Si, respectively [26]. After modification using KH-570, new characteristic
absorption peaks appeared. The peaks located at 2953 cm−1 and 2842 cm−1 are the stretching vibration
of C-H belonging to –CH3 and –CH2–. The characteristic stretching vibration peak of C=O also
appears at 1724 cm−1, indicating that KH-570 molecules were successfully grafted on the surface of
Nano-SiO2 [7,26–28]. In Si/F polyacrylate latex spectrum, the characteristic peaks of C–F, Si–O–Si, and
ether [(O=C)–O–C] appear in at 1350–1090 cm−1, 1250–1000 cm−1 and 1075–1020 cm−1, respectively.
These peaks almost overlapped each other [29]. In addition, the peak emerged at 690 cm-1 was
attributed to the wagging vibration of C–F bonds [30], indicating that DFMA had taken part in the
polymerization reaction to form the Si/F polyacrylate latex. All these analyses illustrate that SiO2

and DFMA were successfully introduced into the polyacrylate by semi-continuous starved seed
emulsion polymerization.
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Figure 2. FT-IR spectra of Nano-SiO2, modified Nano-SiO2, and Si/F polyacrylate latex.

3.3. Particle Size Distribution of Composite Latex

Figure 3 shows the particle size and size distributions of modified Nano-SiO2, modified
Nano-SiO2/polyacrylate latex, and Si/F polyacrylate latex. The average diameter of the modified
Nano-SiO2 is 52 nm and the modified Nano-SiO2/polyacrylate latex and Si/F polyacrylate latex
were increased to 76 and 83 nm, respectively. It can be found from Figure 3b,c that there was no
modified Nano-SiO2/polyacrylate latex or Si/F polyacrylate latex particle that was less than 52 nm.
This means that all modified Nano-SiO2 particles were surrounded by an organic layer. Figure 4
shows the influence of DFMA contents on the Si/F polyacrylate latex size. When there is no DFMA
(0 wt %), the diameter is equal to 76 nm, in accordance with Figure 3b. The diameter of the emulsion
particles increased to 86.5 nm as the DFMA amount increased from 0 to 7 wt %, which confirms that
Si/F polyacrylate latex presented a core-shell structure where polyacrylate contained fluorine in the
shell layer.
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3.4. Surface Analysis of Composite Polyacrylate Emulsion Films

The surface element composition significantly impacts the surface property and
hydrophobicity [31] and Figure 5 shows the XPS spectra of Si/F polyacrylate emulsion film
at different interfaces. Figure 5a shows the overall XPS spectrum of the Si/F polyacrylate emulsion
film. The peaks at 102.34 eV, 153.47 eV, 284.89 eV, 532.16 eV, and 688.65 eV are corresponding to
Si2p, Si2s, C1s, O1s, and F1s, respectively [32]. Figure 5b shows the high-resolution XPS spectrum.
The peaks at 293 eV, 288 eV, 286 eV, and 284 eV are corresponding to –CF3, –CF, C–O, and C–C [15],
respectively. The appearance of silicon (Si2p, Si2s) and fluorine (F1s) signals in Figure 5a indicates that
both the SiO2 and fluorine element are presented at the surface of the composite films [33]. In addition,
it can be observed from Figure 5c that the signal of fluorine in the film–air interface is more intense
than that in the film–glass interface, suggesting that the fluorine content in the film–air interface
is higher than that in the film–glass interface. Due to low surface energy and the self-aggregated
property of the fluorine atom, the fluorinate-contained group preferentially oriented to the film surface
during the film formation to decrease surface energy of films [34,35].
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3.5. Effects of Modified Nano-SiO2 on UV Shielding Effect of Composite Emulsion Film

Figure 6 shows the UV-Vis absorption spectra of modified Nano-SiO2, fluorinated polyacrylate
emulsion film, and Si/F polyacrylate emulsion film. The Si/F polyacrylate emulsion film had a strong
absorption capacity in the UV range from 200 to 300 nm, while the absorption capacity is much weaker
for fluorinated polyacrylate emulsion without SiO2. The broad absorption bands of Si/F polyacrylate
emulsion film results from the electron transition within the Nano-SiO2, as revealed in the modified
Nano-SiO2 spectrum [36]. It can also be seen that adding modified Nano-SiO2 into polyacrylate
emulsion has little impact on the absorption intensity in the visible light region. Thus, it can be
concluded that introducing silica nanoparticles into acrylate polymer emulsion can significantly
improve the ultraviolet shielding effect of hydrophobic polyacrylate emulsion films.
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film, and Si/F polyacrylate emulsion film.

3.6. Thermal Stability of Si/F Polyacrylate Emulsion Films

Thermal weight loss curves of the polyacrylate emulsion film, modified Nano-SiO2/polyacrylate
emulsion film and Si/F polyacrylate emulsion film are exhibited in Figure 7. It can be seen that
the 5% weight reduction of polyacrylate emulsion film, modified Nano-SiO2/polyacrylate emulsion
film, and Si/F polyacrylate emulsion film happened at 355 ◦C, 376 ◦C, and 390 ◦C, respectively.
This indicates that the thermal stability of the polyacrylate emulsion film was increased by introducing
SiO2 and fluorinated groups. Modified Nano-SiO2 can increase the heat resistance of polyacrylate
emulsion because of its low thermal conductivity.
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Figure 7. Thermal gravimetric curves of polyacrylate emulsion film, modified Nano-SiO2/polyacrylate
emulsion film, and Si/F polyacrylate emulsion film.

In addition, the presence of silicon network (–Si–O–Si–) in the latex films delayed the degradation
of composite films, so a higher temperature is required for the same weight loss amount for the
modified Nano-SiO2/polyacrylate emulsion films and the Si/F polyacrylate emulsion films [37].
When the fluorinated group was introduced to the polyacrylate emulsion, the C–F with high bond
energy, concentrating on the surface of the latex particles, can prevent other bonds inside the latex
particles from fracturing. Therefore, the thermal stability of polyacrylate emulsion film can be improved
by introducing modified Nano-SiO2 and fluorinated groups.
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3.7. Hydrophobicity of Si/F Polyacrylate Emulsion Films

The contact angles can directly reflect the hydrophobic property of a composite. Figure 8 and
Tables 1 and 2 show the effects of DFMA and modified Nano-SiO2 contents on contact angles of latex
films. It can be observed that the contact angles increased with the increasing modified Nano-SiO2

dosages. The increase in modified Nano-SiO2 content may result in an increase in the surface roughness
of film, and therefore give rise to increasing contact angles [34,38]. When the content of modified
Nano-silica exceeded 5 wt %, the contact angle of the hybrid film gradually decreased with the
continuing increase of SiO2. The possible reason is that modified Nano-SiO2 particles were exposed
to the surface of the hybrid film, and a portion of Nano-SiO2 particles have not been completely
modified by KH-570 carried hydroxyl groups. Therefore, 5 wt % SiO2 was selected for further research
in terms of the effects of DFMA contents on the hydrophobic property. Contact angles of latex films
also increased considerably with the increase in fluorine monomer dosages. Due to the low surface
energy of fluorine element, side chain fluorine-containing groups preferentially migrated to the surface
of latex films in the film forming process [39]. When the DFMA dosage is 3 wt %, the contact angle
is 112◦. However, when the DFMA exceeds 3 wt %, the increment of contact angles start to shrink
because the migration of fluorine atoms onto the film surface is hindered by the steric effect of the
fluorine-contained groups [40].
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4. Conclusions

In this study, hydrophobic Si/F polyacrylate emulsion was successfully synthesized via a
semi-continuous starved seed emulsion polymerization. The analysis of the characteristics of the
samples indicates that Nano-SiO2 particles with an average size of 52 nm have been successfully
prepared with the sol-gel method. After the modification process, the modified silicon nanoparticles
were evenly dispersed in the polyacrylate emulsion and had intensive interaction with the polyacrylate.
Fluorine elements were detected at the surface of the composite polyacrylate emulsion film and the
content in the film–air interface was higher than that in the film–glass interface, suggesting the
fluorine preferentially concentrated on the film–air interface. The modified Nano-SiO2 can provide
polyacrylate emulsion film with an obvious UV shielding effect. The thermal stability of polyacrylate
emulsion films was also improved by the modified Nano-SiO2 and fluorine (5% weight reduction
of polyacrylate emulsion film occurred at 355 ◦C, while Si/F polyacrylate emulsion film at 390 ◦C).
Most importantly, the introduction of modified Nano-SiO2 and fluorinate groups can significantly
enhance the hydrophobicity of latex films. When the content of modified Nano-SiO2 is 5 wt %, the latex
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film can reach its optimal hydrophobicity. Based on this silica dosage, as the weight fraction of DFMA
is increased to 3 wt % from 0, the contact angle will also increase by 22◦. The results of this study
reveal that the prepared polyacrylate emulsion has great promise in the area of waterproof coating,
surface coatings for paper, leather, textiles, and the walls of buildings.
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