Supplementary Materials for:

Comparative Studies on Two-Electrode Symmetric Supercapacitor based on Polypyrrole:Poly(4-styrenesulfonate) with different molecular weight of Poly(4styrenesulfonate)

Hoseong Han¹, Jun Seop Lee² and Sunghun Cho^{1,*}

¹ School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of

Korea.

² Department of Materials Science and Engineering, College of Engineering, Gachon

University, Seongnam 13120, Republic of Korea.

*E-mail: shcho83@ynu.ac.kr Tel.: +82-53-810-2535

C	_		Atomic 1	ratio (%)		
Sample	С	Ν	0	S	Cl	Fe
PPy100	54.30	8.11	21.17	6.95	4.87	4.60
PPy20	55.91	6.93	21.54	7.19	4.74	3.69
PPy7	56.12	8.17	21.38	5.90	5.19	3.24

Table S1. Elemental composition of PPy:PSS with different average molecular weights.

Table S2. Peak analyses of XPS core spectra in the N(1s) region of PPy:PSS with different average molecular weights.

Commis		Peak ra	atio ^a	
Sample	-NH-	–NH●⁺	=NH ⁺	N ⁺ /N ratio ¹
PPy100	0.54	0.33	0.13	0.46
PPy20	0.69	0.21	0.10	0.31
PPy7	0.81	0.13	0.06	0.19

"Values were calculated using the N(1s) core spectra of the samples.

Table S3. IR values of coin cells employing PPy:PSS with different average molecular weights at different current densities.

Commis	Internal resistance (IR, ohm/cm ²) ^a						
Sample	0.05 A/g	0.10 A/g	0.25 A/g	0.50 A/g	1.0 A/g	2.0 A/g	
PPy100	5.88 ± 0.60	6.02 ± 0.60	6.21 ± 0.65	6.29 ± 0.65	6.37 ± 0.70	6.58 ± 0.70	
PPy20	19.2 ± 1.8	19.7 ± 1.9	20.7 ± 2.0	21.5 ± 2.0	22.6 ± 2.2	24.1 ± 2.2	
PPy7	48.7 ± 5.0	50.0 ± 5.0	51.0 ± 5.2	53.6 ± 5.3	56.0 ± 5.5	62.5 ± 6.6	

^aValues were calculated from the IR drops observed in the GCD curves.

Table S4. Mass capacitance (F/g) of coin cells employing PPy:PSS with different average molecular weights at different current densities.

Commente	Mass capacitance $(C_m, F/g)^a$						
Sample	0.05 A/g	0.10 A/g	0.25 A/g	0.50 A/g	1.0 A/g	2.0 A/g	
PPy100	109.5 ± 10.0	108.7 ± 9.8	107.3 ± 9.6	101.0 ± 9.0	93.5 ± 8.5	84.2 ± 8.0	
PPy20	25.3 ± 2.5	23.5 ± 2.2	21.0 ± 2.0	20.0 ± 1.9	18.6 ± 1.8	16.6 ± 1.5	
PPy7	13.0 ± 1.3	11.2 ± 1.2	10.8 ± 1.0	10.1 ± 1.0	9.42 ± 0.90	8.01 ± 0.80	

^aValues were calculated from the IR drops observed in the GCD curves.

Commis			Areal capacitance (C _A , F/cm ²) ^a				
Sample	0.9 A/cm ²	1.8 A/cm ²	4.5 A/cm ²	9.0 A/cm ²	18.0 A/cm ²	36.0 A/cm ²	
PPy100	175.3 ± 16.0	173.9 ± 15.7	171.6 ± 15.4	161.6 ± 14.4	149.7 ± 13.6	134.6 ± 12.8	
PPy20	40.5 ± 4.0	37.7 ± 3.5	33.6 ± 3.2	31.2 ± 3.0	29.8 ± 2.8	26.6 ± 2.4	
PPy7	20.8 ± 2.1	18.0 ± 1.9	17.2 ± 1.8	16.2 ± 1.6	15.1 ± 1.4	12.8 ± 1.3	

Table S5. Areal capacitance (F/cm²) of coin cells employing PPy:PSS with different average molecular weights at different current densities.

^aValues were calculated from the IR drops observed in the GCD curves.

Table S6. Volumetric capacitance (F/cm³) of coin cells employing PPy:PSS with different average molecular weights at different current densities.

Commun		Vo	Volumetric capacitance (Cv, F/cm ³) ^a				
Sample	0.9 A/cm ²	1.8 A/cm ²	4.5 A/cm ²	9.0 A/cm ²	18.0 A/cm ²	36.0 A/cm ²	
PPy100	584.2 ± 53.3	579.5 ± 52.9	572.1 ± 52.0	538.7 ± 48.0	498.9 ± 13.6	448.8 ± 42.7	
PPy20	135.1 ± 13.3	125.5 ± 11.7	112.0 ± 10.7	106.5 ± 8.0	99.2 ± 7.7	88.6 ± 7.4	
PPy7	69.3 ± 6.9	59.8 ± 6.4	57.4 ± 5.3	53.9 ±5.1	50.3 ± 4.8	42.7 ± 4.3	

^aValues were calculated from the IR drops observed in the GCD curves.

Table S7. Energy density (E, Wh/kg) of coin cells employing PPy:PSS with different average molecular weights at different power densities (P, W/kg).

Commla			Energy density (E, Wh/kg) ^a				
Sample	100 W/kg	200 W/kg	500 W/kg	1000 W/kg	2000 W/kg	4000 W/kg	
PPy100	197.2 ± 18.0	195.6 ± 17.8	193.1 ± 17.6	181.8 ± 16.2	168.4 ± 15.3	151.5 ± 14.4	
PPy20	45.6 ± 4.5	42.4 ± 4.0	37.8 ± 3.6	35.9 ± 2.7	33.5 ± 2.6	29.9 ± 2.4	
PPy7	23.4 ± 2.3	20.1 ± 2.2	19.4 ± 1.8	18.2 ± 1.7	17.0 ± 1.6	14.4 ± 1.4	

^{*a*}Values were calculated from the mass capacitance, voltage drop, and discharge time observed in the GCD curves.