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Abstract: Dispersion of iron was achieved on waste silk fibers (wSF) after grafting of polydopamine
(PDA). The catalytic activity of the resulting material (wSF-DA/Fe) was investigated in Fenton-like
removal of toxic aromatic dyes (Methylene Blue, Cationic Violet X-5BLN, and Reactive Orange GRN)
water. The dye removal yield reached 98%, 99%, and 98% in 10–40 min for Methylene Blue, Cationic
Violet X-5BLN, and Reactive Orange GRN, respectively. The catalytic activity was explained in terms
of the effects of temperature, dyes, and electrolytes. In addition, the kinetic study showed that the
removal of dyes followed pseudo-1st order adsorption kinetics. These findings allow envisaging the
preparation of fiber-based catalysts for potential uses in environmental and green chemistry.

Keywords: waste silk; dopamine; iron particles; wastewater treatment

1. Introduction

The control of the water pollution is becoming one of the major challenges worldwide. As for
extensive industrialization and subsequently the massive discharge of numerous types of organic
toxicants, such as dyes, phenols, and nitroaromatic compounds [1–3] releasing in water supplies is
becoming a serious issue. However, all of the pollutants are receiving tremendous attention from the
water researchers, among them the aromatic dyes received one of the highest concerns due to their
high toxic nature, chemical stability, and their resistance to conventional treatment methods [1]. Many
approaches have been introduced by the several researchers where hazardous aromatic dyes were
removed by various processes like biodegradation, chemical oxidation, adsorption, and so on [4–8].
Various heterogeneous catalytic systems with metal oxides or hydroxides like CuO, ZnO, TiO2, and
FeOOH as catalysts, [5,9–11] as well as advanced oxidation systems have also been introduced all over
the decades [12–14].

Fenton and Fenton-like treatments showed superior pollutant degradation/reduction efficiency
compared with microbial oxidative metabolism, and physical adsorption also has some
drawbacks [15–18]. Several new treatment configurations were introduced to optimize the Fenton
process including a photo-assisting process to reduce iron supply [19,20], use of solid iron, or avoid
modifying the natural pH value of wastewater [21], and so on. However, one of the drawbacks of this
system still remained the separation of iron sludge in the solution after the treatment and recycling before
discharging the treated wastewater. This is a time consuming and costly procedure [22]. Immobilization
of iron particles (Fe) may become an appropriate and permanent remediation technique to solve this
problem. However, it is important to immobilize Fe onto a carrier that can be easily separated from
the contaminated water solution as well as provide no/less harm on subsequent management. The Fe
immobilized inpolyacrylic acid(PAA) [23,24], starch [25], and polyglycol [26] reported in different
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literature are difficult to recycle once they are used to treat contaminants. To avoid secondary water
contamination, immobilization of zero-valent iron (ZVI) onto solid supports, for example, polymeric
membranes [27] and activated carbon [28], could be an ideal option. Morshed et al. [29] immobilized
and stabilized ZVI nanoparticles on fibrous polyester. Very few literatures have been found on the use
of textile fibers or fabrics to immobilize iron particles aiming heterogeneous catalytic application.

Silk fibers are one of the most discussed fibers derived from natural sources due to mechanical and
thermomechanical properties. However, due to their exceptional properties and complex production
procedures, raw silk fiber spun out from silkworm cocoons is a luxurious material in many applications.
Hence, the material constructed by silk would not be cost effective compared with other plant based
natural fibers. On the contrary, during industrial process, lots of waste silk fibers or scrap silk fibers are
produced, which are considered as waste and available at extremely low cost. Therefore, the increasing
challenge of recycling them is another concerning issue. So utilizing waste silk into a sustainable
remediation application can be an ultimate alternative.

Due to strong adhesion property, dopamine, a component of marine mussel gaining tremendous
attention for surface modification of different materials [17–19], is being extensively used to prepare
super-hydrophobic, antimicrobial, UV-blocking, conductive, as well as dye adsorption materials. Our
previous study reported use of dopamine to prepare silk fabric with hydrophobicity, flame retardancy,
and UV shielding properties [30]. However, no study reported the effectiveness of dopamine grafted
waste silk fibers to prepare heterogeneous catalyst for Fenton-like wastewater treatment application.

In this work, dopamine was grafted on the surface of silk fibers by rapid oxidative polymerization
followed by loading/immobilization of Fe particles on PDA grafted waste silk fibers. Hence, a fiber-based
catalyst was prepared for heterogeneous Fenton-like removal of toxic aromatic dyes. The surface
morphology and chemical composition of resultant catalyst were characterized by scanning electron
microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared (FT-IR)
spectroscopy. The effectiveness of catalytic property was assessed under the influence of H2O2

concentration, dye concentration, temperature, and electrolytes.

2. Experimental

2.1. Materials

Analytical grade dopamine hydrochloride (98.5%), sodium perborate(NaBO3·4H2O), ferric
chloride hexahydrate (FeCl3·6H2O), hydrogen peroxide (H2O2, 33%), and ferrous sulfate heptahydrate
(FeSO4·7H2O) were purchased from Shanghai Lingfeng Chemical Reagent Co., Ltd. (Shanghai, China)
and used as received. Waste silk (average fiber diameter 10 µm) were obtained from Nantong Nafuer
Clothing Co., Ltd (Nantong, China). All the dyes (Methylene Blue, Cationic Violet X-5BLN and Reactive
Orange GRN) were purchased from Tianjin Tianshun Chemical Dyestuff Co., Ltd (Tianjin, China).

2.2. Methods

2.2.1. Preparation of Dopamine Grafted Waste Silk

Scheme 1 illustrates the pathways used for grafting of dopamine on waste silk. Typically, 1.60 g of
waste silk was wetted by deionized water as a pre-treatment. Then, 0.6 g of dopamine hydrochloride
and 0.16 g of FeCl3·6H2O were dispersed in 300 mL deionized water. Wet waste silk fibers were added
in dopamine solution and placed in a shaking water bath for 20 min followed by addition of 0.55 g of
NaBO3·4H2O, the final solution was stirred at 50 ◦C for 50 min. The resultant dopamine grafted waste
silk fibers (wSF-PDA) were rinsed and dried overnight in ambient condition.
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2.2.2. Preparation of wSF-PDA/Fe

The loading of iron on dopamine grafted waste silk fibers were carried out using chemical
adsorption and incorporation method as illustrated in Scheme 1. Here, 15.54 g of FeSO4·7H2O were
dissolved in 1400 mL deionized water in a ceramic tray and stirred until uniform dispersion. Then, the
prepared (as Section 2.2.1 described) dopamine-grafted waste silk fibers were immersed in the iron
solution and kept at 25 ◦C for 24 h. The resultant wSF-PDA/Fe undergone successive rinse and stored
in a desiccator before analysis and use.

2.3. Material Characterizations

Fourier transform IR spectroscopy of pristine and iron-loaded wSF was carried out using a
Nicolet-5700 Fourier transform infrared spectrometer (MA, USA). The sample to be tested was cut
into powder and sampled by potassium bromide. The scanning range was 600–4000 cm−1 and the
number of scans was 120 times. The samples were drilled before IR analysis, and background spectra
were recorded on air. Surface morphologies of all wSF (before and after dopamine grafting and iron
loading) were analyzed using desktop scanning electron microscope (Hitachi Ltd., Tokyo, Japan) at an
accelerating voltage of 15 kV. Prior to SEM, samples were sprayed with a conducting resin followed
by sputter coating with carbon films having a deposition depth of about 10 nm. Energy dispersive
spectroscopy (EDS) was carried out using BRUKNER axes EDS analyzer mounted with SEM.

2.4. Catalytic Activity of wSF-DA/Fe

To study the catalytic performance of wSF-PDA/Fe, the heterogeneous Fenton-like removal of
dyes (methylene blue, cationic violet X-5BLN, and reactive orange GRN) in presence of hydrogen
peroxide (H2O2) was investigated. Typically, 70 mL of dye solution (10–81 mg/L) were treated by using
0.1 mg wSF-PDA/Fe 8 µL (0.05–5 mmol/L) of H2O2 at a specific temperature (25, 50, or 75 ◦C). A small
amount of solution was taken through a Lab Sphere UV-1000F transmission analyzer (Lab sphere, Inc.,
North Sutton, VA, USA) to determine the specific absorbance at the characteristic peak of the dye, and
the corresponding dye residual rate is calculated as per the Equation (1) [31]:

Removal rate% = (C0 − C)/C0 × 100 (1)

where C is the concentration of the dye during removal at different time interval and C0 is the initial
concentration of the dye. C/C0 was calculated at the maximum absorption wavelength of the dye in
visible region. For example, methylene blue at 665 nm, cationic violet X-5BLN at 590 nm, and reactive
orange GRN at 480 nm. Control experiments using wSF and wSF-PDA with/or without hydrogen
peroxide were conducted to investigate the adsorption and catalytic property of the catalyst.

2.4.1. Effect of H2O2 Concentration on Removal Performance

The effects of different H2O2 concentrations on dye degradation were investigated. The reaction
conditions were as follows: the reaction temperature was 50 ◦C, the pH of the reaction was about 7, the
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concentration of the dye solution was 20 mg/L, and the wSF-PDA/Fe was 0.1 g. The concentration of
hydrogen peroxide studied was 0.05, 0.1, 0.5, 1, 3, and 5 mmol/L.

2.4.2. Effect of Pollutant Concentration on Removal Performance

The effects of dye concentration on removal efficiency using wSF-PDA/Fe catalyst were examined.
All the experiments were carried out at 50 ◦C, pH = 7 in a shaking water bath where the initial
concentration of H2O2 reagent was 1 mmol/L, and the dopamine grafted iron-loaded waste silk
(wSF-PDA/Fe) was 0.1 g. The dye concentrations were studied at 10, 20, 40, 60, and 80 mg/L, respectively.

2.4.3. Effect of Reaction Temperature on Pollutant Removal Performance

The pollutant removal performances of wSF-PDA/Fe as function of different reaction temperatures
were studied. Standard dye (20 mg/L) and H2O2 (1 mmol/L) concentration was used for 0.1 mg of
wSF-PDA/Fe catalyst. Three-reaction temperatures (25, 50, and 75 ◦C) were studied.

2.4.4. Effect of Different Electrolytes (NaCl, Na2SO4) of Pollutant Removal Performance

In industrial production, dyeing wastewater contains not only dyes, but also many other inorganic
and organic additives. Therefore, the effects of different electrolytes (NaCl, Na2SO4) on the removal
efficiency of wSF-PDA/Fe were also investigated. All the experiments were carried out at 50 ◦C, pH = 7
in a shaking water bath for the 20 mg/L dye using 1 mmol/L H2O2, and 0.1 g wSF-PDA/Fe catalyst.

3. Results and Discussion

The results were presented and discussed in two separate parts, where the first part focused on
analysis of waste silk fibers before and after PDA incorporation and iron loading, and the second
part conferred the catalytic behavior of prepared Fe loaded waste silk fibers towards removal of
various dyes.

Part 1: Analysis of Waste Silk Fibers Before and After Dopamine Incorporation and Iron Loading

Morphological analysis using SEM, as well as elemental and functional group analysis by means
of EDS X-ray and infrared spectroscopy was used to characterize waste silk samples before and after
PDA grafting and iron loading immobilization.

3.1. Morphological Analysis

The changes in surface morphology of the waste silk after different treatment were investigated
(see Figure 1). The untreated waste silk (Figure 1a) exhibits a network of a randomly overlapping fibers
with a smooth surface. However, a uniform layer of cluster can be observed in PDA grafted waste silk
(see Figure 1b), indicating that the PDA is successfully grafted onto the fibers surface through rapid
oxidative polymerization. A large amount of particles are found successfully loaded on the surface of
wSF-PDA and formed wSF-PDA/Fe. In the case of Fe loaded waste silk fibers (see Figure 1c), several
patches appear as regularly shaped clusters [30,32] in the form of layers as demonstrated in Scheme 2.
The presence of functional groups on treated waste silk has been further established by EDS X-ray and
infrared analysis (see proceeding sections).
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3.2. Fourier Transform Infrared (FT-IR) Analysis

In order to further investigate the changes in the structure of the waste silk surface after
various surface modifications, the infrared spectrum analysis was carried out as shown in Figure 2.
The untreated and treated waste silk demonstrated rough bands in the region 1660–1630 cm−1,
which were attributed to the stretching vibration of amide I. Other characteristics peaks found at
1545–1525 cm-1 are the amide II and 1265–1235 cm−1 is the amide III [33,34]. The FT-IR spectra of
sample wSF-PDA and wSF-PDA/Fe showed a characteristic bending at 570 cm−1 [35,36], indicating the
formation of Fe–O due to the presence of PDA [30] and subsequent loading of iron particles.
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3.3. Loading Analysis

EDS X-ray analysis further confirmed the changes in the chemical composition of the fabric surface
before and after treatment (see Figures 3 and 4). The surface elemental composition of untreated and
functionalized silk fibers is presented in Table 1. It can be concluded that the surface element ratio of
N/C of the treated fabric is significantly smaller than the untreated sample [30], indicating successful
grafting of PDA. After loading of iron, the peak intensity of Fe element (4.23%) can be noticed in
wSF-PDA/Fe. A small quantity of iron element was noticed in wSF-PDA derived from the presence of
some Fe-oxides in PDA.
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Part 2: Analysis of Catalytic Fenton-Like Removal Toxic Water Pollutants

Three different dyes (methylene blue, cationic violet X-5BLN, and reactive orange GRN) were
adopted to analyze the catalytic Fenton-like property of prepared fibrous catalyst (wSF-PDA/Fe). Dye
removal as a function of time and influence of several factors, such as concentration of pollutants,
reactants, temperature, and presence of electrolytes, has been investigated by means of UV-Vis
colorimetric analysis.

3.4. Degradation of Dyes as a Function of Time

In order to investigate catalytic behavior of prepared iron loaded waste silk fibrous catalyst,
Fenton-like degradation of methylene blue, cationic violet X-5BLN, and reactive orange GRN dye as
a function of time was studied and analyzed by UV-Vis spectrophotometer (see Figure 5). Fenton
reaction involves the combined use of ferrous ions and hydrogen peroxide (H2O2) to produce advanced
oxidation potential active oxygen species capable of degrading organic contaminants. The dyes selected
in this study are common industrial dyes containing an aromatic ring, which are resistant to traditional
chemical and biological removal methods. As shown in Figure 5, the characteristic absorption peak
intensity of methylene blue at 285 and 665 nm [35] decreased with the function of the reaction time.
Once the reaction reached 10 min, the color almost completely disappeared, hence most degradation
was achieved by 40 min of catalytic oxidation. Similar phenomena were found in the other two (cationic
violet X-5BLN and reactive orange GRN) dyes, where characteristic absorption peak intensity of
cationic violet X-5BLN at 275 and 590 nm and reactive orange GRN at 260 and 480 nm disappeared in 20
and 40 min, respectively. Iron loaded wSF fibrous catalyst showed good color removal efficiency, but no
visible color removal was observed in control experiments performed using wSF-PDA or wSF-PDA/Fe
without one or more reactants (Fe or H2O2) necessary to initiate Fenton reaction. Nonetheless, trivial
reduction in color concentration was observed in various sample (wSF-PDA, wSF-PDA + H2O2, and
wSF-PDA/Fe), which can be due to the adsorption characteristics of heterogeneous catalysts consistent
with the literature [29,37,38].
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3.4.1. Kinetics of Dye Degradation

The [instant/initial] absorbance ratio of the methylene blue, cationic violet X-5BLN, and reactive
orange GRN dye at λ = 665, 590, and 480 nm (At/A0) respectively, which accounts for the corresponding
concentration ratio (C/C0) and allows plotting of ln(C/C0) as a function of time. Model validation of the
pseudo-first-order kinetics for color removal with the catalyst is obtained by the linear evolution in time
of ln(C/C0), as supported by R2 values 0.98, 0.99, and 0.98, respectively (see Table 2). Plots summarized
in Table 2 show that dye degradation exhibited good linear relationships of ln(C/C0) versus reaction
time up to a certain time where maximum number of dyes was degraded following pseudo-first-order
kinetics. These results are consistent with those found in previous reports [10,24,33,39–42].
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Table 2. Pseudo First-order kinetics for the Fenton-like removal of methylene blue, cationic violet
X-5BLN, and reactive orange GRN dye.

Samples
Methylene Blue Cationic Violet X-5BLN Reactive Orange GRN

aTime
(min)

bk
(min−1)

cR2
aTime
(min)

bk
(min−1)

cR2
aTime
(min)

bk
(min−1)

cR2

wSF-PDA/Fe 10 0.576 0.982 25 0.157 0.997 40 0.065 0.984
aReaction time required for color removal; bk: rate constant for the 1st order kinetics and is expressed in min−1; cR2:
correlation coefficient of the linear regression.

3.4.2. Postulated Mechanism of Dye Removal

Based on the results explained in the above sections, a plausible mechanism for removal of all three
dyes has been postulated. The underlying mechanisms of removal of methylene blue, cationic violet
X-5BLN, and reactive orange GRN dyes in the system of iron loaded PDA grafted waste silk fibrous
catalyst were considered for Fenton-like reaction in presence of hydrogen peroxide. The removal of all
dyes was attributed to the synergistic effect caused by free radicals and other reactive species formed
though a heterogeneous Fenton reaction [29]. The produced free radicals oxidize the dyes into colorless
nontoxic substances as illustrated in Scheme 3.
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The postulated main reaction mechanism involves three steps as follows:

(i) The process of producing reactive species

Fe2+ + H2O2→Fe3+ + HO− + •OH (1)

(ii) The process of color removal of dyes

Dyes + •OH→Reaction intermediates (2)

(iii) The process of degradation

Reaction intermediates + •OH→CO2 + H2O (3)
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3.5. Factors Influencing the Removal of Dyes

3.5.1. Effect of Different Samples

It can be seen from Figure 6 that different samples have a great influence on the degradation
dye, and wSF-PDA/Fe-H2O2 is the most effective for degrading dyes. The addition of wSF-PDA
mainly brought about the adsorption of dyes by silk fibers and dopamine dominantly, and the dye
removal rate could not meet the requirements. The addition of wSF-PDA and H2O2 resulted in a lower
degradation rate due to the weaker oxidative decomposition of H2O2 itself and the weak adsorption
of wSF-PDA. The wSF-PDA/Fe also played a dominant role in adsorption, and the dye removal rate
was not significant. The addition wSF-PDA/Fe and H2O2 generated a strong reaction system, which
effectively increased the release rate of hydroxyl radicals and degraded most of the dyes in a short time.

In addition, it is interesting that wSF-PDA and wSF-PDA-H2O2 have better degradation for
methylene blue and cationic violet X-5BLN. This may be due to the negative charge on the surface of
the wSF-PDA sample, which can better absorb cationic dyes and achieve effective degradation.
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3.5.2. Effect of H2O2 Concentration

The effect of H2O2 concentration (0.05, 0.1, 0.5, 1, 3, and 5 mmol/L) on the removal of dyes
was studied. The evaluation of color removal in terms C/C0 as shown in Figure 7 shows that, H2O2

concentration below 0.5 mmol/L showed poor or insufficient dye removal. However, 0.5 to 5 mmol/L
of H2O2 concentration showed most removal of dyes in similar experimental condition. When the
concentration of H2O2 was 0.05 and 0.1 mmol/L, the dye degradation rates after reaction for 40 min
were 48.1% and 57.5%, respectively. At this point, it can be clearly seen that the low concentration of
H2O2 was too diluted to react with the mineralized iron to form sufficient hydroxyl radicals to fully
degrade methylene blue. When the concentration of H2O2 was gradually increased to 0.5, 1, 3, and
5 mmol/L, the final degradation rate reached nearly 97% to 98%, but the efficiency of the reaction was
also quite different. The H2O2 concentration of 1 mmol/L was the appropriate, and the degradation
rate was the faster and saturated within 15–20 min, while the reaction rate of high concentration
H2O2 was decreased. This phenomenon indicated that high concentration of H2O2 cannot increase
the degradation rate as linear regression rather showed no improvement after saturation. The similar
phenomena can be noticed for other two dyes (cationic violet X-5BLN and reactive orange GRN) as
well (see Figure 7b,c).
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Figure 7. Evolution in time of C/C0 of (a) methylene blue, (b) cationic violet X-5BLN, and (c) reactive
orange GRN removal as a function of H2O2 concentration. (wSF-PDA/Fe 0.1 g, dye concentration
20 mg/L, T = 50 ◦C, pH = 7).

3.5.3. Effect of Dye Concentration

The concentration of dyes is a precarious parameter of color removal rate, which influences the
effectiveness of the removal process. The effect of dye concentration on the removal of dyes were
studied in terms of different concentration (10, 20, 40, 60, and 80 mg/L) of dye solutions. Results
presented in Figure 8 show a certain influence on the removal rate of all three dyes due to the variation
in concentration of the dye solution. The results show (see Figure 8) the most removal of dyes at the
initial concentrations from 10–20 mg/L, which moderates upon increase in dye concentration for a
specific reaction time. However, for the maximum concentration (80 mg/L) of dye solution, the removal
percentage remains above 80%. The highest 90% of removal rate on the maximum concentration are
recorded for methylene blue. This may be due to the fact that in the case of high dye concentration,
PDA grafted iron loaded waste silk catalyst forms a stable reaction system with H2O2, at which time
the hydroxyl radical is not easily deactivated, and the probability of contact with the dye increases,
eventually resulting in a high removal.
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3.5.4. Effect of Reaction Temperature

Temperature in a catalytic reaction might increase or decrease the reaction rate, thus the effect of
reaction temperature (25, 50, and 75 ◦C) on the removal of methylene blue, cationic violet X-5BLN, and
reactive orange GRN dyes were studied and the results are shown in Figure 9. It can be seen from
Figure 9a–c that the reaction temperature has a significant influence on the removal of dyes. In the
range of 25–75 ◦C, the dye removal rate increases with increasing temperature. A slight increase in
removal rate can be found in methylene blue removal (see Figure 9a). Whereas, a significant increase
has been noticed in cationic violet X-5BLN and reactive orange GRN dyes. Figure 9c shows that,
when the reaction temperature is 25 ◦C, the final dye removal rate of active orange GRN is 77.2%
after 40 min reaction; when the reaction temperature is 50 and 75 ◦C, the final dye removal rate of
active orange GRN is about 98.5% after 40 min reaction. However, it is clear that the reaction rate at
75 ◦C is significantly faster than 50 ◦C. This phenomenon indicates that the reaction rate under high
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temperature conditions accelerates the decomposition of H2O2 into hydroxyl radicals, which increases
the velocity of dye degradation reaction. Similar phenomena are found in removal of cationic violet
X-5BLN (see Figure 9b).
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3.5.5. Effect of Different Electrolytes

The traditional dye house uses significant amounts of electrolytes during textile processing, so that
considerable amounts of electrolytes are present in wastewater. Consequently, the effect of different
electrolytes (NaCl, Na2SO4) on effectiveness of removal of dyes were studied. Stimulating phenomena
are noticed in the results as shown in Figure 10. It can be seen that the electrolyte does influence the
removal of degradation of methylene blue in a limited way. For cationic violet X-5BLN and reactive
orange GRN, the effect of electrolyte is significant. This may be due to the fact that methylene blue
belongs to the class of easily degradable dyes, and the structure of cationic violet X-5BLN and reactive
orange GRN are more complicated. Therefore, the electrolyte has a greater influence on the latter
two dyes. For different electrolytes, Cl− and SO4

2− can capture and destroy •OH [43,44], affecting the
degradation process of dyes. In general, wSF-PDA/Fe still plays an important role in the degradation
of dyes.
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4. Conclusions 

In this report, the loading of iron particle on dopamine grafted waste silk fibers were achieved 
successfully. The resultant material was investigated by means of physicochemical and catalytic 
property. SEM and EDS analysis confirmed the loading of PDA and iron particles on the surface of 
waste silk fibers, which revealed the potentiality of the prepared material as a catalyst in possible 
Fenton-like removal of aromatic dyes. The results of investigation of H2O2 concentration, dye 
concentration, temperature, and electrolytes on dye removal indicated the prepared catalyst showed 
significant 98%–99% removal dyes in 10–40 min depending on the concentration of H2O2 used. 
Postulate mechanism showed the most degradation of pollutants into nontoxic substance. Thus, this 
study can provide rational foundation towards further advancement in fiber based catalyst for 
Fenton-like removal of toxic pollutants in water. 

Author Contributions: T.X. and G.C. conceived and designed the experiments; M.S.M., B.Y., and X.Z. 
performed the experiments and analyzed the data; M.S.M., B.Y., and T.X. wrote the paper. All authors 
discussed the results and improved the final text of the paper.  

Fundings: This work was supported by the National Natural Science Foundation of China (51973144, 
51741301); the Major Program of Natural Science Research of Jiangsu Higher Education Institutions of China 
(18KJA540002); the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).  

Conflicts of interest: Authors declare no conflict of interest. 

References 

1. Singh, C.; Goyal, A.; Singhal, S. Nickel-doped cobalt ferrite nanoparticles: Efficient catalysts for the 

Figure 10. Evolution in time of C/C0 of (a) methylene blue, (b) cationic violet X-5BLN, and (c) reactive
orange GRN removal as a function of electrolyte. (wSF-PDA/Fe 0.1 g, dye concentration 20 mg/L, H2O2

concentration 1.0 mmol/L, T = 50 ◦C, NaCl, Na2SO4 concentration 40 g/L, pH = 7).

4. Conclusions

In this report, the loading of iron particle on dopamine grafted waste silk fibers were achieved
successfully. The resultant material was investigated by means of physicochemical and catalytic
property. SEM and EDS analysis confirmed the loading of PDA and iron particles on the surface of waste
silk fibers, which revealed the potentiality of the prepared material as a catalyst in possible Fenton-like
removal of aromatic dyes. The results of investigation of H2O2 concentration, dye concentration,
temperature, and electrolytes on dye removal indicated the prepared catalyst showed significant
98%–99% removal dyes in 10–40 min depending on the concentration of H2O2 used. Postulate
mechanism showed the most degradation of pollutants into nontoxic substance. Thus, this study
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can provide rational foundation towards further advancement in fiber based catalyst for Fenton-like
removal of toxic pollutants in water.
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