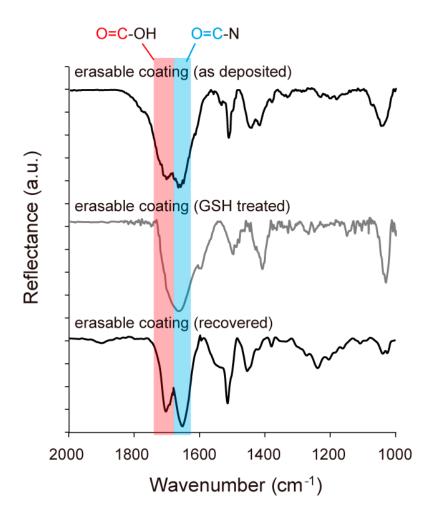

Supplementary Materials


Vapour-Deposited Reactive Coating with Chemically and Topographically Erasable Properties

Yu-Chih Chiang ^{3,†}, Cuei-Ping Ho ^{1,†}, Yin-Lin Wang ³, Po-Chun Chen ⁴, Peng-Yuan Wang ^{5,6,*} and Hsien-Yeh Chen ^{1,2,*}

- ¹ Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- ² Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- ³ School of Dentistry, Graduate Institute of Clinical Dentistry, National Taiwan University and National Taiwan University Hospital, Taipei, 10048, Taiwan
- ⁴ Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
- ⁵ Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- ⁶ Department of Chemistry and Biotechnology, Swinburne University of Technology, Victoria 3122, Australia
- * Correspondence: cpc@mail.ntut.edu.tw (P-C. C); py.wang@siat.ac.cn (P-Y. W); hsychen@ntu.edu.tw (H-Y. C) Tel. +886-2-33669476; Fax. +886-2-23623040
- + Y.-C. Chiang and C.-P. Ho contributed equally to this work.

Figure S1. FT-IR spectra showing the thermal stability of the erasable coating at 25 °C, 90 °C, 130 °C, 170 °C and 210 °C. The film remained thermally stable from 25 °C to 170 °C based on negligible changes in the position and intensity of the characteristic bands of C=O, C-N, N-H, and O-H. However, the decreased intensities for the C=O, C-N, N-H, and O-H peaks suggested a limitation of the thermal stability at 210 °C.

Figure S2. Reaction efficiency analysis of the erasable coating. FT-IR spectra were recorded for the coating before (as deposited) and after modifications including GSH treatment and recovering the coating with 3-mercaptopropionic acid. A selected range of scans from 1000 to 2000 cm⁻¹ was used during the FT-IR acquisition. Experiments were performed on the same sample surface, and a high efficiency of $88.5 \pm 3.7\%$ was discovered based on comparing the integrated peak areas of O=C-OH (with respect to unchanged areas for O=C-N).