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Abstract: In this study, lignin has been extracted from oil palm empty fruit bunch (EFB) fibers
via an organosolv process. The organosolv lignin obtained was defined by the presence of
hydroxyl-containing molecules, such as guaiacyl and syringyl, and by the presence of phenolic
molecules in lignin. Subsequently, the extracted organosolv lignin and graphene nanoplatelets
(GNP) were utilized as filler and reinforcement in photo-curable polyurethane (PU), which is used
in stereolithography 3D printing. The compatibility as well as the characteristic and structural
changes of the composite were identified through the mechanical properties of the 3D-printed
composites. Furthermore, the tensile strength of the composited lignin and graphene shows
significant improvement as high as 27%. The hardness of the photo-curable PU composites measured
by nanoindentation exhibited an enormous improvement for 0.6% of lignin-graphene at 92.49 MPa
with 238% increment when compared with unmodified PU.
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1. Introduction

Apart from being fast and precise, 3D printing enables a product to be easily modified and
customized. This technology is suitable for applications in a field with profound individual differences,
such as biomedicine [1,2]. The rise of 3D printing is also expected to increase with the use of the polymer.
Resins used in stereolithography are thermosetting plastics, engineered to cure when receiving energy
typically from a laser beam or ultraviolet rays [3]. The thermoset nature of stereolithography fabricated
parts, with a high crosslink density, results in brittle fracture with low elongation properties [4].

Polyurethane (PU) is usually used in 3D printing because its mechanical properties can be tuned
by changing its chemical structure [2]. Microbes are unable to decompose UV-curable adhesives
because of their unique chemical composition and characteristics obtained after UV curing, which often
lead to long-term retention issues [5]. One solution is to develop a polymer with good biodegradability
via a composite approach. Composites can produce new materials with improved performance and
biodegradability when a natural material is used as a filler [6].
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In 2017, Malaysia accounted for 29% of the global palm oil production and 55.5% of the national
export sector [7]. Despite the success of the oil palm industry, major drawbacks include the generation
and utilization of empty fruit bunches (EFB). In fact, EFB has become a major threat to the industry
and needs to be rectified quickly. Nevertheless, this biomass waste can be a renewable alternative
to petroleum-based sources, fulfilling the energy demand and reducing pollution. Lignocellulosic
materials predominantly contain a mixture of carbohydrate polymers such as cellulose, hemicelluloses,
and lignin [8]. Lignin, which provides mechanical support to the cell walls of plants, also can be used
to support in polymer composites. Although lignin is the second most abundant natural polymer on
earth, it is under-utilized.

Lignin is categorized according to type of lignocellulose and extraction method; it can be of
sulfonate or non-sulfonate type. Sulfonate lignin is produced via commercial methods such as the
sulfur process and kraft process. Non-sulfur lignin is produced via the organosolv, soda, and hydrolysis
processes. Extraction of lignin using sulfuric acid (H2SO4) via the kraft process is widely employed
by the pulp and paper industry [9]. Organosolv is commonly utilized in laboratories owing to the
easy recovery of the used acid [10]. Organosolv lignin has been utilized because of its significantly
better solubility relative to those of other lignins, such as kraft and sulfur lignins [11]. Additionally,
lignin produced by organosolv processes has also been reported to be high-quality, technical lignin [12].
Owing to its highly reactive polyphenolic structures, lignin can reduce the cost of producing other, more
expensive, filler materials [13]; however, the sole incorporation of lignin will not boost the mechanical
property of a polymer nanocomposite. The integration of filler-reinforcement of graphene also has
been introduced in polymeric composites; graphene exhibited electrical, thermal, and mechanical
properties as nanofiller to the reinforcement of the polymeric materials [14–16].

In this study, the isolation of lignin from oil palm EFB fibers was carried out using formic acid (FA)
at different concentrations. The best condition in lignin isolation was further characterized by FTIR,
FT-NMR, and GC-MS analyses. Subsequently, the isolated organosolv lignin was used and modified
with the graphene nanoplatelets as filler-reinforcement for photo-curable PU in stereolithography 3D
printing. In addition to the stress-strain behavior of the polymers, the hardness of the 3D-printed
specimen was measured using nanoindentation technique for in-depth analysis of the effect of
lignin-graphene compatibility in photo-curable PU resin.

2. Materials and Methods

2.1. Materials

Oil palm EFB fibers were procured from Szetech Engineering Sdn. Bhd. (Selangor, Malaysia).
These were milled and sieved to obtain fibers of diameters 106–500 µm. Fractionation of lignin was
performed using 90% formic acid (Merck, Darmstadt, Germany) and the lignin content was determined
using 98% sulfuric acid (Merck). Graphene nanoplatelets (Sigma Aldrich, Darmstadt, Germany) was
used as reinforced for the printed materials. In stereolithography 3D printing, photo-curable resin with
the major composition of 45–47 wt% polyurethane acrylate, 34–36 wt% morpholine, and 15–17 wt%
tripropylene glycol diacrylate was provided by Wanhao Precision Casting Co. Ltd. (Jinhua, China)
and isopropyl alcohol (Merck) was used to remove the excess resin on the printed object.

2.2. Lignin Extraction

Lignin was extracted from oil palm EFB fibers via an organosolv extraction method, whereby
300 mL of 40–90% FA was added to 10 g of EFB, maintaining an EFB-solution ratio of 1:30. Using a
magnetic stirrer, the solution was stirred at 95 ◦C for 2 h. Next, the solution was filtered using a vacuum
filter to remove the pulp from the organosolv lignin. Subsequently, the isolation was carried out using
rotary evaporator (RE 600 with VR 300 vacuum controller, Yamato Scientific Co. Ltd., Tokyo, Japan).
The resulting black liquor was evaporated to separate the organosolv solution from the extracted
lignin. Briefly, a round-bottomed flask was half-filled with lignin organosolv and then placed in a
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96 ◦C water bath. The flask was connected to the evaporator using a clip, and the evaporator was left
to operate until the solvent was completely removed. The isolated lignin was then repeatedly washed
with water and centrifuged multiple times to remove the excess formic acid. Subsequently, the lignin
was recovered via oven-drying.

2.3. Preparation of the Photo-Curable Resin Composites

In anticipation of the filler-reinforcement in photo-curable PU, lignin-graphene was prepared with
the 10 wt% of graphene nanoplatelets (G) mixed continuously with the extracted organosolv lignin
using a homogenizer for 30 min (IKA T 25 Ultra-Turrax Digital High-Speed Homogenizer). Afterwards,
photo-curable PU resin was mixed with lignin and lignin-graphene at a different weight ratio (0.2, 0.4,
0.6, 0.8, 1.0, and 3.0 wt%). As a reference, PU was homogenized with 0.02 wt% of graphene, equivalent
to the graphene comprised in PU-0.2Lignin/G. The resin compounds were homogeneously mixed using
a homogenizer for 10 min or until the particles were well dispersed. The prepared resin compounds
were kept in the dark container until further use.

2.4. Stereolithography 3D Printing

The UV curable polyurethane with the lignin-graphene mixture was then added into a Duplicator
7 V1.5 by Wanhao 3D printer—a digital light-processing (DLP) system with a 405 nm UV lamp as the
curing agent. The STL file model was followed by standard tensile specimen according to the ASTM
D638 type IV with the slight modification on the thickness of the tensile specimen, which was set at
0.5 mm, width 7.5 mm, and neck length 24 mm. The density was measured by the dimension and
weight of printed samples. Prior to curing under UV light of wavelength 405 nm, the final product
was washed in an isopropyl alcohol solution to remove the excess polyurethane resin.

2.5. Characterization

The extracted acid-soluble and insoluble lignin was measured by the compositional analysis
of TAPPI T222 os-06 (2006) standard. The morphological structure of the sample before and after
processes was observed by a variable pressure scanning electron microscope, VPSEM (Merlin Compact,
Zeiss Pvt Ltd., Oberkochen, Germany). To determine the types of functional groups present in the
lignin as well as the effectiveness of the recovery process, the oil palm EFB fibers and lignin were
characterized via Fourier transform infrared spectroscopy (FTIR, Bruker, Billerica, MA, USA) at a
resolution of 1 cm−1 in the range of 4000 to 650 cm−1. Meanwhile, Fourier transform nuclear magnetic
resonance (FT-NMR) was performed to analyze the molecular structure of the lignin. In this process,
the lignin was dissolved in dimethyl sulphoxide-d6 (DMSO). The components of the extracted lignin
were identified by gas chromatography/mass spectrometry (GC-MS, Agilent 7890 GC/5975 MSD),
with ethyl acetate as the solvent and DB-5 the column. The viscosity of the photo-curable resin
composites was examine using Brookefield Ametek D1 viscometer with spindle type DV1HA at 100
rpm. The tensile test analysis was performed in the Instron® Electromechanical Universal Testing
Systems 3300 Series at 500 mm/min with a load cell of 1 kN, following which the tensile strength and
elongation were recorded. Nanoindentation behavior of the materials was performed by Nano TestTM
(Micro Materials, Wrexham, UK) at the maximum load of 50 mN. Tensile test and nanoindentation
analyses were repeated five times for each parameter.

3. Results and Discussion

3.1. Optimization of Organosolv Lignin Extraction

In the preliminary study, the control parameters of FA concentrations on lignocellulosic
fractionation were conducted early to maximize lignin that can be extracted. The initial lignin
content for the untreated oil palm EFB fibers was recorded at 21.7 wt%. As seen in Figure 1, the
amount of acid-soluble lignin extracted from oil palm EFB fibers was increased with the increment of
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FA concentration. The lignin isolation shows the highest activity at 90% of FA, which extracted ~52.6%
from the total lignin in oil palm EFB fibers. Although delignification is the method of breaking down
the chemical structure of lignin to make it soluble in a liquid, formic acid has a higher rate of results
of dissolution when compared to acetic acid or others with longer carbon chains attributable to the
decrease in lignin solubility with increasing alkyl chain length [17,18]. Thus, at higher FA concentration,
it provided an effective lignin dissolution through cleavage of ether bonds in lignin macromolecules
using acid [19]. The extracted lignin was further isolated by rotary evaporator, repeatedly washed
with water to remove the excess formic acid and further modification with graphene nanoplatelets as
filler-reinforcement in photo-curable polyurethane resin in the next stages, as seen in Figure 1a.
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Figure 1. (a) The effect of different formic acid (FA) concentration on delignification of empty fruit
bunch (EFB) (EFB to aqueous ratio: 1:30, Operating temperature: 90 ◦C, FA concentration: 40–90%) and
(b) the further techniques involved in the utilization of organosolv lignin-graphene nanoplatelets with
photo-curable polyurethane (PU).

The oil palm EFB fibers show significantly morphological changes after the organosolv lignin
extraction, as seen in Figure 2a. The untreated oil palm EFB fibers indicate silica bodies covering the
surface structure of the fibers. The treated fibers after organosolv lignin extraction exposed the rough
surface structure, an exposed lumen, and noticeable micro cavities due to the removal of lignin and
dislodgement of the silica bodies [20]. Additionally, as the advantage of the organosolv extraction, the
separation of FA-lignin through rotary evaporator provided 89.9% of the acid recovery, which can be
used for the next cycle of the organosolv extraction.

As seen in Figure 2b, the FTIR spectrum at wavenumber of 3400 cm−1 exhibited the greater
abundance of O–H bonds in oil palm EFB fibers relative to the glucose monomers of cellulose which was
significantly changed in organosolv pulp of oil palm EFB fibers and extracted organosolv lignin [20].
Additionally, the peak at 1371 cm−1 was present in oil palm EFB fibers but not in lignin is because
of alterations in the C–H bond following the removal of cellulose and hemicellulose. Meanwhile,
the intensity at 2900 cm−1 denoted the C–H of the methyl (CH2) and methylene (CH3) groups in the
monomer of each compound [21]. This finding was also consistent with the fact that the molecules that
made up lignocellulose were aromatic and, accordingly, contained a small amount of alkane groups.
Typically, the double bond of aromatic carbonyl (C=O) group, C=C aromatic group and ether linkages
were observed at 1700 cm−1, 1500–1600 cm−1, and 1038 cm−1 were abundant in lignin, cellulose,
and hemicellulose [22,23]. In comparison, syringyl and guaiacyl units of lignin can be identified at
1117 cm−1 and 1271 cm−1 [24,25].
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3.2. Characterization of Organosolv Lignin

The 1H NMR spectrum of extracted organosolv lignin is shown in Figure 3a. The 3.14 ppm
peak shows the presence of hydrogen C-β in β-1 and β-βwas stronger than that of the ether linkage
because the ether linkages were the easiest to hydrolyze during the formic acid organosolv process [26].
Peaks at 3.758–3.763 ppm revealed the presence of methoxyl proton (–OCH3). The peak at 8.133 ppm
revealed the presence of aromatic protons in guaiacyl (G) and syringyl (S) units and 6.524–6.826 ppm
aromatic protons in the syringyl-propane units verify the presence of the main monomers of lignin
in the sample. Furthermore, the stronger signal at 6.8 ppm relative to that at 7.0 ppm indicates that
the lignin contained more syringyl than guaiacyl monomers [27,28]. Other peaks were detected at
(1) 7.792–7.868 ppm ortho-hydrogen within the carbonyl groups; (2) peak at 4.898 ppm β-H within
the β-O-4 linkages; (3) 2.18–2.216 ppm phenolic protons in lignin; (4) 1.272 ppm and 0.861–0.895 ppm
methylene and methyl groups respectively within the lignin side chains; as well as (5) 2.500–2.216 ppm
protons in the solvent (DMSO-d6) [22,26,29,30].

The 1C NMR provided in Figure 3b shows significant signals at 56.56 ppm, indicating the presence
of –OCH3 in the syringyl units, 39.72–40.97 DMSO-d6 (i.e., the solvent), as well as 29.34 β-methylene in
the n-propyl side chains. On the contrary, the absence of peaks at 57–103 ppm implied that the lignin
did not contain a noticeable amount of polysaccharide. It may be concluded that the ester and ether
bonds in lignin and hemicellulose have been successfully cleaved during organosolv extraction [28].

As seen in Figure 3c, the GC-MS spectrum revealed the presence of a phenolic molecule
and 1,1-bifenil-2,3-diol, both of which gave rise to a phenylpropane unit, the building block
of lignin [31]. This was attributable to the chemical modification of the β-O-4 linkage during
extraction [32]. The abundant presence of these two components also showed that this sample was
rich in phenolic molecules. Apart from phenolic monomers, acyclic hydrocarbons like nonadecane,
1-dodecene, 6-tetradecene, hexadecene, (Z), 2-bromononane, tetratetracontane, 2,6-dimethyldecane,
and methylnonadecane were also present. Other acyclic components included oxygenated components,
such as 1-heptacosanol, oxalic acid, n-hexadecanoic acid, 9,12-octadecadienoic acid (Z,Z)-, octadecanoic
acid, and danbromoacetic acid, which were also present in the lignin [33]. The reason behind the
presence of n-hexadecanoic acid or palmitic acid in the lignin sample was that the acid is a typical
component of the oil within palm fruits [34].



Polymers 2019, 11, 1544 6 of 12

Polymers 2019, 11, x FOR PEER REVIEW 6 of 12 

 

  

 
 

Figure 3. Chemical characterization of organosolv lignin extracted through (a) 1H NMR, (b) 1C NMR, 
and (c) GC-MS spectrums. 

3.3. Tensile Strength of 3D-Printed Composites 

As seen in the graph in Figure 4a, the composites which contained 1% and 3% of lignin had 
lower tensile strength than the resin. Meanwhile, the composite whose lignin concentration was 0.6% 
had a tensile strength close to that of resin. When lignin was added to the PU resin, the proportion of 
resin decreased; however, the presence of hydroxyl- and phenolic-rich lignin gave rise to a 3-
dimensional structure with polyurethane and retained the tensile strength of the [35]. Likewise, the 
tensile strength of the PU-0.6% Lignin/G composite was much greater than that of the PU resin and 
lignin incorporated, showing that the mechanical property of the composite was enhanced when the 
concentration of lignin-graphene increased until 0.8% addition. The increase in lignin-graphene 
content increased the hardness of the composite and reduced the flexibility of the polymer. The 3D 
printed composited shown in Figure 4 displays the darkening of the samples with an increment of 
the lignin and lignin/G. The maximum load the filler-reinforcement was able to attain was 3%; higher 
loading interrupted the curing behavior of the photo-curable PU resin and defected the orientation 
of the printed samples. 

Figure 3. Chemical characterization of organosolv lignin extracted through (a) 1H NMR, (b) 1C NMR,
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3.3. Tensile Strength of 3D-Printed Composites

As seen in the graph in Figure 4a, the composites which contained 1% and 3% of lignin had lower
tensile strength than the resin. Meanwhile, the composite whose lignin concentration was 0.6% had a
tensile strength close to that of resin. When lignin was added to the PU resin, the proportion of resin
decreased; however, the presence of hydroxyl- and phenolic-rich lignin gave rise to a 3-dimensional
structure with polyurethane and retained the tensile strength of the [35]. Likewise, the tensile strength
of the PU-0.6% Lignin/G composite was much greater than that of the PU resin and lignin incorporated,
showing that the mechanical property of the composite was enhanced when the concentration of
lignin-graphene increased until 0.8% addition. The increase in lignin-graphene content increased the
hardness of the composite and reduced the flexibility of the polymer. The 3D printed composited
shown in Figure 4 displays the darkening of the samples with an increment of the lignin and lignin/G.
The maximum load the filler-reinforcement was able to attain was 3%; higher loading interrupted the
curing behavior of the photo-curable PU resin and defected the orientation of the printed samples.
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Figure 4c shows the Young’s modulus of the sample with the increment of lignin and
lignin-graphene as well as the data summarized in Table 1. The low loading lignin-graphene
shows exceptional performance: as tensile strength increased, the ductility of the materials was
compromised [16]. In contrast, the addition of lignin-graphene improved the Young’s modulus of the
composite. The high filler-reinforcement load often resulted in particle agglomeration; however, the
viscosity measurement tabulated in Table 1 shows slight changes (~0.55% viscosity increase) even at
the highest concentration of the additional filler-reinforcement of lignin-graphene [15].

Table 1. The effect of resin viscosity towards the tensile Stress-Strain and Young’s modulus of
photo-curable PU composited with lignin and lignin/graphene.

Sample Viscosity (cP) Stress (MPa) Strain (mm) Young’s Modulus (MPa)

PU 50.63 ± 0.05 21.15 ± 0.21 3.51 ± 0.02 9.77 ± 0.15
PU-0.2%Lignin 50.72 ± 0.07 22.19 ± 0.11 3.21 ± 0.05 9.81 ± 0.13
PU-0.6%Lignin 50.76 ± 0.09 24.50 ± 0.32 2.69 ± 0.03 11.59 ± 0.14
PU-3.0%Lignin 50.91 ± 0.04 9.19 ± 0.22 1.77 ± 0.06 4.21 ± 0.09

PU-G 50.64 ± 0.03 22.56 ± 0.29 3.22 ± 0.09 9.89 ± 0.13
PU-0.2%Lignin/G 50.73 ± 0.04 23.87 ± 0.24 3.11 ± 0.02 10.53 ± 0.16
PU-0.6%Lignin/G 50.76 ± 0.04 27.35 ± 0.30 2.73 ± 0.05 12.68 ± 0.17
PU-3.0%Lignin/G 50.93 ± 0.06 8.39 ± 0.16 7.80 ± 0.03 4.63 ± 0.13

3.4. Nanoindentation Behavior of 3D-Printed Composites

Nanoindentation technique on the photo-curable PU composites has been carried out at the
maximum load of 50 mN. The loading-unloading curves of the sample can be seen in Figure 5 and the
calculated data is summarized in Table 2. The contribution of lignin as a filler in PU resin provided a
minimum reformation of the sample hardness.
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Table 2. The loading-unloading behavior of photo-curable PU composited with lignin and
lignin/graphene.

Sample Max Depth (nm) Plastic Depth (nm) Hardness (MPa)

PU 10,573 ± 15 8708 ± 12 27.33 ± 0.3
PU-0.2%Lignin 9665 ± 3 8181 ± 7 38.21 ± 0.3
PU-0.6%Lignin 8830 ± 11 5079 ± 8 38.96 ± 0.2
PU-3.0%Lignin 9655 ± 7 8011 ± 6 38.12 ± 0.1

PU-G 8573 ± 5 6154 ± 4 54.51 ± 0.4
PU-0.2%Lignin/G 10,799 ± 8 8715 ± 5 27.29 ± 0.3
PU-0.6%Lignin/G 5609 ± 12 4714 ± 8 92.49 ± 0.4
PU-3.0%Lignin/G 14,801 ± 8 11,951 ± 11 14.54 ± 0.3

In the additional of lignin-graphene, typical loading-unloading behavior in comparison with
stress-strain curve was observed, which demonstrated the depth indentation decreased and the curves
shifted to the left due to the increment of the hardness [36]. The filler-reinforcement of lignin-graphene
showed the highest improvement at 0.6% Lignin/G as the sample provided tremendous enhancement of
the hardness at 92.49 MPa (238% increment from unmodified photo-curable PU resin). The integration
of graphene nanoplatelets was shown to be the main element for the improvement of the hardness
of the PU. The resistance of the graphene towards deformation of the material provided better
elasticity [36]. In contrast, the chemical interaction between the isocyanate group and oxygenated
groups of PU-graphene provided the compatibility of the lignin-graphene in photo-curable PU resin [14].
However, the increment of the graphene up to 3% showed a similar trend as a stress-strain curve,
which exhibited the low hardness profile of the materials.
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3.5. The Compatibility of PU-Lignin with Graphene

As seen in Figure 6, the chemical compatibility of photo-curable PU with lignin and graphene
was analyzed through FTIR spectrums. In cured PUs, the infrared region indicates fewer isocyanates,
discovered at 2312 cm−1, suggesting that there is no surplus moisture and isocyanates in pre-polymer
reactants [37]. Thus, curing of the polymer is optimal as no major peak was observed at 2312 cm−1.
The broad peak was observed at 3200–3600 cm−1, indicating the presence of alcoholic and phenolic –OH
absorptions. Peaks observed at 1400–1600 cm−1 indicated the presence of aromatic structures present
in the PU [38]. After the addition of the lignin-graphene, a strong interfacial interaction between
functional groups of lignin-graphene and polyurethane occurred resulting in better compatibility,
suggesting a strong hydrogen bond between polyurethane and lignin-graphene [39].
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The micrograph of the cross-section 3D-printed composites after tensile testing shows the effect
of lignin-graphene in favor of the better compatibility of filler-reinforcement in photo-curable PU,
as seen in Figure 7. PU samples indicated a wide line of micro cracks and homogeneously flat
surface area. In Figure 7b, graphene nanoplatelets were distinctly spotted on the PU-G surface with
non-uniform blending between photo-curable PU. In the addition of lignin-graphene, the blending
between PU-lignin-graphene was well distributed in the polymeric matrix [40].
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Lignin/G, and (d) top surface of PU-0.6% Lignin/G.

A small poor dispersion of graphene nanoplatelets will provide more concentrated stress locally,
affecting the mechanical properties of the material [41]. The clear morphological structure from the
top of the PU-0.6% Lignin/G which has been exposed to the UV light, as seen in Figure 7d, exhibited
the homogeneity of graphene nanoplatelets with the assistance of lignin as filler reinforcement
in photo-curable PU. The synergistic interaction seen in lignin-graphene, lignin-polyurethane,
graphene-polyurethane, and lignin-graphene in polyurethane resin plays a major role in the formation
of compatible photo-curable resin composites. In comparison with lignin-polyurethane blends, the
molecular structure of lignin tends to form a lignin-lignin interaction; the viscosity of the resin
composite gradually increases as the composition of the lignin increases, as seen in Figure 1a. Unlike
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graphene oxide, which has a nanolayer formation, the graphene nanoplatelets particles require proper
mechanical homogenization method to distribute in the polyurethane system [36,39,42]. Accordingly,
the composition of lignin-graphene in polyurethane system facilitated greater distribution, significantly
increasing the mechanical properties of the 3D-printed composites.

4. Conclusions

In this study, the extracted lignin at the best condition of organosolv extraction reveals the
presence of syringyl, guaiacyl, and hydroxyl molecules, which is highly compatible with the
photo-curable PU. The ability of the organosolv lignin as a compatibilizer for graphene nanoplatelets was
successfully demonstrated in the mechanical properties of the PU-Lignin/G. Substantial improvement
by filler-reinforcement of lignin-graphene in photo-curable PU, identified at 0.6% Lignin/G as the
stress-strain and loading-unloading behavior, shows higher tensile strength and the resistance against
the deformation of the material.
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