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Abstract: Carboxymethyl chitosan (CMCS), acrylamide, and methacryloxyethyltrimethyl ammonium
chloride were used as co-monomers to produce a sludge dewatering agent carboxymethyl
chitosan-graft-poly(acrylamide-methacryloxyethyltrimethyl ammonium chloride) (CCPAD) by
UV-induced graft polymerization. Single-factor experiments and response surface methodology were
employed to investigate and optimize the grafting rate, grafting efficiency, and intrinsic viscosity
influenced by the total monomer concentration, CMCS concentration, cationic degree, pH value,
and illumination time. The structure, surface morphology, and thermal stability of CCPAD were
characterized by infrared spectroscopy, hydrogen nuclear magnetic resonance, X-ray diffraction,
scanning electron microscopy, and differential thermal-thermogravimetry. The raw sludge with
97.9% water content was sourced from the concentrated tank of a sewage treatment plant and used
in the sludge condition experiments. In addition, CCPAD was applied as the sludge conditioner
to investigate the effects of cationic degree, intrinsic viscosity, and pH on the supernatant turbidity,
moisture content, specific resistance to filtration, and sludge settling ratio. Moreover, the mechanism
of sludge conditioning by CCPAD was discussed by examining the zeta potential and extracellular
polymeric substance (EPS) content of the supernatant. The sludge dewatering results confirmed that
CCPAD had excellent performance for improving sludge dewaterability.

Keywords: chitosan-based flocculant; graft copolymerization; flocculation; sludge conditioning;
dewaterability

1. Introduction

Municipal sewage treatment plant sludge has high organic content, unstable nature, fine particles,
large specific surface area, and negative charge [1]. This substance can also easily form a dispersion
system with poor settling properties. In addition, sludge composition markedly varies depending
on the source of the sewage, the sewage treatment process, and the season [2]. As a by-product
of wastewater treatment, the sludge also contains pathogenic bacteria, parasite eggs, heavy metals,
and other substances. Thus, the sludge contains heavy metals and toxic substances that easily pass
through the food chain and eventually enter the human body with safety risks [3]. Improperly handled
sludge would cause serious secondary pollution. The treatment and disposal of sludge have become
an important step in sewage treatment such that sludge treatment is also an important standard for
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evaluating the quality of sewage treatment [4]. The disposal of sludge has certain requirements for the
moisture content of the sludge [5]. To reduce, stabilize, remove the harmfulness of the sludge treatment,
and comprehensively utilize the resources, sludge is usually flocculated, conditioned, and dewatered.
This process reduces the moisture content of the sludge and the sludge volume and facilitates the
transport and subsequent processing to meet the moisture content requirements [6].

Sludge dewatering is a crucial step in sludge treatment. The effect of this process is closely
related to the sludge treatment system and influences subsequent disposal [7]. However, due to the
high moisture content of raw sludge, the particles in the sludge are small and negatively charged
with strong hydrophilicity [8]. The water molecule and sludge particles are closely connected
such that the sludge particles form a stable colloidal suspension [9]. This characteristic hinders
the separation of mud and water, and the performance of direct sludge dewatering is poor [10].
Therefore, sludge conditioning before sludge dewatering is particularly important. Conditioning
can change the physicochemical properties of the sludge and increase cohesion, the size of the
particles, and the efficiency of sludge dewatering [11]. At present, sludge conditioning includes
physical, chemical, and microbial conditioning [12]. However, physical conditioning can increase the
capacity expansion ratio of the sludge (the volume ratio before and after sludge sludge dewatering),
which leads to additional costs to the disposal of this substance [13]. Microbial preparation entails high
cost, long culture period of strains, and a difficult stabilization process. Thus, the application range
of this approach is limited. Chemical conditioning methods are widely used in sludge dewatering
because of their simple operation, low investment cost, and stable conditioning performance [14].
Organic flocculants, such as anionic and cationic flocculants, are widely used among these chemical
conditioners [15]. Compared with anionic flocculants, cationic polymer flocculants have a high
sedimentation rate, good electrical neutralization capacity, low dosage, wide application range,
and good sludge dewatering performance with some extent of acid and alkali resistance [16].

As a natural polymer material, chitosan is a cationic polyelectrolyte because of the protonation
of amino groups and has been used in many fields [17]. However, its application for preparing
flocculants is restricted because of its solubility in acidic solutions [18]. Carboxymethyl chitosan
(CMCS) is obtained by introducing carboxymethyl to chitosan. Thus, CMCS molecular chains contain
–COOH, –NH2, –OH, and other groups with special physical and chemical capacity [19]. The CMCS
can be modified using graft copolymerization to further improve the flocculation performance of
CMCS. The modification is performed to increase the charge density and molecular weight and to
further enhance the solubility. Thus, the modified polymer flocculation has enhanced efficiency and
sludge dewatering performance [20]. In addition, the graft copolymerization of CMCS with cationic
monomers combines the advantages of cationic, anionic, and other functional groups. These groups
can remarkably increase the charge density and adsorb-bridging ability. Thus, the molecular chain
length is enhanced, and the scope of application is gradually extended [21]. However, few studies
have investigated the application of chitosan-grafted polymer in sludge conditioning and flocculation
to improve sludge dewaterability.

The preparation of a cationic sludge-dewatering agent, CCPAD, was systematically studied.
The application of CCPAD in sludge dewatering and the mechanism of sludge conditioning were
initially explored. Photo-initiated graft polymerization was used to prepare cationic copolymer
CCPAD using carboxymethyl chitosan (CMCS), acrylamide (AM), and methacryloxyethyltrimethyl
ammonium chloride (DMC) as monomers. Single-factor experiments were performed to investigate
the effects of total monomer concentration, CMCS concentration, cationic degree, photoinitiator
concentration, pH value, and illumination time on the graft polymerization. The grafting rate,
grafting efficiency, and intrinsic viscosity were examined, and the optimal preparation conditions
were determined by response surface methodology. The structure, morphology, and thermal stability
of the polymer products were characterized by infrared spectroscopy, nuclear magnetic resonance
spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric
analysis. In addition, the effects of CCPAD dosage, cationicity, intrinsic viscosity, and pH on the sludge
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dewaterability were investigated by determining the supernatant turbidity, moisture content of filter
cake, specific resistance of sludge, and sedimentation rate. The conditioning mechanism was initially
discussed by the supernatant zeta potential, extracellular polymeric substance, and microscopic
morphology of the sludge.

2. Materials and Methods

2.1. Materials

The sludge was sourced from the concentrated tank of a sewage treatment plant in
Nanjing (China), and the properties of the sludge are shown in Table 1. CMCS, AM, DMC,
bovine serum albumin (biochemical reagent), 2,2′-Azobis(2-methylpropionamide)dihydrochloride
(V-50), and Coomassie brilliant blue were purchased from Aladdin Reagent Co., Ltd. (Shanghai, China).
Phenol, sodium hydroxide, concentrated hydrochloric acid, anhydrous ethanol, sodium chloride,
and other reagents were of analytical grade and purchased from Nanjing Shengjian Quanhua Glass
Instrument Co., Ltd., Nanjing, China.

Table 1. Sludge properties.

Indices Parameters

Moisture content 97.9%
pH 7.13

Organic matter content (g/kg) 308.73
Sludge specific resistance to filtration (m/kg) 3.74 × 1013

Physical condition Dark brown with fine particles and a foul stench

2.2. Synthesis and Characterization of CCPAM

CMCS (2.0 g), 6.0 g AM, 33.0 mL distilled water, and 2.0 g DMC were weighed into a quartz
wide-mouthed bottle according to a certain mass ratio and stirred until the three monomers were
completely dissolved. Nitrogen was purged for 30 min to remove oxygen, and then a certain amount
of 2,2′-Azobis(2-methylpropionamide)dihydrochloride as a photoinitiator (0.1 wt % relative to total
monomers) was added. The sealed quartz bottle was placed in a UV lamp reactor for polymerization.
After a certain period of reaction (100 min), the reactor was removed and allowed to stand for 1 h to
obtain a milky opaque gel. The graft polymer was purified and dried to obtain the CCPAD powder.
The graft copolymer colloid product was sheared into particles with a particle diameter of 1–3 mm
and then immersed in an ethanol and acetone solution with a volume ratio of 1:1 to remove unreacted
monomers and small molecule polymers. The purified CCPAD was dried in a vacuum oven to
obtain a solid CCPAD, and finally the solid CCPAD was ground and passed through a 200-mesh
screen to obtain a CCPAD powder. The purity of CCPAD was determined according to Chinese
national standards (GBT 31246-2014). The CCPAD powder can be obtained by repeating the above
experimental procedure.

The synthesized CCPAD was characterized using an infrared spectrometer (510PFT-IR, Nicolet,
Madison, Wisconsin, USA), nuclear magnetic resonance spectrometer (AVANCE500 Nuclear Magnetic
Resonance Apparatus, BRUKER, Ettlingen, Germany), X-ray diffractometer (SmartLabTM 3KW,
Japan Science Corporation, Tokyo, Japan), scanning electron microscope (TM3000, HITACHI,
Tokyo, Japan), and differential heat-thermogravimetric analyzer (DTG-60H, Shimadzu Corporation,
Tokyo, Japan). The cationic degree of CCPAD was determined by colloid titration according
to Chinese national standards (GBT 31246-2014). Toluidine blue was used as an indicator,
and poly-2-acrylamide-2-methylpropane sulfonate (PAMPSK) was used as a standard polyanion
to titrate the cation sample. After the equivalence point, a trace polyanion was combined with
toluidine blue to change the solution from blue to purple for indicating the end point. The possible
scheme of CCPAD synthesis is shown in Figure 1. As shown in Table 2, compared with other
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initiation technologies, photoinitiated polymerization can achieve initiation at normal temperature
and reduce production energy consumption with no residue in production and lower activation
energy. No pollutants were formed in the polymerization process with short polymerization time,
simple equipment, and energy saving. Therefore, photoinitiation technology is currently a promising
initiation method for synthesizing chitosan-grafted flocculants.
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Table 2. Comparisons of initiation techniques to induce graft-polymerization.

Initiation
Methods

Reaction
Conditions Advantages Disadvantages References

Photoinitiated
polymerization

Normal
temperature,

normal pressure,
reaction time

0.5–2.0 h

Simple operation, a product
with high purity, good

solubility, fast polymerization
speed, environmentally
friendly process, energy

saving, low production costs.

The initiation
mechanism needs

further study. Ultraviolet
light is easily attenuated
in the reaction solution.

[22]

Plasma-initiated
polymerization

Normal
temperature and

pressure,
polymerization

temperature
10–60 ◦C, discharge

time 0–120 s

No requirement of external
initiator, high purity of

polymerization product,
low cost.

Expensive equipment,
Complicated operation.

It is still in the laboratory
stage with the high

investment and
requiring vacuum

experimental conditions.

[23]

Thermal initiation
polymerization

Polymerization
temperature

10–100 ◦C, reaction
time 3–24 h

The initiator is thermally
decomposed to generate free

radicals to initiate
polymerization, and the

technology is mature and easy
to realize industrial

production.

Long reaction time with
heating, high energy

consumption, low
product purity,
poor solubility.

[24]

Radiation initiated
polymerization

Normal
temperature and

pressure, Radiation
time 0–600 s

Low cost, easy operation,
uniform reaction, no need to

add initiator, fast reaction rate
and high product purity;
being carried out at room

temperature

It is difficult to control
the polymerization, and
the product is difficult to

separate with many
residual monomers.

[25]

Microwave
initiated

polymerization

Normal
temperature and

pressure, Reaction
time 0–10 min

High efficiency, sensitive
reaction, uniform molecular

weight distribution, fast
polymerization rate and short

reaction time.

Local overheating, prone
to explosion or

cross-linking, poor
solubility of the product

[26]
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Table 2. Cont.

Initiation
Methods

Reaction
Conditions Advantages Disadvantages References

Ultrasonic initiated
polymerization

Frequency 20
kHz–500 MHz,
Reaction time

0–240 min

The short time and efficiency
not only accelerate the

chemical reaction, increase the
reaction yield, shorten the

reaction time, but also make it
possible to carry out chemical

reactions that are difficult
or impossible.

The acoustic cavitation
effect can produce local
high temperature and
high pressure, making

flocculant prone to
explosion or

cross-linking, and the
product has

poor solubility.

[27,28]

2.3. Sludge Dewatering Tests

The activated sludge was poured into a 1.0 L organic glass beaker and then flocculated by CCPAD
with dosage of 0–60 mg/L. After the addition of CCPAD, the sludge was flocculated and conditioned
by stirring at 350 rpm for 1 min, followed by 30 min of sedimentation. Moreover, the flocculate
sludge was obtained to detect the sludge settling ratio (SV30). The soaked filter paper was put into a
Buchner funnel, and the vacuum pump was started to make the filter paper tightly adhere to the funnel.
The conditioned sludge was poured into the Buchner funnel to determine the SRF [29]. The filter
cake was taken out and dried at 105 ◦C for 2 h to constant weight to determine the moisture content.
The supernatant was then extracted and measured to determine the turbidity of the supernatant,
zeta potential, and the extracellular polymer concentration [30].

3. Results

3.1. Synthesis of CCPAD

The optimization of the synthesis process was systemically investigated through a single-factor
experiment (Figures S1–S6). Some key factors were chosen to study the effects of synthetic conditions
on the properties of CCPAD. The effects of total monomer concentration, CMCS concentration,
cationic degree, photo-initiator concentration, pH, and illumination time on intrinsic viscosity,
grafting ratio, and grafting efficiency were investigated and optimized systematically. The optimal
synthesis conditions for the grafted polymer CCPAD prepared by photopolymerization were as
follows: monomer concentration, 40%; cationic degree, 40%; CMCS concentration, 8%; illumination,
2 h; and pH 8.

3.2. CCPAD Characterization

3.2.1. FTIR Spectra

The absorption peaks at 3409 cm−1 and 3196 cm−1 are attributed to the NH stretching vibration
peaks [Figure 2c]. The absorption peak at 2935 cm−1 is assigned to the stretching vibration absorption
peak of CH in the methyl group and the methylene group of AM, and the stretching vibration
absorption peak of C=O is in the region of 1611–1664 cm−1 [31]. The absorption peak at 1452 cm−1

is attributed to the characteristic absorption peak of methylene on the quaternary ammonium
group, and the vibration absorption peak at 1212 cm−1 is assigned to the glycosidic bond (COC)
on the glycopyran ring of CMCS. The stretching vibration peak at 1132 cm−1 is assigned to C–O
in C–OH [32]. As shown in Figure 2c, the absorption peak area of N-H stretching vibration at
3409.05 cm−1 and 3196.43 cm−1 was larger than that in AM and CMCS, which is the superposition
of N-H absorption peak in CMCTS and AM. The stretching vibration absorption peak of C=O was
observed at 1611.71 cm−1–1664.75 cm−1, which was produced by superimposing C=O absorption
peaks in CMCTS and AM. The stretching vibration peak at 1084 cm−1 is attributed to an alcoholic
hydroxyl group, and the characteristic absorption peak at 954 cm−1 is assigned to the methyl group
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of the quaternary ammonium group [33]. Comparison of the three FTIR spectra of CCPAD with CC
and P(AM-DMC) in Figure 2 shows that the absorption peaks of NH stretching vibration at 3409 cm−1

and 3194 cm−1 are larger because of the superposition of the N-H absorption peaks in CMCS and
AM. The absorption peak in the range of 1611.71–1664.75 cm−1 is assigned to the stretching vibration
absorption peak of C=O produced by the superposition of the C=O absorption peaks in CMCTS and
AM. The characteristic absorption peaks of CC and P(AM-DMC) are observed in the FTIR spectrum of
CCPAD. This result indicates that the CCPAD was successfully prepared by graft polymerization of
CC, AM, and DMC.
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3.2.2. 1H NMR Characterization

In Figure 3c, the peak at 1.17–1.27 ppm is assigned to the proton absorption peak of –CH2, and the
peak at 1.64–1.67 ppm is attributed to the methylene proton of –CH2–CH–CONH2 [34]. The signal at
2.19–2.22 ppm represents the methyne proton of –CH2–CH–CONH2, and the peak of 2.92–2.95 ppm is
assigned to the proton of NH2. The chemical shift at 3.18–3.19 ppm is assigned to the methyl proton
of –N–(CH3)3, the peak of 3.49–3.52 ppm is assigned to the methylene proton of –CH2–N–(CH3)3,
and the signal at 3.63–3.79 ppm is assigned to the proton on the sugar ring of CMCS [35]. The signal
at 3.93 ppm corresponds to the methine proton of the –CH–OH group in the sugar ring of CMCS,
and the signals of 4.04–4.06 ppm are attributed to the methylene proton of –O–CH2– of CMCS [36].
In Figure 3a,b, the characteristic proton peaks of the CMCS, AM, and DMC are found in the 1H NMR
spectra of CCPAD. Thus, the two monomers of AM and DMC are successfully grafted onto CMCS.

3.2.3. XRD Characterization

In Figure 4a, a narrow and steep diffraction peak appears at 2θ = 20◦ in the XRD spectrum of
CMCS. This peak corresponds to the crystal structure of CMCS. In Figure 4b, a wide and gentle
diffraction peak is observed at 2θ = 22◦ in the XRD spectrum of P(AM-DMC), while a wide and
flatter diffraction peak appears near 2θ = 19◦ in the XRD spectrum of CCPAD. The diffraction peak
intensities of P(AM-DMC) and CCPAD are lower than that of CMCS. The hydroxyl and amino
groups are distributed on the molecular chain of the CMCS. These groups form intramolecular and
intermolecular hydrogen bonds because of the presence of hydrogen bonds and the regularity of the
molecules. CMCS tends to locally form tiny crystalline structures [37]. When the three monomers are
graft copolymerized, the introduction of AM and DMC will cause the hydrogen bonds of the CMCS
molecules to fracture. This process destroys the orderliness of the crystal structure formed, and the
overall structural order of CCPAD will be greatly reduced [38]. This result indirectly illustrates the
success of the photo-initiated graft polymerization of AM, DMC, and CMCS.
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3.2.4. TG-DTG Characterization

In Figure 5, the TG-DTG diagram for CCPAD shows three stages of thermal decomposition.
The first stage is in the range of 40–200 ◦C. During this stage, the weight loss rate is 1.27% due to the
loss of polymer surface adsorption of water and internal bonding water [39]. The second phase is in the
range of 200–330 ◦C. The weight loss of 26.86% at this phase is due to the imine reaction of the amide
group of AM and the demethylation of the quaternary ammonium group of DMC, while the main chain
of the CMCS is partially broken and CCPAD begins to decompose [40]. The third stage is in the range of
320–560 ◦C, and the weight loss is 47.40%. The main chain of CCPAD is broken, and the organic matter
is basically decomposed at this time. The residual is 24.47% with thermal decomposition temperature of
275.78–280.60 ◦C. Comparison of the TG-DTG curves of CMCS, P(AM-DMC), and CCPAD shows that
CCPAD has the lowest water content. This characteristic indicates that this substance does not easily
absorb moisture and is good for preservation. Graft copolymerization with AM, CMCS, and DMC
changes the partial chemical bonds of the monomer molecules and their intra- (or inter-) molecular
interactions, resulting in the alteration of the thermostability of CCPAD, as shown by comparing
Figure 5c with Figure 5a,b.
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3.3. Sludge Dewatering Performance

3.3.1. Effect of Cationic Degree

Sludge specific resistance is a comprehensive indicator of sludge filtration characteristics, and its
physical meaning is the resistance of unit mass of sludge to unit filtration area when filtered under a
certain pressure. The purpose of this value is used to compare the filtration performance of different
sludge. In Figure 6, the sludge specific resistance to filtration and filter cake moisture content decreases
first and then increases with increases in the dosage of CCPAD and CMCS. The supernatant turbidity
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obtained by CMCS is lower than that obtained by CCPAD, while the performance of CCPAD on the
moisture content and SRF is better than that of CMCS. The optimal water content of the filter cake
by CCPAD is in the range of 20–30 mg/L. The optimal MC and SRF obtained by CCPAD (CD = 40%)
at 30 mg/L are 77.3% and 1.5 × 1013 m/kg, respectively. In addition, the zeta potential obtained by
CCPAD is higher than that by CMCS with increased dosage.
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CMCS is a chain structure than can adsorb and bridge sludge particles, while CCPAD also has
cationic groups, which can provide adsorption binding sites for negatively charged sludge particles.
This characteristic facilitates electricity neutralization, reduction of electrostatic repulsion between the
colloidal particles, enlargement of the floccule particles, promotion of aggregation and sedimentation,
and improvement of the flocculation performance of the sludge flocs. An appropriate increase in the
cationic degree can promote the stretching of the polymer chain, which is favorable for the charge
neutralization function [41]. Thus, analysis of the cationic degree from the various indicators of sludge
dewatering shows that the appropriate cationic degree is beneficial to improve sludge dewatering
performance. This phenomenon is due to the fact that properly increasing the cationic degree of
CCPAD at a certain dosage can enhance the electric neutralization ability, and more cationic charges
can be provided to neutralize the negative charge on the surface of the sludge particles. In Figure S3,
the high cationicity of CCPAD leads to low intrinsic viscosity and short molecular chains, which are
not conducive to the adsorption and bridging of sludge particles. Adding an appropriate concentration
of CCPAD can not only fully neutralize charge but is also be conducive to the adsorption and bridging
between the polymer and sludge particles. Thus, large flocs are formed. When the flocculant amount
is small, the positively charged group is not sufficient to neutralize all sludge particles, and the smaller
sludge particles can easily clog the filter paper. This phenomenon is not conducive to filtration,
resulting in higher MC and SRF [42]. When the amount of flocculant dosage is too large, the sludge
particles will be surrounded by positively charged polymers with electrical reversal. This characteristic
will cause particles to remain stable because of electrostatic repulsion.

3.3.2. Effect of Intrinsic Viscosity

The effect of intrinsic viscosity on sludge dewaterability is shown in Figure 7. With increases in
the dosage of CCPAD and CMCS, the moisture content of the filter cake, the supernatant turbidity,
and the sludge specific resistance decrease first and then increase. The sludge dewatering performance
of CCPAD is better than that of CMCS, because CCPAD has a longer molecular chain presenting
positive charges compared with CMCS. The greater intrinsic viscosity will result in better dewatering
performance. CCPAD with [η] = 1267 mL/g at 20–30 mg/L has the optimal sludge dewatering
performance with supernatant turbidity of 10.3 NTU, MC of 76.5%, and SRF of 1.3 × 1013 m/kg.
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Based on the flocculation mechanism of cationic flocculants, the cationic CCPAD plays an
important role in the destabilization of negatively charged sludge particles mainly because of
charge neutralization and adsorption–bridging. The strength of adsorption–bridging depends on the
polymer molecular chain length, which is conducive to the full contact of CCPAD with the sludge
particles. In adsorption bridges, longer molecular chains can cross and reduce the gaps between
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colloids to destabilize the colloid particles [43]. The destabilized colloids aggregate with each other
and form large flocs that promote aggregation and precipitation. Therefore, at the same dosage,
long molecular chains with high intrinsic viscosity increase the probability of colliding CCPAD
molecules with colloidal particles. This characteristic enhances the adsorption, bridging function,
and sludge dewatering performance.

When the dosage is too small, the CCPAD molecules cannot completely adsorb the sludge
particles, and the positive charge is not sufficient to fully neutralize the sludge particles with poor
sludge dewaterability. An appropriately increased dosage can enhance the charge neutralization and
adsorption bridging between CCPAD molecules and sludge particles. This process forms large flocs
under the adsorption and bridging function. Thus, flocs and water are more easily separated, and a
clear supernate is obtained. However, too high a dosage deteriorates the muddy water separation
performance of the sludge. The excessive dosing amount causes the neutralized sludge particles to
be positively charged and become stable again, and the electrostatic repulsion between the sludge
particles is restarted [Figure 5d] [44].

3.3.3. Effect of pH

The effect of pH on sludge dewaterability is shown in Figure 8. With increase in the pH value,
the moisture content and specific resistance to filtration generally decrease and then increase, and the
conditioning performance of CCPAD is better than that of CMCS. At pH 5–6, CCPAD ([η] = 1267 mL/g
and CD = 40%) exhibits the best effect on sludge conditioning and dewatering, and the filter cake
moisture content, supernatant turbidity, and sludge specific resistance to filtration reach minimum
values of 76.26%, 1.09 × 1013 m/kg, and 6.54 NTU, respectively. The pH condition will change the
surface characteristics of the sludge particles and also has a certain influence on the extracellular
polymer in the sludge. In Figure 8b,c, CCPAD shows good conditioning and dewatering performance
on the sludge at pH 5–6. Under acidic or alkaline conditions, the activated sludge colloidal particles
will be hydrolyzed, and the extracellular polymer in the sludge will be degraded with the release of the
internal water from the sludge particles. Large flocs easily form under the action of CCPAD. However,
the charge resistance between the sludge particles under alkaline conditions is larger than that under
acidic conditions [45].

As the pH increases, the negative zeta potential increases continuously [Figure 8d].
This phenomenon is due to the fact that the high pH value will increase the negative charge density
of the colloidal surface. With the adjustment of pH, the sludge particles may adsorb H+ or OH−

ions, thereby affecting their own chargeability. The effect of pH on the EPS (extracellular polymeric
substances) in the supernatant is shown in Figure 8e,f. With the change in pH, the protein and
polysaccharide contents in the filtrate change distinctly. The protein increases gradually with the pH
value. By contrast, the polysaccharide shows a fluctuating trend, that is, an increase-decrease-increase,
and the maximum polysaccharide content is 45.98 mg/L at pH 10. The protein and polysaccharide
contents obtained by CCPAD are higher than those obtained by CMCS. Under acidic and alkaline
conditions, the structure of the extracellular polymer will break down, making the EPS elute into
the flocculated supernatant. This process results in increased levels of polysaccharides and proteins
in the sludge supernatant [46]. In addition, the protein and polysaccharide contents under alkaline
conditions are higher than those under acidic conditions. Given that the EPS has a negative charge,
the electrostatic repulsive force in the alkali increases, making some EPS disperse in the sludge
supernatant and increasing the solubility of EPS in the supernatant and the polysaccharides and
proteins [47].
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3.3.4. Settleability of Sludge after Flocculation

The effect of dosage and pH on sludge settling performance for 30 min is shown in Figure 9.
The settling performance of the sludge is generally used to study the effect of sludge separation and
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determine the sludge sedimentation rate. The effect of cationic degree on the settling performance is
shown in Figure 9a. Too low and too high cationic degrees are not conducive to the settlement of sludge,
and the effect of CCPAD on sludge settling is slightly worse than that of CMCS. The intrinsic viscosities
of the three cationic CCPADs are not high, and they mainly show the effect of neutralization and
with smaller flocs. In Figure 9b, the higher intrinsic viscosity of CCPAD results in lower sludge
sedimentation rate. The highest sludge sedimentation rate is obtained when 20 mg/L CCPAD
([η] = 1267 mL/g) is added. The sedimentation rate is 926 mL/L because of the large intrinsic viscosity,
which enhances the adsorption and bridging function. On the basis of electricity neutralization,
larger floc particles will more easily form and settle under gravity [48]. From Section 3.3.3, at pH of
5–6, the minimum moisture content of the filter cake and specific resistance of the sludge are obtained,
and the supernatant is clear. However, at pH 6–7, the best sedimentation is obtained, and the minimum
sedimentation rate is 910 mL/L. Under strong acid and strong alkaline conditions, the sludge particles
will release the water inside the particles, and the water content of the sludge will increase. However,
due to the effect of the flocculant, the formed flocs will partially float on the water surface, making it
difficult to settle [49].
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3.4. Sludge Morphology

The sludge and sludge cake morphology before and after sludge conditioning are shown in
Figure 10. The micrographs show that the unadjusted sludge has small and evenly dispersed sludge
particles with a certain consistency, and sludge particle and water are difficult to separate. After CCPAD
conditioning, the separation of mud and water is clearly observed. CCPAD enlarges the sludge particles
and promotes aggregation through neutralization and adsorption and bridging. This phenomenon can
accelerate the separation of sludge and water. The surface of the dewatered sludge cake is relatively
unbroken with no cracks. [Figure 10b,e]. After conditioning and dewatering, the mud cake becomes
tight and with a noticeable crack. These characteristics show that sludge conditioning by CCPAD can
promote the separation of sludge and water, and this process is beneficial to sludge dewatering.

The scanning electron micrographs in Figure 10c,f shows the original sludge particles are small in
size with unevenly dispersed arrangement on the surface and strong adhesion to water. After CCPAD
conditioning, the number of sludge particles increases, and these particle accumulate with dense
structure and smooth surface. This phenomenon is primarily due to the fact that the positively charged
CCPAD molecules are electrically neutralized with the negatively charged sludge particles. Moreover,
the adsorption and bridging cause the formation of the destabilized particles into large aggregates and
flocs [50].
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4. Conclusions

In this study, CMCS, AM, and DMC were used as raw materials to synthesize chitosan-based
flocculant CCPAD through UV-induced polymerization. The optimum synthesis conditions for the
photo-initiated graft polymerization of CCPAD by single-factor experiment were determined as
follows: total monomer concentration, 40%; CMCS concentration, 8%; cationicity, 40%; photoinitiator
concentration, 0.04%; illumination time 2 h; and pH 8. The characterization results show that
the successfully synthesized polymer CCPAD had the functional group structure of CMCS, AM,
and DMC in the main chain. The sludge condition and sludge dewatering performance of CCPAD
were performed and evaluated by supernatant turbidity, moisture content, and specific resistance
to filtration. The optimal sludge dewatering performance, with supernatant turbidity of 6.54 NTU,
moisture content of 76.26%, and specific resistance to filtration of 1.09× 1013 m/kg, was obtained at pH
5–6 and 20 mg/L CCPAD with intrinsic viscosity of 1267 mg/L. In addition, Zeta potential results show
that the main mechanism of sludge flocculation and conditioning was adsorption bridging and charge
neutralization. Thus, photopolymerization technology is an efficient and low-cost environmentally
friendly initiation technology with good application prospects. It also provides direct evidence
for the application of chitosan as a flocculant. Designing and modifying chitosan according to the
characteristics of pollutants is the design target of chitosan-based flocculants with high efficiency.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/1/95/s1,
Figure S1. Effect of total monomer concentration on the synthesis of CCPAD: (a) intrinsic viscosity and (b) grafting
ratio and grafting efficiency; Figure S2. Effect of CMCS concentration on the synthesis of CCPAD: (a) intrinsic
viscosity and (b) grafting ratio and grafting efficiency; Figure S3. Effect of cationic degree on the synthesis of
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CCPAD: (a) intrinsic viscosity and (b) grafting ratio and grafting efficiency; Figure S4. Effect of photo-initiator
concentration on the synthesis of CCPAD: (a) intrinsic viscosity and (b) grafting ratio and grafting efficiency;
Figure S5. Effect of pH on the synthesis of CCPAD: (a) intrinsic viscosity and (b) grafting ratio and grafting
efficiency; Figure S6. Effect of illumination time on the synthesis of CCPAD: (a) intrinsic viscosity and (b) grafting
ratio and grafting efficiency.
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