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Abstract: The formation of a thermoset polymer network is a complex process with great variability.
In this study, we used dissipative particle dynamics and graph theory tools to investigate the curing
process and network topology of a phthalonitrile thermoset to reveal the influence of initiator and
plasticizer concentration on its properties. We also propose a novel way to characterize the network
topology on the basis of two independent characteristics: simple cycle length (which is mainly
affected by the initiator amount) and the number of simple cycles passing through a single covalent
bond (which is determined primarily by plasticizer concentration). These values can be treated in the
more familiar terms of network “mesh size” and “sponginess”, correspondingly. The combination
of these two topological parameters allows one to characterize any given network in an implicit
but precise way and predict the resulting network properties, including the mechanical modulus.
We believe that the same approach could be useful for other polymer networks as well, including
rubbers and gels.

Keywords: polymers; networks; phthalonitrile; curing; simulations; mesoscale chemistry; dissipative
particle dynamics; elastic modulus; network topology

1. Introduction

Polymer composite materials, or fiber-reinforced plastics, are rapidly being introduced into many
areas of our lives and dramatically changing all constructional material industries [1]. The demands
placed on filler materials are more-or-less understandable (they should be lightweight and strong,
such as carbon fiber). At the same time, the properties of polymer matrices are much more sophisticated,
and their influence is often underestimated. Nevertheless, matrix mechanical properties and their
coupling with filler stiffness (which is usually hard to change) primarily determine the overall
composite properties for the consumer, including static and dynamic moduli, elastic and brittle
behavior, etc. Moreover, on the practical side, it is much easier to tune matrices than it is the filler,
because the filler is mostly “as is” material produced by very few manufacturers on the basis of closed
technologies [2]. The other two important contributors to composite material properties are the filler
arrangement inside the matrix and filler–matrix interface properties, which are also very sophisticated
and widely studied nowadays, but these are out of the scope of our research.

The polymer matrix itself is a percolated three-dimensional network of monomer units connected
by covalent bonds, as shown in Figure 1. These bonds are formed during a chemical polymerization
reaction, usually called the curing process. In addition to monomer units, some other species can be
added, like hardeners and plasticizers, to control the reaction speed and crosslink density. Depending
on the monomer’s chemical structure, the nature of the polymerization reaction can be either a
step-growth process (as in the crosslinking of phenolic or epoxy resins) or radical polymerization (as
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in the crosslinking of polyester resin or acrylic glass). The latter case requires an initiator to start the
reaction and usually takes more time. In addition, radical polymerization leads to a more complex
topology of the network and contains defects, like dangling ends. In this study, we consider only
the case of radical polymerization, although our results are probably also applicable to step-growth
polymerization, reduced by the effects of initiator concentration.

In general, there is a vast number of different chemical components which can be polymerized
or copolymerized to form a resin. While the chemical nature of the monomers is very important
for the details of the curing process and also controls the glass transition temperature and heat
resistance, the mechanical properties depend strongly on the topology of the final polymer network.
The network topology, in turn, depends on many factors (such as species composition, reaction
pathways, and conversion degree) and, in most cases, is not known both a priori and a posteriori.

Figure 1. Phthalonitrile network during the curing process.

The influence of the polymer network topology is a well-known problem for polymer elastomers,
including rubbers and especially gels [3,4]. Usually, the real network topology in elastomers is
unknown, except for in cases in which the “network disassembly spectrometry” technique can be
applied [5]. In these cases, a straightforward comparison between the chemical topology and the
theoretical model can be done [6,7]. However, this approach does not work for resins; thus, only a
few attempts to study resin network topology are found in the recent literature [8,9]. The variation in
polymer network crosslinker functionality and its influence on topology and mechanical properties
was studied for the two-dimensional case in [10]. The study of gel point formation for a universal
polymer network model was presented recently [11]. This model is able to account for loop formation,
which is most important for curing in a swollen gel state. The closest to our work is found in [12],
wherein the authors used simulations to s study the radical polymerization of hexanediol diacrylate
with varied initiator content. Here, we studied the network topology at a more detailed level and
combined both the effects of low-molecular-weight plasticizer and initiator concentration.

A common and very approximate viewpoint is that, on average, a shorter distance between
crosslinks (usually called “mesh size”) yields a stiffer and brittler matrix, while larger distances
result in softer and more elastic materials. In this sense, it correlates with the classical polymer
rubber properties, and the correspondence between soft resin (in the region above the glass transition
temperature) and highly crosslinked rubber is obvious.

The phthalonitrile resin is one recent example of various modern resins [13,14], and it is thermally
much more stable than the classic epoxy resin. It polymerizes via a complex radical process and has
a complex network topology. These resins are more expensive compared with the epoxy ones but
can be used to create composites with a high temperature load for such uses as turbine blades or
hyper-velocity aerodynamic shrouds. With the radical polymerization process, the initiator species
should be introduced to start the curing, and the initiator concentration is varied to control the curing
time and to increase the final conversion. At the same time, a plasticizer can be used as an inert
additive to affect the elastic modulus and fragility.
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In parallel to the development of novel chemical species, computer simulation in silico
experiments are attracting attention for studying and predicting various material properties, both at
the atomic level and the coarse-grained level [15]. In our recent works, we developed a multiscale
simulation methodology that makes it possible to predict various physical properties of highly
crosslinked polymer materials [16–18], but there is still a lack of understanding such a network
topology and the possible connections of the network topology with macroscopic properties.

Taking in mind the polymer matrix properties, let us emphasize once more that the polymer
network topology is formed during the curing process, which is usually fully controlled by the
final product makers. Thus, the main purpose of our research is to build a computer model and
describe the influence of the curing process input parameters on the final polymer matrix topology and
mechanical properties. As the input parameters, we used the initiator and plasticizer concentration,
which determine the matrix network topology, followed by the corresponding mechanical properties.
Because of the substantial polymer resin diversity, we considered the specific example of the
phthalonitrile resin, as it is one of the most interesting and promising cases. However, the same
conclusions are most likely valid for any thermoset resin.

Please note also that, in our model, there are no real defects, such as dangling ends or large
dangling loops. This is because of the monomer and initiator units’ special design (see Figure 2b),
which prohibits the formation of such defects. This means that we study defect-free networks and
can measure the influence of network topology solely, disregarding any dangling or other elastically
inactive elements.

(a) (b)

Figure 2. Representation of the coarse-grained model. (a) Coarse-grained mapping schemes of
phthalonitrile monomer p-SiMe2PN and initiator (diamine curing agent 1,3-bis(4-aminophenoxy)
benzene). (b) The scheme of the “mesoscale chemistry” reactions of initiation (i–ii) and polymerization
(ii–iv). Terminal beads of each monomer (red) and initiator (blue) have valences of 2 and 1, respectively;
asterisk indicates an active bead. Red arrows show reaction pathways.

2. Methodology

We produced computer simulations of matrix curing, equilibrated the resulting networks,
and studied their topology and mechanical properties using dissipative particle dynamics (DPD)
simulations. DPD is a mesoscopic simulation method that was originally proposed by Hoogerbrugge
and Koelman [19,20] and later developed for the simulation of polymers and molecular systems by
Espanol, Groot, and Warren. In this method, a bead-and-spring model is used to represent molecules,
and beads move according to Newton’s equations of motion and interact with conservative (repulsion),
dissipative (friction), and random (heat generator) forces. The use of soft repulsive potential increases
the numerical stability of the integration of the equations of motion, which makes it possible to achieve
a higher integration time step (compared with molecular dynamics or Brownian dynamics) and,
consequently, to simulate complex polymer networks on larger time and spatial scales. Recently,
the “mesoscale chemistry” concept was successfully adopted using this method for simulations of
polymerization reactions [8,16,21].
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2.1. Coarse-Grained Model

In this study, we considered polymer networks based on the phthalonitrile monomer p-SiMe2PN
and, as the initiator, the diamine curing agent 1,3-bis(4-aminophenoxy)benzene; thus, this work is a
continuation of our recent investigations of such systems [16–18]. The coarse-grained representation
of initial chemical structures is shown in Figure 2. We assumed that all beads had almost the same
volume and the same corresponding DPD pair repulsion parameter a = 90 (details of the choice can
be found in [17]) at temperature T = 1 and number density ρ = 3. Harmonic bond (equilibrium
bond length lb = 0.5, bond strength Kb = 90) and angle potentials (equilibrium angle γa = 180◦,
angle strength Ka = 1.8) were applied, which required using a time step of δt = 5× 10−3 for the stable
performance of the integration scheme. The initial simulation box had a size of 30× 30× 30 DPD units,
which is approximately 23× 23× 23 nm3 at room temperature, according to known density data [22].
We prepared eight systems with different ratios of the initial compounds. Four systems contained
only monomer and initiator, with mass proportions of 99:1 (16,038 monomers), 96:4, 92:8, and 84:16
(13,608 monomers). Another four systems contained monomer, initiator, and low-molecular plasticizer.
In these systems, the monomer-to-initiator mass ratio was fixed at 96:4, and the plasticizer mass varied
from 8% to 64% (5598 monomers) of the total mass of the system. Terminal beads of monomer and
initiator molecules (shown in red and blue in Figure 2) had free valences equal to 2 or 1, respectively,
and could be either inactive (initially for monomers) or active (initially for initiator molecules).

2.2. Curing Process Simulation

In this work, the propagation process in radical polymerization reactions was simulated as follows.
Active beads were able to form bonds with inactive terminal beads and passed an active state to the
bead with which they formed a bond. This model involves the concept of “mesoscale chemistry” and
was described in detail in our recent papers [16,17]. We implemented two types of reactions at the
mesoscale level:

1. Initiation reaction, during which terminal beads of initiator and monomer molecules form a
bond, and the initiator terminal bead passes the active state to the corresponding monomer bead
(asterisk in Figure 2b(i–ii).

2. Polymerization reaction, during which an active bead of the monomer forms a bond with
a neighboring terminal bead and passes the active state to that bead, as in Figure 2b(ii–iii).
This process repeats until the conversion rate reaches 100%, as depicted in Figure 2b(iii–iv).

Both reactions were carried out in the NVT ensemble. At regular time intervals (10 DPD time
units, or 2000 DPD steps), each pair of active terminal bead and neighboring terminal bead having
free valences was tested for the following condition: if the distance between these beads was less than
the reaction radius Rc = 1, then a new bond was formed between these beads with the probability
p = 0.01. The time interval and reaction probability were chosen to be sufficiently small to maintain
quasi-equilibrium conditions [21].

During the curing process simulations, two parameters were evaluated: the conversion degree c
and the fraction of particles belonging to the largest cluster in the system mc. The conversion degree
was calculated as the ratio between the number of bonds created and the maximum possible number
of new bonds. The fraction of the largest cluster was determined as the ratio between the largest
cluster size and the total number of monomer and initiator beads in the system (i.e., the whole system
excluding plasticizer).

2.3. Calculating Matrix Properties

We studied the mechanical properties of coarse-grained matrices. For each of eight prepared
systems, a matrix with a conversion degree of c = 95% was analyzed. We applied a uniaxial deformation
along the x-axis to the simulation box and measured stress–strain response curves. During deformation,
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the volume of the box was kept constant. Deformation was applied at a slow enough rate to keep
the system equilibrated during simulations (λ = L/L0 = 1.66 was reached in 105 DPD time units).
The components of the stress tensor p were averaged using the virial theorem [23]. The true stress was
calculated as σ = 〈pxx〉 − 0.5〈pyy + pzz〉.

Then, we used two models to estimate the elastic modulus E: the Flory model and the Three
Chain Model. The Flory model [24] considers systems of densely packed free joint networks with
segment length l and contour length L to be affinely deformed. Let the deformations of primary axes x,
y, and z be λx, λy, and λz, correspondingly. Considering affine deformations of each subchain, one can
express the change in the free energy of a single subchain as the following:

δ f =
3kBT
2Ll

(R2 − R2
0) =

3kBT
2Ll

(R2
x0(λ2

x − 1) + R2
y0(λ2

y − 1) + R2
z0(λ2

z − 1)).

It was shown [25] that, for the case of uniaxial deformations with a constant sample volume
(λx = λ, λy = λz = λ−0.5), the stress can be then written as follows:

σ =
1
V

dF
dλ

= kBTν(λ− 1
λ2 ),

where ν is a number of subchains per unit volume. This equation leads to a sufficiently nonlinear
stress–strain dependency, which coincides with known experimental and simulation data for
small deformations.

However, larger elongations require a more complex approach due to the entanglements between
the subchains and finite extensibility of subchains. The Three Chain Model (TCM) [26] takes into
consideration the non-Gaussian behavior of subchains under deformations. It considers a system as an
ideal network formed by cells with three separate subchains in each cell (by the number of dimensions).
Considering affine deformations of all subchains, one can express the stress σ via an inverted Langevin
function L−1:

σ =
νkBT

3
n1/2

{
L−1(λ · n−1/2)− λ−3/2L−1([λ · n]−1/2)

}
,

where n is a subchain length, and ν is the same value as in the Flory model.
The simulated stress–strain curves were fitted by both models; then, the elastic modulus E was

considered numerically equal to ν, as supposed in these models.

3. Results and Discussions

3.1. Curing Speed and Gelation Point

First, let us consider the positive effect of the initiator additive to the overall processing time.
Indeed, the processing time itself is a very important feature in any industry-related system, because
the time needed to leave a fabric unit in a mold form is critical to the entire manufacturing workflow.
Figure 3 gives an overall view of the influence of the initiator concentration on the curing time. We also
present the simulation time to reach a 95% conversion degree versus the initiator amount in the inset.

Let us discuss, in more detail, the process of gelation and which properties of the network
form near the sol–gel transition (i.e., percolation threshold). Figure 4 gives snapshots of the network
structure below and above the gelation point, while Figure 5 gives the largest cluster size versus
conversion plot. We observe a very heterogeneous network with several growing clumps crosslinked
with each other upon gelation. Such heterogeneity is, of course, the consequence of each monomer
unit’s valence being equal to four, which leads to the formation of a very dense crosslinking network.
An interesting conclusion can be made from Figure 5: the system with a higher amount of initiator
has a more delayed and sharp gelation transition (note: here, we talk in terms of conversion along the
abscissa axis, not real time). This results in an increased conversion degree and the largest cluster size
at gel point, as can be seen from Figure 6.
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Figure 3. Conversion degree and fraction of particles belonging to the largest cluster as functions of
the simulation time. The inset shows the simulation time required to obtain 95% conversion degree
depends on the amount of the initiator.
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Figure 4. Snapshots of systems with 4% initiator (a) before (conversion degree c = 0.16, largest cluster
size mc = 0.02) and (b) after (c = 0.18, mc = 0.11) gelation point. The largest clusters are marked in blue
for both systems.
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Figure 5. The largest cluster size versus conversion degree for various amounts of initiator.
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Figure 6. Averaged network properties at percolation point for various amounts of initiator.

Thus, we have one more important effect of the initiator, in addition to the enhancement of overall
reaction speed: the more initiator we have, the greater the fraction of monomer units included in the
gel fraction just after the gel point. That is, at 1% of initiator, there is only 25% of all units included in
the first percolation cluster, but if we use 16% of initiator, the percolation cluster contains more than
60% of all monomers. So, we propose that a sample with an increased percolation cluster size can be
removed from the molding just after the gelation point, while a sample with a smaller percolation
cluster should be exposed to additional post-gelation curing to avoid deformation and leakage after
molded form removal.

We also tested the percolation cluster properties in the systems with a varied amount of plasticizer,
but there was no significant influence of the plasticizer on the percolation threshold or maximum
cluster size, so we do not present these results here.

3.2. Mechanical Properties

We performed network uniaxial constant volume deformations to study the system’s mechanical
properties, as shown in Figure 7 (here, i and p refer to the amount of initiator and plasticizer,
correspondingly). In the upper part of Figure 7, the 2D slice snapshots are presented in equilibrium
and deformed state (λ = 1.6), while, below, the stress–strain curves are shown. One can see slight
alignment along the elongation axis in the deformed state. In addition, there is sufficiently great
monomer stretching at λ > 1.3− 1.4 (see averaged monomer end-to-end distance in insets in Figure 7).
This is likely responsible for the rapid nonlinear increase in stress during high elongation, which is
not predicted by the Flory model. We also note that the non-uniform direction of these fully stretched
segments, especially for the system with the plasticizer, shows that the deformation of the internal
network structure is non-affine.

We are well aware of the entropic nature of the elastic deformations of amorphous (non-glassy)
networks, while most thermoset systems in the working temperature interval are in the glassy state.
Nevertheless, such analysis could be useful to compare with standard polymer elastomer models and
to give some estimate of general network properties. The comparison with the polymer elasticity
model was made via the simpler Flory affine network model [27] for a region of small deformations
1.0 < λ < 1.2 (i) and later with the more sophisticated Three Chain Model over all λ values and taking
into account the crosslink volume density (ν) from the Flory model. The detailed fitting formulas are
given in the Methodology section.

To summarize, the standard Flory model works nicely for small deformations, and the ν value
gives the exact measure of the elastic modulus (in kT units). For the greater deformations, the TCM
fit overestimates the nonlinear increase in stress caused by the subchains’ final expansibility, but the
fitting parameter n, which is proportional to the average mesh size, is always close to the same value,
which is around 0.56. This overestimation most likely comes from the irregularity of our modeled
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network: there are no equally distributed cubic meshes inside the network topology, which is assumed
for the TCM.

(a) p = 0, λ = 1 (b) p = 0, λ = 1.6

(c) p = 32%, λ = 1 (d) p = 32%, λ = 1.6
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Figure 7. Snapshots of systems with 0% plasticizer and 32% plasticizer at non-deformed (λ = 1) and
after deformation (λ = 1.6) (a–d). Insets show the average monomer end-to-end distance Re as a
function of λ. Stress–strain curves for various initiator concentration of matrices with various amounts
of (e) initiator and (f) plasticizer.
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3.3. Topology of the Cured Networks

To understand the differences in network topology for systems with various initiator and
plasticizer concentrations and to correlate these differences with mechanical properties we studied
simple cycles distribution (see Figure 8). In all cases, the cycles are distributed around a Gaussian bell
shape, so we can address the average cycle length value and its distribution width (i.e., dispersity).
We can clearly observe an increase in mean cycle length and dispersity upon the increase of initiator
concentration. This trend is more or less obvious and can be explained by the inclusion of the valuable
fraction of a two-valence initiator into the melt of four-valence monomers.
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Figure 8. Distribution of simple cycle lengths in matrices with various amount of (a) initiator and (b)
plasticizer. The number of simple cycles was normalized by dividing it by the number of particles in
the polymer matrix.

The more intriguing result comes from the plasticizer influence: there is a noticeable decrease in
the mean cycle length upon increasing the plasticizer amount. To some extent, this is caused by the
redistribution between the standard network mesh size and self-loops from two neighboring monomer
units because of the plasticizer-driven dilution effect of active ends, similar to that observed in [11].
However, the other contribution is not obvious and should be discussed in more accurate terms.

To do this, we calculated one more network property: the average number of cycles passing
through the bond, which we correlated with the elastic modulus, together with the average cycle
length, as seen in Figure 9. The elastic modulus decreases during the increase in initiator concentration
(black curve) in straightforward accordance with the simple cycle behavior. However, the situation
with the plasticizer concentration is the opposite and, at first glance, counterintuitive: the decrease in
cycle length yields a decrease in the elastic modulus. The preliminary conclusion here is the following:
both additives (initiator and plasticizer) affect the network properties and considerably decrease the
elastic modulus, but the mechanisms are transversal. In the next session, we try to rationalize the
aforementioned difference in the mechanism of network softening by the initiator and plasticizer.

Additionally, we calculated the conformational properties of the cycles, namely, spatial distance
Rij versus distance along the chain n = i − j, for any pair i and j inside a simple cycle. However,
these plots were almost the same for all cases, indicating Gaussian conformation with R = n1/2; we do
not present the corresponding plots here.
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Figure 9. Dependencies of elastic modulus of matrices with various amount of initiator and plasticizer
on (a) the average simple cycle length and (b) the average number of cycles passing through a bond.

4. Conclusions and Outlook

In this paper, we study the thermoset polymer matrix and the influence of plasticizer and initiator
on the gelation process and final matrix properties. The gelation process depends primarily on the
initiator amount, and gelation time is inversely proportional to the initiator concentration. In addition,
we found that the average gel fraction at the gel point is much higher for the case of a higher initiator
amount, which could be of practical interest for potential industry workflows. However, the flip side
of the coin is that the initiator increases the mesh size and network softness. The plasticizer does not
speed up the curing time, but it also increases network softness.

In addition, in this paper, we propose to calculate one new network topology characteristic,
namely, the number of simple cycles passing through a single bond. To the best of our knowledge,
this the first time this characteristic of network topology is considered in addition to cycle distribution,
which is often studied in state-of-the-art papers on polymer networks [9,12].

We correlated mechanical and topological network properties and propose a valuable way to
characterize network softness based on two topological properties: average simple cycle length
and average number of simple cycles passing through a single covalent bond. These values can be
treated in the more familiar (although inaccurate) terms of network “mesh size” and “sponginess”,
correspondingly. We found that, in the studied case of phthalonitrile resin, the initiator mainly changes
the “mesh size”, while the plasticizer only affects “sponginess”, and they do so orthogonally to each
other, as we present in Figure 10. The combination of these two topological parameters allows one
to characterize any given network in an implicit but precise way and predict the resulting network
properties, including the mechanical modulus. We believe that the same approach could also be useful
for other polymer networks, including rubbers and gels.
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Figure 10. Elastic modulus as a function of average simple cycle length and average number of cycles
passing through a bond for systems with varying amounts of initiator (black) and plasticizer (red).
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