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Abstract: Electroactive organic dyes incorporated in layer-by-layer (LbL) assemblies are of great
interest for a variety of applications. In this paper, Alizarin Red S (ARS), an electroactive
anthraquinone dye, is employed to construct LbL (BPEI/ARS)n films with branched poly(ethylene
imine) (BPEI) as the complementary polymer. Unconventional LbL methods, including co-adsorption
of ARS and poly(4-styrene sulfonate) (PSS) with BPEI to assemble (BPEI/(ARS+PSS))n, as well as
pre-complexation of ARS with BPEI and further assembly with PSS to fabricate ((BPEI+ARS)/PSS)n,
are designed for investigation and comparison. Film growth patterns, UV–Vis spectra and surface
morphology of the three types of LbL assemblies are measured and compared to reveal the
formation mechanism of the LbL films. Electrochemical properties including cyclic voltammetry
and spectroelectrochemistry of (BPEI/ARS)120, (BPEI/(ARS+PSS))120 and ((BPEI+ARS)/PSS)120

films are studied, and the results show a slight color change due to the redox reaction of ARS.
((BPEI+ARS)/PSS)120 shows the best stability among the three samples. It is concluded that the
manner of dye- incorporation has a great effect on the electrochemical properties of the resultant films.

Keywords: Alizarin Red S; layer-by-layer assembly; UV–Vis spectrometry; electrochemistry

1. Introduction

Layer-by-layer (LbL) assembly is a simple and powerful method to fabricate multilayer films for
a variety of applications [1–5]. Polycations and polyanions are usually used as assembly species [6–9],
but other building blocks, including proteins [10–13], polysaccharides [14–16], nanoparticles [17–19],
and dyes [20,21], have also been investigated. The inclusion of organic dyes into multilayer films is of
great interest for functional films [22,23]. The challenge with many of these dyes is that they are small
molecules, so their assembly into films is less energetically favored. Dubin explored similar challenges
with surfactants and organic dyes, both in terms of partitioning and in assembly [24–29].

Electroactive dyes are responsive to electrical stimulation with a reversible variation of one or
more physico-chemical properties [30]. They show wide technological applications in electrochemical
and biological sensing, electrocatalysis, photovoltaic and electrochromic areas [31]. Immobilizing
electroactive dyes using LbL assembly technique is an attractive way to incorporate the functionality
and responsiveness of the dyes onto a surface of choice. Electroactive dyes, including phthalocyanine
dyes [32–36], porphyrin dyes [37–39], methylene blue [40] and naphthol green B [41], have been
layer-by-layer assembled with other species, and the obtained multilayer films were studied for
potential use as electrochemical devices.
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Anthraquinone-based dyes are also of interest for their electroactivity. Due to their relevance
in biological systems and technical use, the redox behavior of anthraquinones has been studied
extensively [42–45]. Alizarin Red S (1,2-dihydroxy-9,10-anthraquinone-3-sulfonate, ARS, Figure 1),
is one such type of electroactive anthraquinone dye. It is of particular interest for its electrochromic
properties, along with its strong color contrast [46]. Due to the presence of electron donor (phenolic)
and electron acceptor (quinone) moieties, ARS is electrochemically amphoteric, which is especially
interesting from the point of view of molecular electronics [47]. It has been used as an electrochemical
sensor, electrochemical indicator, and reducing agent [48–54]. ARS bears a negative charge, so it
can be expected to assemble with polycations to form new types of electrochemically functional
nanostructures. Its incorporation in multilayer films may show different properties for various
applications, such as electrochemical sensors and electrochromic films. However, very few studies
of assembly of ARS LbL deposited films and their resulting electrochemical properties have been
reported probably due to the fact that ARS is a singly charged small molecule.

ARS contains several functional groups: besides sulfonic groups, ARS has hydroxyl and carbonyl
groups. The hydroxyl groups ionize to provide certain electrostatic interaction sites, and hydrogen
bonding can form between amino-containing polycations and ARS. In addition, the large planar
structure of the anthraquinone may also facilitate anchoring on the surface to promote LbL construction.
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Figure 1. Chemical structure of Alizarin Red S (1) and its ionized structures (2 and 3). 

In this paper, branched polyethyleneimine (BPEI) was used as the complementary polycation 
for LbL assembly, and the properties of (BPEI/ARS)n LbL films on ITO-coated glass were studied. 
Besides the conventional LbL assembly method, which commonly refers to the fabrication of building 
blocks into multilayer thin films without prior or post treatment [55], unconventional LbL methods 
with more than one step in assembly, are also important for incorporation of more compositions and 
for producing more functionalities [56,57]. In this study, ARS was also incorporated in the multilayers 
through two unconventional LbL methods. One was the co-adsorption of ARS and poly(4-
styrenesulfonate) (PSS) onto BPEI to obtain (BPEI/(PSS+ARS))n films in which ARS and PSS 
competitively adsorb onto the BPEI layer; the other was pre-complexation of ARS with BPEI, and 
then the pre-complex was alternately adsorbed with PSS to obtain ((BPEI+ARS)/PSS)n films (Scheme 1). 
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In this paper, branched polyethyleneimine (BPEI) was used as the complementary polycation
for LbL assembly, and the properties of (BPEI/ARS)n LbL films on ITO-coated glass were studied.
Besides the conventional LbL assembly method, which commonly refers to the fabrication of building
blocks into multilayer thin films without prior or post treatment [55], unconventional LbL methods
with more than one step in assembly, are also important for incorporation of more compositions
and for producing more functionalities [56,57]. In this study, ARS was also incorporated in the
multilayers through two unconventional LbL methods. One was the co-adsorption of ARS and
poly(4-styrenesulfonate) (PSS) onto BPEI to obtain (BPEI/(PSS+ARS))n films in which ARS and PSS
competitively adsorb onto the BPEI layer; the other was pre-complexation of ARS with BPEI, and then
the pre-complex was alternately adsorbed with PSS to obtain ((BPEI+ARS)/PSS)n films (Scheme 1).
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The key idea of these unconventional approaches is that they include more than one step in the
assembly process. It is anticipated that such LbL methods will provide useful routes to supramolecular
architectures with more structural complexity for more robust usage. The film growth, UV–Vis
spectrum, surface morphology and electrochemical properties of the three kinds of films were studied
and compared. The knowledge gained from these studies will provide useful information for future
strategies to develop functional hybrid materials based on dye-incorporated LbL assemblies.

2. Experimental Section

2.1. Chemicals and Materials

Branched poly(ethylene imine) (BPEI, Mw = 25,000) and Alizarin Red S (ARS) were purchased
from Sigma Aldrich (St. Louis, MO, USA). Polystyrene sulfonate (PSS, Mw = 500,000) was obtained
from Scientific Polymer Products, INC. (Ontario, NY, USA). Other chemicals were of analytical grade
or higher and used without further purification. Aqueous solutions were prepared using 18.2 MΩ
cm (Milli-Q) water. Indium-tin oxide (ITO) coated glass was purchased from Delta Technologies
(Loveland, CO, USA).

2.2. Preparation of LbL Assemblies

(BPEI/ARS)n, ((BPEI+ARS)/PSS)n and (BPEI/(PSS+ARS))n LbL assemblies were prepared on
ITO-coated glass slides using a programmable slide stainer (HMS series, Carl Zeiss Inc., Thornwood,
NY, USA). ITO-coated glass slides were cleaned by immersion in a H2O-NH4OH-H2O2 (5:1:1) mixture
at 70 ◦C for 15 min followed by sonication-cleaning in Milli-Q water three times for 5 min each.
After cleaning, the ITO-coated glasses were dried using high-velocity nitrogen gas. Plasma-cleaning
(Harrick PDC-32G) was then carried out for 5 min.

For (BPEI/ARS)n film, the ITO-coated glass slides were immersed in pH 5.0 BPEI solution for
15 min followed by three rinses with Milli-Q water for 2, 1 and 1 min each. Then, the substrates were
immersed in pH 5.0 ARS solution for 15 min, followed by another three water rinses for 2, 1 and 1 min
each. The cycles were repeated n times to form a (BPEI/ARS)n LbL film. For ((BPEI+ARS)/PSS)n film,
the ITO-coated glass slides were first immersed in pH 5.0 solution containing both BPEI and ARS for
15 min, the rinse processes were the same as that used for (BPEI/ARS)n assembly. Then, the substrates
were immersed in pH 5.0 PSS solution for another 15 min, followed by the same rinse procedures.
The cycles were repeated n times to form a ((BPEI+ARS)/PSS)n LbL film. For (BPEI/(PSS+ARS))n film,
the procedures were almost the same as that described above, except that ARS was mixed with PSS,
not BPEI, and the solutions of BPEI and (ARS+PSS) were both kept at pH 5.0. The concentrations of
both polymers and ARS were 1 mg·mL−1, and 0.5 M of NaCl was used for rinse baths. The LbL films
were dried in a convection oven at 70 ◦C for 10 min and stored in a sealed vial until further use.

2.3. Characterization

The thickness of the LbL films was measured using profilometry (P-6, KLA-Tencor, Milpitas,
CA, USA). The films were scored to the substrate surface using a razor blade and step heights
were measured at five different locations and averaged. Surface morphology and roughness were
characterized in the dry state via atomic force microscopy (AFM) using a Dimension icon System
Nano IR2-s (Bruker Nano. Inc., Billerica, MA, USA) in tapping mode. HQ: NSC35/Al BS AFM probes
(MikroMasch, Watsonville, CA, USA) with a typical tip radius of 8 nm were used. UV–Vis spectroscopy
was performed using a SolidSpec-3700 UV-VIS-NIR spectrometer. The electrochemical tests were
carried out using a three-electrode system inside a 1.00 cm cuvette. Silver wire with 0.5 mm diameter
(Alfa Aesar, Haverhill, MA, USA) was used as the quasi-reference electrode (QRE), and platinum wire
of 0.3 mm diameter (Alfa Aesar) as the counter electrode. LbL films on ITO-coated glass were used
as working electrodes (Delta Technologies, Loveland, CO, USA). Cyclic voltammetry was performed
at room temperature using Gamry Instrument (Interface 1000, Warminster, PA, USA) in the voltage
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range of −1.0–0.2 V versus Ag QRE. The spectroelectrochemical measurements were obtained using a
combination of the Gamry and SolidSpec-3700 spectrometer, and also employing the above mentioned
three-electrode electrochemical system inside a 1.00 cm cuvette. The film on the non-conducting sides
of the ITO-coated glasses was wiped away, and the conducting side with the film was centered in
the cuvette to assure equal light intensity for both front and backside illumination. The supporting
electrolyte was an aqueous solution of 0.1 M NaCl. The electrochemical cell was held at 25 ◦C.
The Ag QRE was calibrated with respect to the potassium ferricyanide/potassium ferrocyanide
(Fe(CN)6

3−/Fe(CN)6
4−) couple. The half-wave potential (E1/2) of Fe(CN)6

4−/Fe(CN)6
3− measured

in 0.1 M NaCl solution was 0.18 V vs. Ag QRE. Fe(CN)6
4−/Fe(CN)6

3− = 0.36 V vs. SHE (standard
hydrogen electrode). Thus, the potential of the Ag wire was assumed to be 0.18 V vs. SHE.

3. Results and Discussion

3.1. Digital Images and UV–Vis Spectroscopy

The digital photographs of (BPEI/ARS)n, (BPEI/(ARS+PSS))n, and ((BPEI+ARS)/PSS)n for when n
was 20, 40, 60, 80, 100 and 120 are presented in Figure 2a–c, respectively. For all three kinds of assemblies,
the colors of the films gradually became deeper, indicating that more dye was incorporated as the number
of layer pairs increased. BPEI showed a positive charge because of partial protonation of the amino
groups at pH 5. As ARS and PSS contained sulfonic groups, the molecules exhibited negative charges.
Dissociation constants for the two phenolic hydroxyl groups in ARS were reported as pK1(2-OH) = 5.49
and pK2(1-OH) = 10.85 [46]. At pH 5, about 20% of 2-OH of ARS ionized to form 2-O− [46], so ARS
also contains phenolic anion groups. Mainly due to the electrostatic interactions, (BPEI/ARS)n and
(BPEI/(ARS+PSS))n films grew and more dye was introduced with the increase of the layer number.
((BPEI+ARS)/PSS)n also grew, indicating the positive charge of the complex (BPEI+ARS).
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Figure 2. Photographs of (a) (BPEI/ARS)n, (b) (BPEI/(ARS+PSS))n and (c) ((BPEI+ARS)/PSS)n on
ITO-coated glass; UV–Vis spectra of (d) (BPEI/ARS)n, (e) (BPEI/(ARS+PSS))n and (f) ((BPEI+ARS)/PSS)n

on ITO-coated glass; (g) UV–Vis spectra of ARS, ARS+BPEI and ARS+PSS; (h) UV–Vis spectra of
BPEI+ARS solution, (BPEI/ARS)120, (BPEI/(ARS+PSS))120 and ((BPEI+ARS)/PSS)120 on ITO-coated
glass; (i) Relationship of the number of bilayers or layers pairs and the absorbance of the films at the
maximum absorption wavenumber.
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However, the color shade and color strength differed among the three assembly methods.
ARS solution was orange yellow at pH 5, while (BPEI/ARS)n and (BPEI/(ARS+PSS))n films were
dark purple, and ((BPEI+ARS)/PSS)n was peach red. The film colors were far from that of the ARS
solution, which is mainly owing to the bathochromic effect of ARS’s interaction with BPEI. In addition,
it can be observed that the (BPEI/ARS)n and (BPEI/(ARS+PSS))n films appeared much smoother
even when the number of layer pairs was large; however, ((BPEI+ARS)/PSS)n films appeared rougher
and rougher as the number of layer pairs increased. A special phenomenon of hydrogel formation
was observed only during the assembly of ((BPEI+ARS)/PSS)n films (see Figure 3). When ARS was
added to BPEI solution, physical crosslinking among BPEI molecules formed with ARS, which contains
multifunctional groups. Then in LbL assembly, the crosslinked (BPEI+ARS) molecules adsorbed on the
film, and then interacted with the adsorbed PSS to expand the spatial network, resulting in formation
of the red hydrogel; after drying, the hydrogel collapsed into a film with a rough surface.
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The color differences among the different assemblies were also monitored using UV–Vis
spectroscopy (Figure 2d–f). The maximum absorption wavelengths (λmax) of (BPEI/ARS)n and
(BPEI/(ARS+PSS))n films within the visible region were quite close to each other, located at
about 540 nm (Figure 2d,e), while that of ((BPEI+ARS)/PSS)n was at about 520 nm (Figure 2f).
Such λmax values indicated that the films were all red in color and that the color of (BPEI/ARS)n

and (BPEI/(ARS+PSS))n films was deeper than that of ((BPEI+ARS)/PSS)n. Besides λmax, the half
peak width in the visible spectra also determines the color. It could be seen from Figure 2d–f that
(BPEI/ARS)n and (BPEI/(ARS+PSS))n films showed broad peaks, while ((BPEI+ARS)/PSS)n showed
narrower one, indicating that the colors of the former were much darker and that of the latter was
much brighter. These results were in accordance with the color of the films we observed.

The UV–Vis spectra of ARS, ARS+PSS and ARS+BPEI solutions were also measured for
comparison (Figure 2g), they gave λmax at 425, 425 and 525 nm, respectively. Both ARS and ARS+PSS
showed 3 absorption peaks at 425, 480 and 520 nm in the visible region, which were assigned to the
absorption of ARS and ARS with partially ionized hydroxyl groups (Figure 1). As ARS and PSS are
both anionic molecules and their intermolecular interaction is small, addition of PSS in ARS solution
shows little influence on the spectra and the color. However, when BPEI was added to the ARS solution,
the visible spectrum showed a bathochromic shift and a notable hyperchromic effect, indicating strong
interaction between the molecules. Dyes with significant planarity usually associate with each other to
form a packed structure. Due to the electrostatic interaction and hydrogen bonding between ARS and
BPEI, the π–π stacking among the dye molecules was hindered and a J-type aggregate between ARS
and BPEI formed [58].

By comparing the UV–Vis spectra of the solutions, distinct differences can be seen from that
of the assembled films. When ARS or ARS+PSS was assembled with BPEI on ITO-coated glass,
visible absorption spectra of the assemblies showed an obvious bathochromic shift compared with
that of ARS solution, indicating intermolecular interaction between the ionic species, resulting in a
J-type aggregate. Spectroscopy methods have confirmed the formation of dye molecular aggregates



Polymers 2019, 11, 165 6 of 14

in LbL films. The formed aggregates can be significantly different from those commonly observed in
aqueous solution [58–60].

The changes in the UV spectra were not as obvious as that in the visible spectra- ARS displays
three obvious bands at 252, 288 and 325 nm (Figure 2g), which are p-p* transitions with benzenoid,
quinonoid and benzenoid characters, respectively [61–63]. Complexation of ARS and BPEI increases
absorption at about 330 nm due to a dye-disassociation effect. For (BPEI/ARS)n, (BPEI/(ARS+PSS))n,
and ((BPEI+ARS)/PSS)n assemblies (Figure 2d–f), the peaks at around 280 and 330 nm still exist, and the
peaks at about 280 nm show an obvious red shift with increasing layer pair number, indicating the
interaction of anthraquinone with BPEI.

In the co-adsorption process, ARS and PSS competed with each other to interact on BPEI;
complexation of PSS with BPEI reduced the number of amine interaction sites for ARS, thus leading to
less dye adsorbed. However when ARS was precomplexed with BPEI and then assembled with PSS,
the spectra of the ((BPEI+ARS)/PSS)n films showed a similar shape and close λmax compared with that
of (ARS+BPEI) solution (as presented in Figure 2h). It can be estimated that only some of the BPEI was
precomplexed with ARS as BPEI contains many more cationic groups. This is the reason why much
less dye was adsorbed for ((BPEI+ARS)/PSS)n assemblies. As PSS did not show much interaction with
the dye, the visible spectra of ((BPEI+ARS)/PSS)n was much the same as that of (ARS+BPEI) solution.
These results also revealed that the color of ((BPEI+ARS)/PSS)n could be predicted according to that
of (BPEI+ARS) solution.

From Figure 2h, it can clearly be seen that (BPEI/ARS)120 films showed the largest dye incorporation
amount, (BPEI/(ARS+PSS))120 much less, and ((BPEI+ARS)/PSS)120 the least. For other layer pairs,
the comparison results are the same (see Figure 2i). In all cases, the absorbance increased almost in
proportion to the increase of the number of the layer pairs, indicating regular growth of the dye layers.

3.2. Film Growth Behavior

The thicknesses of the (BPEI/ARS)n, (BPEI/(PSS+ARS))n and ((BPEI+ARS)/PSS)n films were
measured using a profilometer for when n was 20, 40, 60, 80, 100 and 120 (Figure 4). All three types
of assemblies showed linear growth behavior, indicating suppressed interlayer diffusion throughout
the multilayer films [64]. When the bilayer number was 20, the thicknesses of (BPEI/ARS)20,
(BPEI/(PSS+ARS))20 and ((BPEI+ARS)/PSS)20 were 237, 226 and 955 nm, respectively; when the
bilayer number increased to 120, the thicknesses of (BPEI/ARS)120, (BPEI/(PSS+ARS))120 and
((BPEI+ARS)/PSS)120 reached 4620, 5840 and 9860 nm, respectively. The thickness of ((BPEI+ARS)/PSS)120

was even double of that of (BPEI/ARS)120. The average layer pair thicknesses for (BPEI/ARS)120,
(ARS/(PSS+ARS))120 and ((BPEI+ARS)/PSS)120 films were 38, 49 and 82 nm, respectively. The regular
growth is attributed to the strong interactions among assembly species.
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It can be seen that ((BPEI+ARS)/PSS)n films showed the largest growth rate, (BPEI/(PSS+ARS))n

grew more slowly, and (BPEI/ARS)n grew the slowest. These results were just opposite to the color
depth we observed and the visible absorbance growth law at λmax in Figure 2i, in which (BPEI/ARS)n

displayed the highest color strength and the largest absorbance increase rate, (BPEI/(PSS+ARS))n

showed the moderate rate values and ((BPEI+ARS)/PSS)n the slowest ones. When assembling
((BPEI+ARS)/PSS)n films, BPEI chains with the fewest number of associated ARS molecules likely
adsorb preferentially, so the film grew very quickly. On the other hand for co-adsorption, when PSS
was incorporated in the LbL films, the films grew quicker owing to that PSS was a polymer with a large
amount of anionic groups and more interactions existed between PSS and BPEI vs. ARS (does it mean
compared with ARS, PSS is more easy to adsorb on BPEI?). Although the growth rate of (BPEI/ASR)n

assembly was the lowest, its gradual increase to 4630 nm at 120 bilayers also revealed a significant
molecular interaction between BPEI and ARS. Besides electrostatic attraction, hydrogen bonding and
van der Waals force between BPEI and ARS were also participating.

3.3. Surface Morphology

The surface morphology and roughness of the (BPEI/ARS)20, (ARS/(PSS+ARS))20 and
((BPEI+ARS)/PSS)20 films in the dry state were investigated using AFM (Figure 5). The root-mean-square
(rms) roughness of each film surface, as calculated from AFM height images, was 17.2, 15.1 and 2.41 nm,
respectively. Accordingly, we observed larger features on the film surface for the assembly with more
dye incorporated when measuring the 20-layer pair films, namely, (BPEI/ARS)20 film surface showed
the largest roughness, (ARS/(PSS+ARS))20 was less rough, while ((BPEI+ARS)/PSS)20 surface was quite
smooth. For (BPEI/ARS)20 and (ARS/(PSS+ARS))20 surfaces, many small island-like features were
observed. It is likely that the features are regions of clustered dye particles; similar particle clustering was
observed in other layer-by-layer systems [35,65]. For ((BPEI+ARS)/PSS)20, as it contains quite a small
amount of dye molecules, having mainly BPEI and PSS, the surface was much smoother. However, as
discussed in the above section, with the increase of the number of layer pairs, we can clearly observe a
rough surface of the ((BPEI+ARS)/PSS)n due to collapse of the hydrogel.
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3.4. Electrochemical Properties

The electrochemical behavior of (BPEI/ARS)120, (BPEI/(ARS+PSS))120, and ((BPEI+ARS)/PSS)120

films was investigated using cyclic voltammetry and spectroelectrochemistry.

3.4.1. Cyclic Voltammetry

Cyclic voltammetry (CV) is a sensitive method for the characterization of anthraquinoids with regard
to their electrochemical properties. In electrochemistry, anthraquinones exhibit a reversible 2-electron
transfer process for its quinone/hydroquinone redox couple [66]. The two-electron reduction, depending
on the availability of protons in the reaction media, can be accompanied by the uptake of two protons.
In aqueous media, the reduction process is thus highly pH-dependent. As Milli-Q water was used,
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one hydroxyl group was present in dissociated form (Dye 2 in Figure 1), the reduction is likely accompanied
by the uptake of one proton. (BPEI/ARS)120, (BPEI/(ARS+PSS))120, and ((BPEI+ARS)/PSS)120 films were
subjected to CV over the potential range −0.38 to −1.18 V (vs. Fe(CN)6

4−/Fe(CN)6
3−) with different

scan rates as shown in Figure 6. For comparison, CVs of ARS, ARS+PSS and ARS+BPEI solutions were
also measured in Figure 7. The film-coated ITO glass or ITO glass was used as the working electrode
(WE) vs. silver wire as the quasi-reference electrode (QRE) in 0.1 M NaCl against a platinum wire counter
electrode (CE).
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From the CVs in Figure 6, (BPEI/ARS)120 and (BPEI/(ARS+PSS))120 films showed an irreversible
redox reaction as the anodic peaks were not obvious or very small as compared to the cathodic peaks,
while ((BPEI+ARS)/PSS)120 showed a quasi-reversible redox reaction. The irreversible reaction is
mainly due to the low stability of the (BPEI/ARS)120 and (BPEI/(ARS+PSS))120 films during cyclic
scanning. Owing to the consumption of protons in the reactions consecutive to the cathodic electron
transfer, the pH in the cathodic diffusion layer increases. As the films are assembled mainly through
electrostatic interaction, they are sensitive to pH and unstable as pH increases. This leads to gradual
film dissolution during CV measurements, resulting in the irreversible redox reaction. However, the
redox reaction in the ((BPEI+ARS)/PSS)120 film was fairly stable, which was attributed to the thick film
construction and the small amount of dye relative to the large amount of polymer. More protection
from the polymers resulted in a reduced dissolution for the dyes.

In Figure 7, the solutions of ARS, ARS+PSS and ARS+BPEI all presented quasi-reversible redox
reactions. Figure 7a shows a cathodic peak potential of Epc = −1.0 to −1.1 mV for ARS solution,
which is just in accordance with the cathodic peak potential observed for (BPEI/ARS)120 in Figure 6a.
Another cathodic peak at −0.75 mV only appears at the low scan rate of 1 mV/s in Figure 7a.
Both cathodic peaks for ARS solution were close to that reported in literature [46]. According to
the literature, the cathodic peaks in Figure 6a are attributed to the reduction of ionized dye 2 and
fully ionized dye 3 (as shown in Figure 1) which was produced due to the increase of pH in the
boundary layer. The electrochemical reaction of (BPEI/(ARS+PSS))120 films was quite the same for that
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of (BPEI/ARS)120, except that (BPEI/(ARS+PSS))120 showed a more distinct anodic peak at −0.9 mV
at higher scan rates of 50 and 100 mV/s, which was almost at the same position as that of Epa in
Figure 7a,b. This was also consistent with the anodic peak observed in literature for ARS solution
at pH 5.02 [46]. For ARS+BPEI solution, the positions of Epc and Epa in the voltammogram were
different from that for ARS solution. ARS+BPEI solution showed a cathodic peak of Epc = −0.91 to
−0.96 mV and an anodic peak of Epa = −0.89 to −0.85 mV in Figure 7c. Clearly, the reduction potential
of ARS+BPEI is higher than that of ARS and ARS+PSS, which was mainly attributed to the decrease
in the electron density of anthranquinone resulting from precomplexation. The redox-peaks became
much sharper, suggesting faster electron transport through the dye layer. For ((BPEI+ARS)/PSS)120,
Epc = −0.88 to −0.92 mV, which was also higher than that for (BPEI/ARS)120 and (BPEI/(ARS+PSS))120

due to precomplexation.
From the above investigation, it can be seen that due to the pH increase during the reduction,

(BPEI/ARS)120 and (BPEI/(ARS+PSS))120 became unstable and resulted in an irreversible redox
reaction. ((BPEI+ARS)/PSS)120 was quite stable during cyclic scanning, and electrochemical reduction
became easier due to precomplexation.

3.4.2. Spectroelectrochemistry

The electrochromic properties of (BPEI/ARS)120, (BPEI/(ARS+PSS))120, and ((BPEI+ARS)/PSS)120

LbL films were evaluated using spectroelectrochemistry, a method based on in situ collection of
UV–Vis absorption spectra for electrodes held at a certain potential within a cuvette. Beginning
at −0.38 V, the LbL films were in their original state (as shown in Figure 8, original absorption
lines), presenting broad absorbance in the visible range for (BPEI/ARS)120 and (BPEI/(ARS+PSS))120,
and much narrower absorbance for ((BPEI+ARS)/PSS)120. A linear voltage sweep began and the
electrode potential became more cathodic; then, the in situ UV–Vis spectra were measured at −1.18 V
(vs. Fe(CN)6

4−/Fe(CN)6
3−), representing the 1st reduction absorption curve (as shown in Figure 8).

After measurement, a reverse linear anodic sweep began and then the spectra was recorded at −0.38 V
(vs. Fe(CN)6

4−/Fe(CN)6
3−), representing the 1st oxidation absorption curve (as shown in Figure 8).

The 2nd, 3rd and other reduction and oxidation absorption peaks in Figure 8 were obtained by
repeating the above procedures.
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It can be seen from Figure 8a that a new peak appeared at 425 nm, which was consistent with 
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4−/Fe(CN)6
3−) and oxidation (at voltage of −0.38 V vs. Fe(CN)64−/Fe(CN)6

3−) processes.

It can be seen from Figure 8a that a new peak appeared at 425 nm, which was consistent with
the λmax of ARS, revealing the dissociation of ARS from the BPEI as the color of the films turned light.
Also, a small shoulder at about 600 nm was observed, which was presumably due to the reduction
product of ARS2− (dye 3 in Figure 1). In addition, by holding at fully reduced and oxidized states of
the dye, the absorption peak (BPEI/ARS)120 decreased dramatically after the 1st oxidation. Due to
production of OH− during the reduction process, the film gradually dissolved, so when measuring the
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change in the 1st oxidation process, the absorbance of the film decreased greatly. In the 2nd reduction
and oxidation peak measurements, the absorbance continually decreased. Film dissolution was caused
by decreased electrostatic interactions. The case for the spectral change of the (BPEI/(ARS+PSS))120

film was similar to that of (BPEI/ARS)120. The difference was that after 1st reduction and oxidation
process, the film did not show a dramatic decrease in absorbance, revealing better dye stability in the
film. For ((BPEI+ARS)/PSS)120 film, even at fully reduced and oxidized states, the color was still quite
stable even after 4-cycles of the redox reaction. In the 5th reduction and oxidation cycle, the UV–Vis
absorbance began to decrease, indicating a loss of ARS dye from the film. Much higher retention of
the dye is mainly due to its protection brought about by precomplexation. However, no obvious new
absorption peak was observed due to precomplexation.

Based on the above spectroelectrochemistry investigation, we conclude that the color change of
(BPEI/ARS)120 and (BPEI/(ARS+PSS))120 films happened due to an electrochemically induced redox
reaction from the results of the visible spectrum change, but the color contrast was not obvious. This is
because the original dark color brings some difficulty in recognizing slight color changes. In addition,
electrochemically mediated dissolution of the LbL films containing ARS and polymers occurred at an
applied cathodic potential, which affects the reversibility of the color change.

4. Conclusions

Electroactive Alizarin Red S has been successfully incorporated into ultrathin films to construct
(BPEI/ARS)n, (BPEI/(ARS+PSS))n and ((BPEI+ARS)/PSS)n on ITO-coated glass using conventional
and unconventional LBL methods. When BPEI was added to the ARS solution, the visible spectrum
showed a bathochromic shift and a notable hyperchromic effect, indicating strong interactions
between the molecules. The colors of the assembled films are quite different from that of the ARS
solution. (BPEI/ARS)n and (BPEI/(ARS+PSS))n films were dark purple and ((BPEI+ARS)/PSS)n

ones were peach red. The different color of ((BPEI+ARS)/PSS)n is mainly due to disassociation
of the dye by BPEI in solution. All three types of assemblies showed linear film growth behavior,
and ((BPEI+ARS)/PSS))n films have the largest layer pair thickness, followed by (BPEI/(ARS+PSS))n,
and then (BPEI/ARS)n. However, the color growth rate of the three assemblies is just opposite,
indicating that (BPEI/ARS)n LbL assemblies are beneficial for dye incorporation to the film as
compared to the other two assembly methods. Electrochemical properties of (BPEI/ARS)120,
(BPEI/(ARS+PSS))120 and ((BPEI+ARS)/PSS)120 films were also different. The results showed that
color change happened due to cathodic reduction; however, different extents of color change occurred
due to varying states of dye aggregation. In addition, dye dissolution occured during the reduction
process, which also affected the electrochromic properties of the films. The most stable film, in terms
of electrochemical performance was ((BPEI+ARS)/PSS)n.
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