supplemenatry material

Surface modification of aluminum nitride to fabricate thermally conductive

poly(butylene succinate) nanocomposite

Zelalem Lule and Jooheon Kim*

School of Chemical Engineering & Materials Science,

Chung-Ang University, Seoul 156-756, Republic of Korea

*Corresponding author: Jooheon Kim, <u>Tel:+82-2-820-5763</u>; Fax:+82-2-812-3495; E-mail address:

jooheonkim@cau.ac.kr (J. Kim)

Figure S1. XPS survey curve of Raw and treated AlN nanoparticles.

Sample	Atomic Percentage (%)					
	O1s	C1s	N1s	Si2s	Al2p	
Raw AlN	44.06	21.95	6.19	1.15	26.65	
APTES-AIN	29.2	39.59	10.18	11.54	9.5	
VTES-AIN	43.23	21.86	6.45	3.78	24.68	
PSZ-AIN	38.69	30.24	1.65	24.39	5.03	

Table S1. The atomic percentage of Raw and treated AlN nanoparticles.

Figure S2. TGA curve of the raw and treated AlN nanoparticles.

Figure S3. SEM image with size distribution and dispersion of AlN nanoparticles (a), (c) R- PBS, (b) V- PBS, and (d) P- PBS.

Sample	On-set T _d (°C)	Off-set T _d (°C)	Max. degradation T _d (°C)
Neat PBS	323.68	397.43	379.89
R- PBS	292.77	383.89	366.36
A- PBS	300.98	385.75	368.33
V- PBS	307.96	387.42	368.1
P- PBS	315.78	396.6	374.2

Table S2. Thermal degradation temperatures of Neat PBS and its composites.

Figure S4. DSC thermograph of the Neat PBS and composites; (a) crystallization curve, and (b) melting curve.

Sample	Thermal diffusivity, δ (mm ² s ⁻¹)	Heat capacity, Cp $(J g^{-1} K^{-1})$
PBS	0.0947 ± 0.00198	1.6
R-PBS	0.101±0.00444	1.55
A- PBS	0.115±0.01174	1.55
V- PBS	0.125±0.01848	1.55
P- PBS	0.105±0.00769	1.55

Table S3. Thermal diffusivity and heat capacity of neat PBS and PBS/AlN composites.