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Abstract: Mechanochromic materials have recently received tremendous attention because of their
potential applications in humanoid robots, smart windows, strain sensors, anti-counterfeit tags, etc.
However, improvements in device design are highly desired for practical implementation in a broader
working environment with a high stability. In this article, a novel and robust mechanochromism was
designed and fabricated via a facile method. Silica nanoparticles (NPs) that serve as a trigger of color
switch were embedded in elastomer to form a bi-layer hybrid film. Upon stretching under ambient
conditions, the hybrid film can change color as well as transparency. Furthermore, it demonstrates
excellent reversibility and reproducibility and is promising for widespread application.
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1. Introduction

Mechanochromic materials are of great significance because of their unique color change
properties [1]. They show reversible and controlled color changes by mechanical stimuli [2] and
have attracted tremendous interests attributed to their widespread application in humanoid robots [3],
smart windows [4,5], anti-counterfeit tags [6], varistor [7–9], etc. However, their commercialization
remains challenging because of the experimental complexity in material structure design and
fabrication. In fact, the phenomenon of color change as stimulated by an external stimuli is common in
nature. For example, octopuses are able to instantaneously change their skin color for the purpose
of camouflage [10]. Chameleons have an amazing “pigment store” in their skin, which can change
color according to the surrounding light, temperature, and living environment [11]. Inspired by these
intriguing phenomena, researchers have fabricated a series of materials that are able to change their
optical properties by molecular design and modification [12,13] or material construction [6,12,14]
as triggered by light [15], electrical field [16], temperature [17], swelling [18], and mechanical
strain [14,19,20].
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Silica nanoparticles (NPs) are known to form an amorphous structure to generate non-iridescent
structural colors [21–23]. In most of the previous efforts, black materials with an excellent light
absorption ability were mixed to prevent the amorphous structure’s strong incoherent-light scattering
across the entire visible spectrum. Ge et al. [5] developed a robust smart window by embedding
silica NPs into an elastomer to exhibit angle-independent color upon stretching. However, achieving
reliable and apparent color transformation in daily environment is much more challenging. Most of
the devices show poor chemical stability and/or reversibility [24,25], or require UV radiation [14],
or require mechanical grinding [12,13], which significantly limit their applications in daily life.

Herein, we design a new mechanochromism, which can instantaneously change color under
ambient conditions with excellent reversibility. The hybrid film has a bilayer structure, in which
an amorphous array of silica nanoparticles is embedded at the bottom of a polydimethylsiloxane
(PDMS) elastomer containing a dye. The hybrid film exhibits amber under ambient conditions
(under natural light at room temperature). Upon being stretched, the device exhibits a gradually
lowered transmittance and displays a pinkish purple color at a strain of 80% or higher. Moreover,
the mechanochromic effect of the hybrid film is highly reproducible even after over 1100 stretching-
releasing cycles and is promising for widespread application.

2. Experimental

2.1. Materials

Tetraethyl orthosilicate (TEOS, 98%, Yonghua Chemical Technology, Shanghai, China),
isopropanol (IPA, 99.8%, Macklin, Shanghai, China), ammonium hydroxide (~28–30%, GreaGent,
Shanghai, China), ethanol (99%, GreaGent, Shanghai, China), PDMS (Sylgard-184, Dow Corning,
Midland, MI, USA), and Rhodamine B (99%, Adamas, Basel, Switzerland) were used as received.

2.2. Synthesis of Silica NPs

Monodispersed SiO2 NPs were prepared by using a modified Stöber method [21,26]. In the
process to synthesize silica NPs, 50.0 mL ethanol-based solution containing 4.5 mL TEOS was added to
50.0 mL water solution containing 9.0 mL aqueous ammonia. After 2 h of stirring at 30 ◦C, the resulting
silica NP suspension was centrifuged at a relative centrifugal force (RCF) of 10,397× g for 10 min,
followed by ultrasonication in an isopropanol solution. The above process was repeated at least 3 times
until the solution became neutral.

2.3. Fabrication of Hybrid Films

The silica NPs were dispersed in isopropanol at 10.0 wt % and ultrasonicated for 2 h, forming
a uniform dispersion. An airbrush (IWATA HP-C plus, Yokohama, Japan) with a nozzle size of
0.3 mm was used to spray the above dispersion onto a polystyrene petri dish, which serves as the
foundation. After spraying 8 times, a liquid PDMS (base to curing agent ratio = 10:1) with Rhodamine
B (Rhodamine B concentration: 4.8 × 10−5 mol·g−1) was then cast atop the silica NP layer and then
cured at 65 ºC for 4 h to prepare the hybrid film.

2.4. Characterization

The morphology of the SiO2 NP layer was characterized using a field emission scanning electron
microscope (FESEM, HITACHI S-4800, Tokyo, Japan) with an accelerating voltage of 10 kV. The particle
size and size distribution of the SiO2 NPs were analyzed using dynamic light scattering (DLS, Malvern
Zetasizer Nano ZS90 analyzer, Malvern, UK). The diffraction patterns were captured using a He–Ne
gas laser (633 nm, 1 mW, Nanjing Pudong Laser Technology Research Institute, Nanjing, China) in a
dark room.

The hybrid film was mounted on a custom-built stretching tool to characterize its color change
property with an altering strain. The reflectance of the hybrid film was recorded on a UV-Vis-NIR
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spectrophotometer (Shimadzu UV-3600, Kyoto, Japan). All of the digital photos were taken by
an iPhone 8 Plus. Cyclic fatigue tests of the samples were conducted on a CTM 2500 universal
testing machine.

3. Results and Discussion

The procedures to fabricate the hybrid film are illustrated in Figure 1. First, the silica NP dispersion
was sprayed onto the foundation (i), leading to the formation of a layer of amorphous NP arrays
with a thickness of ca. 3.4 µm upon drying (ii). Then, the homogenized liquid of PDMS precursor
and Rhodamine B (RhB) was cast atop the silica NP layer and allowed it to settle (this step usually
takes more than 12 h) (iii). After curing for 4 h at 65 ◦C, the hybrid film was peeled off from the
foundation (iv). The final silica NPs/PDMS/Rhodamine B (SiO2/PDMS/RhB) bi-layer hybrid film
was controlled to have a thickness of ca. 1 mm (v).
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Figure 1. Schematic of the fabrication process of the SiO2/PDMS/RhB hybrid film. (i) Spray coating
silica NPs onto a foundation; (ii) formation of a layer of amorphous silica NP arrays; (iii) casting
PDMS precursor and Rhodamine B atop the silica NP layer; (iv) peeling off the hybrid film from the
foundation after curing; (v) structure of the prepared SiO2/PDMS/RhB hybrid film.

Silica NP colloidal arrays can form an amorphous structure to generate non-iridescent structural
colors, which could cause a pale appearance. Herein, we designed to intentionally take advantage of
such a phenomenon by fabricating amorphous silica NP arrays, which exhibit a pale white color under
naked eyes. Virtually monodispersed silica NPs were synthesized (Figure 2a), whose average diameter
was ca. 233 nm, consistent with the result from the SEM characterization. Their polydispersity index
(PDI) was only 0.8%, indicating that the NPs are close to be monodisperse [27].

After spray coating the silica NP dispersion on a polystyrene petri dish foundation, an amorphous
structure formed as shown in Figure 2a(i). The diffraction pattern (Figure 2a(ii)) captured by a He–Ne
laser further proved that the structure of the silica NP layer was short-range ordered and isotropic.
When multiple cycles of coating were applied onto the foundation, a whitish surface formed (Figure 2b),
which is in accordance with its microstructure.

When casting the PDMS precursor solution over the NP arrays, the voids in-between the NPs
were filled [5]. The resultant SiO2/PDMS film is highly transparent at an un-stretched state (Figure 2c
(top)) because of the similar refractive indexes of PDMS (1.425 at 632.8 nm) [28] and silica (1.457 at
632.8 nm) [29], but becomes opaque and appears a pale white color (Figure 2c (bottom)) at ca. 80%
strain. The corresponding spectroscopy characterization results further proved the phenomena we
observed. As shown in Figure 2d, the spectra remained virtually flat from 0 to 60% strain, while
an increase of scattering appeared from 80% strain in visible and near infrared (Vis-NIR) range.
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This increasing of scattering indicates that a pale white color can be generated in SiO2/PDMS upon
stretching [23].
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Figure 2. (a) Size distribution of the prepared silica NPs from dynamic light scattering. The inset (i)
shows the SEM image of the spray-coated amorphous silica NP layer and (ii) shows a diffraction pattern
of the coating layer using a 633 nm He-Ne laser; (b) A digital photo of a clean Petri dish (left) and a Petri
dish coated with the amorphous silica NP layer, exhibiting a pale white color (right); (c) Digital photos
of un-stretched (top) and stretched (bottom, 80% strain) SiO2/PDMS film; (d) Reflectance UV spectra
of the SiO2/PDMS at various strains; (e) Schematic to demonstrate void formation upon stretching and
returning to the original state when released.

Silica NPs play an important role in triggering color/transparency change as shown in Figure 2c.
After liquid PDMS was cast atop the silica NP layer, the gaps among NPs were impregnated by
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the liquid after hours of settling. When the cured SiO2/PDMS film is stretched, nano-voids formed
between PDMS and silica NPs [5]. The arrangement of the voids formed locally should also be
amorphous, analogous to the fabricated amorphous silica NP arrays (Figure 2a(i)). As a result, we can
observe the pale white color similar to the silica NP layer.

Rhodamine B is extensively used as a laser dye [30] and it can be uniformly dispersed into PDMS
to form a luminescent layer [14]. A soft PDMS film containing Rhodamine B (PDMS/RhB) was also
prepared. The reflectance spectra of the PDMS/RhB film are displayed in Figure 3a. There was only
one peak at ca. 544 nm, characteristic of Rhodamine B [31]. The overall appearance of the PDMS/RhB
film at various strains is shown in Figure 3b. With an increasing strain, the peak remained at the
original wavelength but its intensity decreased gradually. This is expected as the film became thinner
while there were no additional factors to trigger color change [32].
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Figure 3. (a) Reflectance spectra and (b) digital photos of the PDMS/RhB at various strains.

By simply combining the above two systems, we managed to create a novel mechanochromic
device by casting a liquid PDMS containing RhB to the silica NP layer. Figure 4a shows the digital
photographs of the resultant SiO2/PDMS/RhB hybrid film at various strains. Viewing by naked
eyes under ambient conditions, the film exhibits the characteristic amber color of Rhodamine B at
an un-stretched state. The color alteration from amber to pinkish purple occurred at ca. 80% strain
and demonstrated a deeper pink at about 100% strain. Moreover, the hybrid film exhibits a change of
transparency upon being stretched. It changes from transparent to translucent at ca. 20% strain and
completely opaque at ca. 100% strain.

The corresponding reflectance spectra of the SiO2/PDMS/RhB hybrid film at various strains
are shown in Figure 4b. In a released state, only one peak appeared in the visible spectrum range at
ca. 544 nm, which was very similar to the reflectance spectrum of the un-stretched PDMS/RhB as
shown in Figure 3a. With an increasing strain, the spectrum of the hybrid film only changed marginally
until the strain reached 80%. This is because of the formation of nano-voids on both sides of the silica
NPs under this strain due to the poor interfacial adhesion between the stretchable hydrophobic PDMS
and the hydrophilic silica NPs. This result is not only consistent with the observation discussed above,
but also is in accordance with the largest drop in the transmittance of the hybrid film upon stretching
up to 80% (Figure 4c), which indicates that the void formation reduces opacity and further affects the
color change phenomenon. From 80% strain, a broad peak in the Vis–NIR range appeared besides the
characteristic peak at ca. 544 nm, similar to the trend of the SiO2/PDMS control sample (Figure 2d).
With an increasing strain, the intensity of the peak at ca. 544 nm gradually decreased while the broad
peak became more intensive, reaching a comparable intensity as the one at 544 nm at ca. 100% strain.
This suggests that the overall color should be determined by the combination of the amber color caused
by Rhodamine B and the pale white color caused by the gaps in between the PDMS matrix and the
silica NPs. Further, both Rhodamine B and silica NPs are responsible for the mechanochromic property
of the hybrid film.
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Based on the observations and characterizations, the color change mechanism of the
SiO2/PDMS/RhB hybrid film is proposed as follows. According to the reflectance spectra of the
PDMS/RhB at various strains (Figure 3a), the only peak at ca. 544 nm represents the wavelength
of a yellow-green color [33]. The slight red light reflected from RhB and yellow-green color mixed
to produce the amber color we observed. When being stretched, the pale white color caused by
SiO2/PDMS is similar to a white background. With the increase of tensile elongation, the increasing
intensity of the white color caused the red light selectively reflected by PDMS/RhB to dramatically
increase, forming the pinkish purple color we observed later. To simulate this phenomenon, we charged
a RhB ethanol solution in two clean Petri dishes, one on a black background and the other on a white
background, as shown in Figure 4d. As one can observe, the color displayed is basically in line with
our experimental results, which further supports the explanation we proposed.

To further investigate the mechanochromic behaviors of the hybrid film subjected to cyclic loading,
we repeatedly stretched the SiO2/PDMS/RhB hybrid film to 180% strain and released the force to
allow the film to recover completely (Figure 5a). The stress remained virtually constant during the over
1100 cycles of fatigue test, which suggests that the structure of the silica NP layer was well maintained.
After over 1100 cycles, we measured the reflectance spectra of the SiO2/PDMS/RhB hybrid film at
various strains, and the results are shown in Figure 5b. The characteristic peaks also exhibited a similar
change trend as the sample before the fatigue test (Figure 4b), which suggests that the hybrid film is
robust and cyclic stable.
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4. Conclusions

In summary, we fabricated a mechanochromic hybrid film that is composed of an array of silica
NPs embedded at the bottom of a PDMS/RhB layer. The film can change its color from amber to
pinkish purple through mechanical stretching and recovers back to its original color as released,
during which it also changes from transparent to opaque and back to transparent. Moreover, the color
and transparency change is highly reversible and reproducible. Most importantly, the color change
phenomenon is visible under ambient conditions, which helps significantly broaden the applications
of this mechanochromic film.
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