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Abstract: In this work, we demonstrate the proof-of-concept of real-time discrimination between
patches of hydrophilic and hydrophobic monomers in the primary structure of custom-engineered,
macro-dipole-like peptides, at uni-molecular level. We employed single-molecule recordings to
examine the ionic current through the α-hemolysin (α-HL) nanopore, when serine or isoleucine
residues, flanked by segments of oppositely charged arginine and glutamic amino acids functioning
as a voltage-dependent “molecular brake” on the peptide, were driven at controllable rates across
the nanopore. The observed differences in the ionic currents blockades through the nanopore,
visible at time resolutions corresponding to peptide threading through the α-HL’s constriction
region, was explained by a simple model of the volumes of electrolyte excluded by either amino
acid species, as groups of serine or isoleucine monomers transiently occupy the α-HL. To provide
insights into the conditions ensuring optimal throughput of peptide readout through the nanopore,
we probed the sidedness-dependence of peptide association to and dissociation from the electrically
and geometrically asymmetric α-HL.

Keywords: nanopore; peptide sensing; electrophysiology; single-molecule sequencing

1. Introduction

In nanopore-based resistive pulse sensing, fluctuations of ionic current flowing through
a voltage-biased nanopore provide useful information about the identity and physico-chemical
properties of a temporarily residing or translocating analyte [1–6]. The system was successfully applied
in a broad gamut of contexts, which started historically with detecting polynucleotides translocating
through a nanopore [7–10], and eventually led to developing a rapid and inexpensive DNA sequencing
technology [11]. Another useful application of nanopore technology targets proteomics, for which it
has been proven successfully to detect and distinguish between various conformations of proteins
and peptides [12–15], and potentially sequence peptides or proteins [16–22]. The latest objective
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is of considerable interest, as single molecule sequencing of peptides aims to become the tool of
choice for identifying protein biomarkers and diagnosing in real-time the onset of various human
diseases. Common protein sequencing methods are hindered by certain limitations; for instance,
mass spectrometry and Edman degradation fail to readout the whole sequence information on larger
proteins or peptides, are generally expensive, and require highly trained personnel and sophisticated
infrastructure. Although the free translocation of single stranded DNA (ssDNA), RNA or unfolded
peptides and proteins across nanopores determines measurable reductions in the ionic current whose
magnitude and duration are sensitive to the primary sequence composition, the speed of translocation
is one of the factors that precludes resolution of their constituent monomers [23], thus calling for
various approaches to mitigate this problem [24–33]. Here, we describe an extension of a recent
approach, whereby by flanking the residues to be distinguished by segments of oppositely charged
amino acids, the applied transmembrane potential enhances the polypeptide capture rate by the
α-HL nanopore, and simultaneously increases the peptide’s residence time in the nanopore [34–36],
thus enabling discrimination between selected groups of three alanine, tryptophan and a combination
of the two in the primary structure of polypeptides [37]. For the purpose of this work, we focused
on a 30-amino-acid-long peptide, and our results indicate the possibility of discrimination between
groups of three, selected polar amino acids (serine) and hydrophobic ones (isoleucine). The ability
to provide real-time, high-fidelity readout of segments in such peptides is relevant in peptidomics,
as secreted short peptides signals (2–21 amino acids) are deemed important in cell-cell communication,
they coordinate and integrate cellular functions, and they perform a variety of functions within
cells [38]. One advantage of the α-HL for such purposes lies in its restricted geometry, meaning that
ionic current blockades corresponding to reversible peptide-α-HL interactions reflect events associated
to a captured peptide in the unfolded conformation, which is a prerequisite for the subsequent primary
sequence readout.

In efforts to explore the occurrence and consequences of the synergistic couplings between the
electroosmotic, entropic and electrostatic interaction contributions to peptides capture and trafficking
across the nanopore, with direct implications to the efficient capture of peptide from solution
and subsequent sequence readout, we devised a series of experiments along the following lines:
(i) peptides were added to the trans side, and their vectorial entry with either N- or C-moiety head-on,
which expectedly modified the enthalpic contribution to the free energy of capture through attractive
or repulsive electrostatic interactions with the negatively charged α-HL’s β-barrel, was studied;
(ii) peptides were added to the cis side, and their vectorial entry into the largely neutral α-HL’s vestibule
was studied; and (iii) for a transiently trapped peptide extending along the nanopore, the influence of
peptide-nanopore electrostatic interactions inside the α-HL’s vestibule and β-barrel on the peptide
dissociation from the nanopore was investigated. Overall, the system seems to provide the sensitivity
required to identify specific groups of amino acids, based on their physical properties, and it serves as
a good model system to advent short peptides sequencing via single-channel electrical recordings.

2. Materials and Methods

2.1. Chemicals and Reagents

The 30-aminoacid peptides Pe4 and Pe6, whose sequences were engineered as Ac–R12–(X)6–E12–NH2

(where X means either Isoleucine (I) for Pe4 or Serine (S) for Pe6), were synthesized and purified by
Schafer-N ApS (Copenhagen, Denmark). The 1,2-diphytanoyl-sn-glycerophosphocholine (DPhPC) lipid
was purchased from Avanti Polar Lipids (Alabaster, AL, USA) and other chemicals such as α-hemolysin
(α-HL), potassium chloride (KCl), n-pentane, hexadecane, and buffer (HEPES) were obtained from
Sigma-Aldrich (Darmstadt, Germany). The stock solutions of the peptides were prepared at concentrations
of 1 mM each in distilled water, and were kept at −20 ◦C before and after use. All experiments were
performed at a room temperature of ~23 ◦C.
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2.2. Electrophysiology

The nanopore recording chamber consisted of two compartments (denoted by cis (grounded) and
trans) separated by a 25-µm-thick Teflon film (Goodfellow, Malvern, MA, USA), having an aperture of
about 120 µm in diameter for the bilayer lipid membrane formation. The Montal-Mueller technique
was employed to obtain the lipid membrane bilayer [39]. Briefly, the dissolved lipids in pentane
were spread out on the surface of the electrolyte solution and, after evaporation of pentane, a stable
solventless bilayer structure was formed across the aperture punctured in the Teflon film, which was
pretreated with ~1.5 µL of 1:10 hexadecane/pentane solution. Each compartment was filled with
equal volumes of the 2 M KCl electrolyte solution buffered in 10 mM HEPES at pH = 7. About
1 µL of the α-hemolysin protein solution was released into the cis compartment from a monomeric
stock solution made in 0.5 M KCl. Once the successful insertion of a single α-HL heptamer was
achieved, and depending on the particular experiment, either Pe4 (Ac–(R)12–(I)6–(E)12–NH2) or
Pe6 (Ac–(R)12–(S)6–(E)12–NH2) peptide was added to the cis or trans chamber. The fluctuations
of the ionic current through the protein pore, recorded at various transmembrane voltages, were
amplified with an Axopatch 200B instrument (Molecular Devices, San Jose, CA, USA), and low-pass
filtered at 10 kHz. Data acquisition was performed with a NI PCI 6221, 16-bit card (National
Instruments, Austin, TX, USA) at a sampling frequency of 50 kHz, within the LabVIEW 8.20 (National
Instruments, Austin, TX, USA) graphical programming environment. A Faraday cage (Warner
Instruments, Hamden, CT, USA), mechanically isolated with a vibration-free platform (BenchMate
2210, Warner Instruments, Hamden, CT, USA) was used to shield the experimental set-up from the
environmental electrical and mechanical noise. Numerical analysis and graphic representation of the
recorded data were done in Origin 6 (OriginLab, Northampton, MA, USA) and pClamp 6.03 (Axon
Instruments, Union City, CA, USA) software. The statistical analysis on the frequency and duration
of peptide-induced current fluctuations through a single α-HL protein, were analyzed within the
statistics of exponentially distributed events, as previously described [40].

3. Results and Discussion

3.1. Steric- and Hydrophilic-Based Discrimination of Amino Acids at the Most Constricted Region of
the Nanopore

To test the ability of α-HL to discriminate non-polar (isoleucine) and polar (serine) amino acid
residues through the ionic current fluctuations pattern associated to the peptide reversibly blocking the
nanopore, we engineered two types of peptides, to contain six isoleucine (I) or serine (S) residues, called
Pe4 (the I6-containing peptide) and Pe6 (the S6-containing peptide), flanked by segments of oppositely
charged amino acids (Figure 1). Once captured inside the nanopore by an applied transmembrane
potential, either peptide gets trapped in a metastable state with the nanopore’s constriction region
temporarily occupied by the peptide’s middle domain residues (Figure 1), which then constitute the
main contributors to the recorded ionic current amplitude changes across the nanopore. In other words,
the α-HL-peptide interactions at the nanopore’s constriction region, which augment the sensitivity
of the targeted amino acids readout, were used to distinguish between isoleucine and serine residue,
based on single-molecule electrophysiology-aided volumetric measurements.
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Figure 1. Schematic representation of the model resembling peptide interaction with the α-HL 
nanopore. (a) The R12 (bare charge ~ +12|e−|) and E12 (bare charge ~ −12|e−|) tails on the peptides, 
flanking a middle section containing either S6 or I6 amino acids are shown distinctly. As the peptide 
approaches the nanopore from the bulk, it experiences a stronger electric field (𝐸) near the nanopore’s 
opening [41], which results in uneven electrophoretic forces (�⃗�elp) acting at the peptide’s oppositely 
charged extremities (at the shown +ΔV, the force acting on the R12 tail, �⃗�elp(R12), is larger than the force 
acting on the E12 tail, �⃗�elp(E12), thus driving peptide association to the nanopore). Once the peptide 
gets captured inside the nanopore, it assumes a meta-stable state, characterized to a first 
approximation (e.g., constant electric field across the nanopore from the applied ΔV) and at quasi-
equilibrium conditions, by �⃗�elp(R12) ≈ �⃗�elp(E12). At neutral pH, the α-HL’s β-barrel entry is negatively 
charged (qring ~ −7|e−|). The selected original ionic current recordings illustrate the reversible 
blockades induced by the interactions of 20 μM trans-added S6-(Pe6) (b) and I6-containing peptide 
(Pe4) (c) with the α-HL, at ΔV = +100 mV. The representative zoomed-in segments below (b,c) show 
the ionic current fluctuations through the α-HL during a metastable capture of the corresponding 
peptides, and the corresponding ionic current amplitude histograms (see text). 

The scatter plots of dwell time vs. blockade amplitude of events shown in Figure 1, recorded at 
distinct positive transmembrane voltages, suggests that the transmembrane voltage affects distinctly 
the trans-added peptides interaction with the nanopore, with Pe6 being trapped longer than Pe4 
peptide inside the α-HL, as the voltage increases (Figure 2). A more detailed analysis of this 
phenomenon is presented in the next paragraphs. 

Figure 1. Schematic representation of the model resembling peptide interaction with the α-HL
nanopore. (a) The R12 (bare charge ~+12|e−|) and E12 (bare charge ~−12|e−|) tails on the peptides,
flanking a middle section containing either S6 or I6 amino acids are shown distinctly. As the peptide

approaches the nanopore from the bulk, it experiences a stronger electric field (
→
E ) near the nanopore’s

opening [41], which results in uneven electrophoretic forces (
→
F elp) acting at the peptide’s oppositely

charged extremities (at the shown +∆V, the force acting on the R12 tail,
→
F elp(R12), is larger than the force

acting on the E12 tail,
→
F elp(E12), thus driving peptide association to the nanopore). Once the peptide

gets captured inside the nanopore, it assumes a meta-stable state, characterized to a first approximation
(e.g., constant electric field across the nanopore from the applied ∆V) and at quasi-equilibrium

conditions, by
→
F elp(R12) ≈

→
F elp(E12). At neutral pH, the α-HL’s β-barrel entry is negatively charged

(qring ~−7|e−|). The selected original ionic current recordings illustrate the reversible blockades
induced by the interactions of 20 µM trans-added S6-(Pe6) (b) and I6-containing peptide (Pe4) (c) with
the α-HL, at ∆V = +100 mV. The representative zoomed-in segments below (b,c) show the ionic current
fluctuations through the α-HL during a metastable capture of the corresponding peptides, and the
corresponding ionic current amplitude histograms (see text).

The scatter plots of dwell time vs. blockade amplitude of events shown in Figure 1, recorded at
distinct positive transmembrane voltages, suggests that the transmembrane voltage affects distinctly
the trans-added peptides interaction with the nanopore, with Pe6 being trapped longer than Pe4 peptide
inside the α-HL, as the voltage increases (Figure 2). A more detailed analysis of this phenomenon is
presented in the next paragraphs.
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Figure 2. Scatter plots of dwell time vs. blockade amplitude (∆I) of peptides-induced reversible
obstructions of the ionic current through the α-HL nanopore. We display the scatter plot analysis
corresponding to the Pe6 peptide interacting reversibly with the nanopore from the trans side, at distinct
voltages: ∆V = +80 mV (a); ∆V = +90 mV (b); and ∆V = +100 mV (c). We present the scatter plot
analysis of Pe4-α-HL interactions, at similar representative voltages: ∆V = +80 mV (d); ∆V = +90 mV
(e); and ∆V = +100 mV (f). Distinctly drawn are the events corresponding to the open (red stars) and
blocked sub-states (blue stars).

As shown in Figure 1b,c, there are two peaks in the current plot of fluctuations corresponding to
the transiently nanopore-captured peptide, denoted by I1 and I2. Based on physical and geometrical
considerations [37], we propose that these peaks are indicative of the back-and-forth journey of the
middle region of the peptide across the constriction domain of the nanopore, under the net electric
force experienced from contributions exerted at the ends of the peptide (vide infra).

By calculating the relative blockade extent corresponding to the residual ionic current (I1) ( ∆Iblock,1
Iopen

,
where ∆Iblock,1 = Iblocked − Iopen, Iblocked is evaluated for the I1 blockade sub-state, and Iopen represents the
ionic current measured through the freeα-HL) from the current signatures found above for the two peptides
occupying transiently the nanopore’s constriction region, resulted in ∆Iblock,1

Iopen
(Pe6) = 0.91± 0.003 and ∆Iblock,1

Iopen

(Pe4) = 0.93 ± 5.1 × 10−4. Following a similar route, the relative blockade extent corresponding to the
residual ionic current (I2) was calculated at ∆Iblock,2

Iopen
(Pe6) = 0.83± 0.002 and ∆Iblock,2

Iopen
(Pe4) = 0.83± 0.004.

To account for the differences in the fractional blockades entailed by either peptide, and consistent
with a previously described model [37], we posit that each blockade fluctuation reflects the reversible
occlusion of the α-HL’s constriction region by a group of at least three serines (Pe6) or isoleucines (Pe4),
respectively. We propose that, for either peptide, the deeper blockade assigned to the residual current
(I1) reflects the instance when a group of three amino acids is centered on the constricting region of
the nanopore, while the shallower one (I2) is consistent with the same group of resides shifting in
and out of the constriction region, as the peptide at whole passes across the nanopore. Knowledge of
microscopic details regarding the structure of α-HL, in conjunction with a rough volume-exclusion
model for the ion current blockade through α-HL, allows a straightforward interpretation of such
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current fluctuations. On the one hand, the constriction region of the nanopore presents the highest
sensitivity to resolving between closely sized amino acids, due to its volume (~924 Å3). On the other
hand, the slightly higher extent of relative blockade for Pe4, calculated for the brief instance when
a group of three amino acids is harbored on the constricting region of the nanopore ( ∆Iblock,1

Iopen
), makes

sense within the presented framework, as the less polar isoleucine present in its structure (individual
volume in solution of ~175.4 Å3) is also bulkier than serine, present in Pe6 (individual volume in
solution of ~100.7 Å3) [42].

To support these arguments, we performed all-atom molecular dynamics simulations. We setup
the α-HL-membrane system following the same protocol employed in our previous work [37] and
inspired by the early work of Aksimentiev and Schulten [43]. After α-HL-membrane equilibration,
we independently equilibrated the peptide and merged the two systems. Details on the equilibration
are reported in the Supplementary Materials. The peptide is imported into the pore using a constant
velocity Steered Molecular Dynamics simulation. From this non-equilibrium translocation trajectory,
we selected the conformation for which the central moiety of the peptide (isoleucine or serine) is in the
pore constriction (see Figure 3a). Starting from this conformation, we performed a 32 ns equilibrium
run with the amino acid close to the constriction constrained to its initial position along the pore axis.
We then calculated, for each pore section z, the area A(z) available to the passage of the electrolyte
(see Supplementary Materials). Figure 3b reports the inverse of the area for the open pore case (solid
black), for the RIE (Pe4 peptide—dashed blue) and RSE (Pe6 peptide—fine dashed red). The quantity
1/A(z) is an indicator of the resistance that the ions find along their passage through the pore. For low
electrolyte available area, A(z), 1/A(x) is large, as is the resistance to the ion passage. This is what
happens in the pore constriction, 44 Å < z < 50 Å in Figure 3b, and, to a minor extent, in the β-barrel,
0 Å < z < 44 Å. The presence of the peptide clearly reduces the available area. It is apparent that
this reduction is relevant only in the barrel and, in particular, in the constriction, while it is almost
negligible in the vestibule, 50 Å < z < 100 Å. Interestingly, the peak in the constriction is significantly
higher for RIE as expected from its larger size. Qualitatively similar results are obtained for different
choices of the peptide conformation.
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individual set of at least three amino acids that transiently diminish the nanopore’s constriction 
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partial (de)hydration at the constriction region, dynamic charge distributions and potential profile 
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Figure 3. Atomistic simulations. (a) Snapshot of the system. Arginine tail is in blue, Glutamic acid in
red while the neutral amino acid (Isoleucine, in this case) is in pink and it is in the pore constriction
(yellow). Water, ions and lipid membrane are not represented for the sake of clarity. (b) The inverse of
area available for the electrolyte passage for the open pore and for RIE (Pe4) and RSE (Pe6) cases.

Despite its simplicity, the presented model, in which the ionic current blockade through nanopore
is distinctly affected by the change in the electrical resistance brought about by an individual set of at
least three amino acids that transiently diminish the nanopore’s constriction region free volume, may be
useful for future efforts directed at α-HL-based peptide sequencing. At the same time, we accept that
a more complex model considering other factors, such as amino acids partial (de)hydration at the
constriction region, dynamic charge distributions and potential profile changes inside the nanopore
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due to residues passage, are needed to more accurately describe the blockade events as well as to
correlate them properly with the nature of amino acids presented at the nanopore’s constriction region.

3.2. The Serine- and Isoleucine-Containing Peptides Interact Distinctly with the Nanopore, Despite Their
Similar Net Charge

The peptide association rate constant to the α-HL was quantified through the inverse value
of the average association times (τ̂−1

on ) divided to the bulk concentration of the peptide ([peptide])

(kon = τ̂−1
on

[peptide] ), whereas its dissociation rate constant was measured through the inverse value of the

average dissociation times as koff = τ̂−1
o f f .

As we present in Figure 4a, the association rate constant for the trans-added, serine-containing
peptide (Pe6) with the nanopore is almost one order of magnitude larger than that of the
isoleucine-containing peptide (Pe4) (Figure 4c).
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Figure 4. The trans-added, S6- and I6-containing peptides interact distinctly with the α-HL, despite
their net charge and length. From the statistical analysis of the characteristic dwell-times resembling
peptides association and dissociation from the nanopore, we calculated values of the voltage-dependent
association (kon) and dissociation (koff) reaction rate constants of: S6-(Pe6) (a,b); and I6-(Pe4) (c,d).
The dotted lines represent the upper and lower confidence limits mark the 95% confidence intervals for
the estimated average values [40].

To explain this, we posit that the deformation and partial linearization of the approaching peptide
by the electric field at the nanopore entrance on the trans side, as a preceding step to its successful
threading into the narrow β-barrel lumen, is energetically more favorable for the more hydrophilic
Pe6 peptide. It is not clear, a priori, the extent to which the hydrophilic/hydrophobic content in the
primary structure of a peptide dominates its squeezing and subsequent entry into the narrow path of
the nanopore. It is worth noting that in previous work authors have established that more hydrophobic
peptides present a lower rate constant of association to the α-HL nanopore [44].

Opposite to the association process, we noted a slightly faster dissociation step from the
nanopore of the more hydrophobic, isoleucine-containing Pe4 peptide (Figure 4d) as compared to
the serine-containing one (Pe6) (Figure 4b). In accordance with the results from our group [45]
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and others [30,46,47], this finding fits in the scenario according to which non-specific electrostatic-
and/or hydrogen bond-mediated interactions between the more polar peptide (Pe6), as compared
to the more hydrophobic one (Pe4), and the nanopore’s inner wall, are major determinants of the
overall friction experienced by moving peptide inside the nanopore, and contribute to a slowdown
in the drift velocity of the Pe6 through the nanopore, relative to Pe4. Our findings complement
others, emphasizing the requirement of hydrophobic binding sites to critically reduce the free energy
barrier for translocating hydrophobic fragments of various polypeptides [48,49]. With possible benefits
for the long term, these results reinforce the potential of the presented system for pinpointing the
crucial contributions that govern biopolymers translocation through β-barrel proteins as a common
scaffold used by protein-conducting channels, which is both ubiquitous and fundamental in many
biological processes [50,51].

3.3. Sidedness-Dependence of Current Fluctuations Caused by Serine-Containing Peptides When Added from
either Cis or Trans Side of the Nanopore

3.3.1. The Case of Peptide Association to the Nanopore

The peptide capture is ruled by several concurrent effects, the most relevant being:
(i) electrophoresis; (ii) entropic penalty due to the confinement; (iii) enthalpic contribution associated
to specific interactions between the peptide and the pore entrance; and (iv) electroosmosis (elo).

As the heptameric α-HL nanopore is geometrically and electrically asymmetric, all four effects
mentioned above alter distinctly the capture rate of entry of analytes on either side of the nanopore.
Although the quantitative comparison among these four different effects is highly complex, some
qualitative arguments allow unraveling the scenario emerging from our experiments. More specifically,
based on the α-HL asymmetry, one would expect that:

i. Electrophoresis is more intense at the trans, β-barrel mouth than at the vestibule entry of the
nanopore. Indeed, as a first approximation, considering the nanopore and the membrane as
perfect isolators, in stationary state, the electrical field streamlines moves only in the electrolyte.
In a quasi-1D approximation of the pore, the electrical field flux EzAz, with Ez the component
of the electrical field parallel to the pore axis and Az the pore section, is constant along the pore.
Hence, the electrical field is more intense in the narrower section of the pore. Consequently,
the electrical field at the barrel mouth is larger than the one at the vestibule (see Supplementary
Materials for physical details).

ii. Entropic penalty is larger on the trans side. In fact, the entropy cost of peptide squeezing inside
the nanopore is larger for narrower pore sections.

iii. Due to the specific design of the studied peptides, which present opposite charges present
at their ends, the enthalpy contribution to peptides capture depends on the sign of the
applied voltage. At positive ∆Vs, the trans-added peptide orients with the R12-containing
moiety towards the negatively charged β-barrel α-HL’s opening. Consequently, the attractive
electrostatic interactions manifested between the positively charged, R12-containing moiety of
the peptide and the nanopore’s negatively chargedβ-barrel entry (at neutral pH, qring ~−7|e−|)
is expected to facilitate the peptide entry (Figure 5a). In contrast, at negative potentials,
the trans-added peptides are driven with the negatively-charged, E12-containing moiety toward
the β-barrel opening (Figure 5b), meaning that the peptide-nanopore electrostatic repulsions
operate opposite to the electrophoretic force, and against peptide capture. On the other hand,
the cis-added peptides are expected to associate to the nanopore with similar rates, regardless of
the transmembrane potential polarity, as the vestibule entry of the nanopore is overall neutral
at pH = 7 (Figure 5c,d), effectively nullifying the contribution of peptide–nanopore electrostatic
interactions to the capture process.

iv. The electroosmotic flow (elo) favors peptide capture at negative potentials present on the
peptide addition side. In such cases and judged from the peptide addition side perspective,
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the elo flow through the slightly anionic selective α-HL is directed toward the nanopore
entry [33,43,52]. This implies that, for the trans-added peptides, electroosmosis favors the
capture at negative ∆Vs (i.e., the elo flow drives the peptide towards the nanopore) as
compared to positive ∆Vs (the elo flow drives the peptide away from the nanopore β-barrel
and into the trans solution). Note however that, in the former situation (e.g., negative ∆Vs),
the electrophoretic force acting on the E12-containing moiety from peptides facilitate peptide
migration toward the nanopore’s negatively charge β-barrel with the E12 tail head on, and this
presents implications for the lumped force that determines peptides association to the nanopore
(vide infra). The opposite occurs for cis added peptides, namely at negative ∆Vs on the trans
side, the elo flow drives the peptide away from the nanopore’s vestibule entry, while the elo
flow elicited at positive ∆Vs augment peptide association to the vestibule. As a side note,
the elo flow is expected to be larger at the narrower, β-barrel section of the nanopore on the trans
side (the mass flow rate in stationary state is constant, so that the smaller the cross-sectional
area traversed by fluid, the higher the flow velocity).

For concreteness, we focused only on the serine-containing peptide. As shown in Figure 5,
four different experimental combinations were envisioned, whereby the peptide is present on either
the cis or trans side of the membrane, clamped at a positive or negative ∆V.
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Figure 5. Sketch of the protocol aimed at studying the sidedness dependence of the S6-containing
peptides-α-HL interactions. The peptide was added to the trans side of the membrane, and positive
(a) or negative ∆Vs (b) were employed to drive the peptide vectorially, with either the R12 or E12

moiety toward the nanopore’s β-barrel. The selected recordings below illustrate the details of current
fluctuation through an α-HL inserted into a planar lipid bilayer, induced by the reversible peptide
binding. The times between two consecutive peptide binding events (τon) and of the peptide transient
residence inside the nanopore (τoff) are also shown. (c,d) Precise similar chains of events are represented,
except that the peptide was present on the cis side of the membrane. Note that, in this case, to drive the
peptide inside the nanopore’s vestibule with the same orientation as above (i.e., R12 or E12 moiety head
on), opposite polarities of the applied ∆Vs, as compared to those used in (a,b), are needed.
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Experimental data derived for association rates (kon, see Figure 6) indicate that, at high voltages
(|∆V| > 100 mV):

kcis;−∆V
on < kcis;+∆V

on < ktrans;+∆V
on < ktrans;−∆V

on (1)

The relations kcis;−∆V
on < kcis;+∆V

on and ktrans;+∆V
on < ktrans;−∆V

on can be reasonably explained in term
of electroosmotic contribution (vide supra). Surprisingly, Equation (1) indicates that, despite the larger
entropic cost, the association rates from the trans side are, in general, larger than peptide association
from the cis side.
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Figure 6. S6-containing peptides associate distinctly with the α-HL, depending of the polarity
of the applied ∆V and the side on which they are added (cis or trans). All graphs display the
voltage-dependent association rate constants (kon) of the Pe6 peptide (30 µM) with the α-HL. As in
Figure 5: (a,b) the peptides were added to the trans side; and (c,d) the peptides were added on the cis
side. The red dashed lines represent the best fit of the experimental data (open and filled rectangles)
with the equation kon (∆V) = kon(0) exp(a∆V) (see text). The dotted lines represent the upper and
lower limits of the 95% confidence intervals for the estimated average values [40].

This counterintuitive effect can partially be explained with the larger electrophoretic contribution
at the trans side. Another possible explanation relies on the fact that, for a polymer to enter the
nanopore, it should be deformed first from its coiled configuration in solution—in which neither end
of the polymer assumes the correct orientation for partitioning into the nanopore—to an extended-like
chain, which promotes polymer insertion inside the nanopore. In the literature, this term refers to the
free energy barrier for placing a polymer end at the nanopore mouth [53]. This loss in entropy of the
polymer is further augmented once the polymer starts threading inside the narrow path of nanopore,
as the range of allowed conformations on the polymer is reduced [53,54]. While the precise value of the
entropic barrier depends on many factors, which themselves couple non-linearly, such as the polymer
length, the ionic strength on the buffer, distribution of counterion cloud around the polymer, and the
manifestation of the nanopore-polymer interactions, we posit that the locally larger electrical field at
the trans entrance (compared to the cis entrance) assists more optimally the peptide deformation before
the successful partitioning, on the trans side [55].
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These observations are in apparent contrast with previous reports, where other proteins,
polyelectrolytes or polynucleotide entry into the α-HL from the vestibule were suggested to be
favored by a lower entropic barrier [56,57]. Thus, whether our observations are particular to
heterogeneously charged (macro-dipole-like) peptides, which may fold differently from homogenously
charged polymers, remain to be illuminated by further studies.

As a further step, and to account for the fact that, in the case of relatively low transmembrane
potential values, the trans-added peptides associate faster to the nanopore at +∆Vs (Figure 6a, inset)
than −∆V s (Figure 6b, inset), we analyzed the association rates near equilibrium (∆V→0). Data shown
in Figure 6 are well described by the equation kon (∆V) = kon(0) exp(a∆V), where kon (0) represents
that the association rate constant at ∆V→0. The resulting near equilibrium association constant are
ktrans;+∆V

on (0) = 83.5× 103 ± 12.4× 103 (M−1s−1), ktrans;−∆V
on (0) = 1.2× 103 ± 0.6× 103 (M−1s−1),

kcis;+∆V
on (0) = 63 ± 35.1 (M−1s−1) and kcis;−∆V

on (0) = 26.1 ± 8.9 (M−1s−1).
In other words, the following relations stand true:

kcis;−∆V
on (0) < kcis;+∆V

on (0) < ktrans;−∆V
on (0) < ktrans;+∆V

on (0) (2)

The relations above differ from the high voltage case (Equation (1)) only for the case of trans-added
peptides, in which situation the positive ∆Vs favors the capture as opposed to negative ∆Vs.
In accordance to the brief physical interpretation given above regarding the role of peptide–nanopore
electrostatic interactions on the trans side, this result is not unexpected. That is, on the limit of
vanishingly small ∆Vs entailing the small contributions from the elo flow and electrophoretic force,
positively biased nanopores on the trans side promote the proper peptide orientation and electrostatic
attraction between the cationic (R12) tail from the peptide and the negatively charged β-barrel entry,
which favors the peptides capture. Conversely, negatively biased nanopores on the trans side drive the
peptide with the anionic (E12) tail toward the β-barrel entry, so that the ensuing electrostatic repulsion
hinders the peptide association to the nanopore.

It therefore appears that, close to equilibrium, electrostatic interactions dominate the capture
mechanism; however, we accept that this finding may not be complete, because hydrophobic as well
as other hydrodynamic interactions may also to be involved in the process.

3.3.2. The Case of Peptide Dissociation from the Nanopore

From the experiments undertaken with peptide added to the trans side of the membrane
(Figure 5a,b), the statistical analysis of average times reflecting blockade duration of the nanopore by
a single peptide (τoff), resulted in dissociation rate constants of the peptide from the nanopore (koff),
which were larger at +∆Vs than at −∆Vs (Figure 7a,b).

To explain this finding, one can ignore to a first approximation the non-homogenous distribution
of the electric field lines inside the nanopore [58], as the macro-dipole-like distribution of electric
charge on the peptide structure will make it experience similar net electric forces during capture along
the nanopore, regardless of the transmembrane voltage polarity. Instead, we favor a more plausible
explanation based on the electrostatic interactions manifested between the charged β-barrel entry
and the peptide’s moiety residing inside the β-barrel, during transient peptide entrapment inside
the nanopore. As presented above, at +∆Vs, the trans-added peptide enters the nanopore with the
R12 tail head-on. Thus, a trapped peptide under such circumstances, spanning the entire length of
the nanopore, presents the E12 tail towards the negatively charged lumen entry (Figure 5a), and the
ensuing lumen-E12 tail repulsive interactions favor peptide dissociation from the nanopore. In contrast,
at −∆Vs, the trans-added peptide orients itself inside the nanopore with the R12 tail in the vicinity of
the negatively charged lumen entry (Figure 5c), and the ensuing lumen-R12 tail attractive interactions
stabilizes the peptide inside the nanopore. It should be kept in mind that such interactions manifest
themselves especially when the peptide and the α-HL inner surface, respectively, are separated by
sub-nanometer distances. Note that electrostatic interactions are screened by the counterions in
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the electrolyte, and the Debye screening length κ−1 ~1.9 Å at 2 M KCl and a temperature of 300 K

(κ−1 =
√

εrε0kBTm
2|e− |2 NA I1000

, where εr and ε0 represent the relative permittivity of the electrolyte, εr ~70,

and vacuum permittivity, respectively; NA is Avogadro’s number; e− is the elementary charge; kB is
the Boltzmann constant; Tm is the absolute temperature; I = 1

2 ∑ z2
i Ci is the ionic strength of electrolyte;

and zi and Ci are the counterions valence number and their concentration in molar units), which is
low relative to the average diameter of the α-HL’s β-barrel (~20 Å) or is vestibule (~46 Å). For our
system, the average diameters of the peptide’s ends estimated with the Swiss-PdbViewer were ~13.2 Å
(E12) and ~18 Å (R12); knowing that the diameter of the α-HL’s β-barrel is ~20 Å, it is conceivable that
the peptide’s ends will still experience electrostatic interactions with the inner surface of the β-barrel,
in agreement with previous findings on different systems [36,59].Polymers 2018, 10, x FOR PEER REVIEW  12 of 16 
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Figure 7. Dissociation rates of S6-containing peptides from the α-HL depend on the polarity of
the applied ∆V and the side on which they are added (cis or trans). All the graphs display the
voltage-dependent dissociation rate constants (koff) of the Pe6 peptide [30 µM] from the α-HL. As in
Figure 5: (a,b) the peptides were added to the trans side; and (c,d) the peptides were added on the
cis side. The dotted lines represent the upper and lower limits of the 95% confidence intervals for the
estimated average values [40].

We posit that the precise same physical and geometrical considerations account for the finding
that a cis-added peptide captured transiently inside the nanopore (see the sketch in Figure 5c,d),
dissociates faster at +∆Vs (Figure 7d) than −∆Vs (Figure 7c).

Notably, the peptide dissociation rate from the nanopore following its entry through either the
cis or trans side, quantified under experimental conditions that ensure that peptide axial orientation
is preserved with respect to the nanopore geometry while inside the nanopore (at +∆Vs, compare
Figure 5a where the peptide enters from trans and Figure 5d where the peptide enters from cis,
or, at −∆Vs, compare Figure 5b where the peptide enters from trans and Figure 5c where the peptide
enters from cis), are within the same order of magnitude (compare data presented Figure 7a,d for
the former case, at +∆Vs, and Figure 7b,c, for the latter case, at −∆Vs). This observation suggests
that, for a nanopore-trapped peptide, its dissociation kinetics is largely independent upon the path it
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took to get there (i.e., entering either through the β-barrel or vestibule entry), as long as its vectorial
orientation inside the nanopore relative to the axial geometry is preserved on either case.

4. Conclusions

In summary, the presented method demonstrates that α-HL represents a versatile single-molecule
tool for identifying patches of polar and aliphatic residues in the primary structure of short
peptides, via statistical analysis of ionic current fluctuations recorded during a peptide transit across
the nanopore. In our experiments, the distributions of ionic fluctuations seen within individual
peptide-induced α-HL conductance blockade events were interpreted as reflecting the stochastic
transit of serine- or isoleucine-containing peptide across the constriction region of the α-HL. Such ionic
fluctuations were characterized by two peaks in their amplitude histogram, which were found
sensitive to the identity of a group of three serine or isoleucine amino acids. Depending on the
charged state of the leading amino acids sequence from the studied peptide and considering the
topological heterogeneity of the α-HL nanopore, the peptide capture by the nanopore and its
residence inside it—which are both critical factors for high throughput and high signal-to-noise
ratio sequencing—depend heavily on the transmembrane potential polarity and addition sidedness
of the peptides. In short, configurations which promote attractive forces stemming from electrostatic
interactions between the peptide with the α-HL’s β-barrel entry, and a narrower entry pathway for
the peptide inside the nanopore, dramatically increase the peptide association rate to the nanopore,
and the dwell-time of a captured peptide. For perspective, the presented approach is perfectly suited
to tune the translocation speed of peptides through narrower nanopore systems, intended to provide
increased spatial resolution (e.g., protein pores with engineered constriction regions matching in
size the peptide bond length, or synthetic nanopores drilled in 2D materials such as graphene, WS2,
and MoS2), and pave the way for peptide sequencing with single amino acid sensitivity. Although this
proof-of-concept study rendered encouraging signs toward the goal of peptide sequencing, a precise
understanding of how the force exerted on the trapped peptide influences it and alters flexibility and
diffusion across the nanopore, and operating within a more complex model accounting for detailed
positioning, hydration, charge distributions and binding affinity of amino acid residues to the nanopore,
may be needed for the purpose of accurate peptide readout with nanopores.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/8/885/s1,
S1. Quasi-1D expression of the electrical field, S2. Molecular dynamics simulation set-up.
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