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Abstract: This study is focused on the controllable reduction of the graphene oxide (GO) during
the surface-initiated atom transfer radical polymerization technique of glycidyl methacrylate
(GMA). The successful modification was confirmed using TGA-FTIR analysis and TEM microscopy
observation of the polymer shell. The simultaneous reduction of the GO particles was confirmed
indirectly via TGA and directly via Raman spectroscopy and electrical conductivity investigations.
Enhanced compatibility of the GO-PGMA particles with a polydimethylsiloxane (PDMS) elastomeric
matrix was proven using contact angle measurements. Prepared composites were further investigated
through the dielectric spectroscopy to provide information about the polymer chain mobility through
the activation energy. Dynamic mechanical properties investigation showed an excellent mechanical
response on the dynamic stimulation at a broad temperature range. Thermal conductivity evaluation
also confirmed the further photo-actuation capability properties at light stimulation of various
intensities and proved that composite material consisting of GO-PGMA particles provide systems
with a significantly enhanced capability in comparison with neat GO as well as neat PDMS matrix.

Keywords: graphene oxide; reduction; SI-ATRP; photo-responsive material; light-stimuli material;
dielectrics; poly (glycidyl methacrylate); dynamic mechanical analysis

1. Introduction

Smart materials belong to a group of matters. Such physical properties can be changed
upon external stimulus i.e., electric [14] or magnetic field [5-8], pH [9-12], temperature [13-16], or
light [17-20]. The systems exhibiting reversible photo-actuation and light-responsive properties are
vital for the research community only during the last decade while the rest of the above mentioned
properties have been part of the research community over the past 30 years. Therefore, there are still
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many drawbacks in this topic like stability of the systems or even performance, which reversibly
contracts or elongates the polymer composite sample upon light stimulation. Materials exhibiting
this phenomenon can find utilization in various systems controlling the damping properties [21],
sensing [22], or haptic displays [23]. Therefore, the broad applications belong to the field of
electronic [24], civil engineering [25], or medicine [26], respectively.

In these applications, the graphene oxide (GO) particles as a part of smart systems were properly
investigated due to their unique properties, i.e., good dispersibility in the surrounding media [27],
possible post-functionalization [28], are easily reduced, and, therefore, provide tunability of the
electrical conductivity [29]. There are various approaches regarding how to reduce the GO particles
such as treatment with hydrazine [30], reduction in the acidic environment [31], or simultaneous
reduction of GO during the surface-initiated atom transfer radical polymerization (SI-ATRP) [32].

Due to the high requirements in the above mentioned applications on the final material and from
the mechanical and stability point of view, the utilization of poly (dimethyl siloxanes) PDMS is very
frequent [33]. Such PDMS material can be either tailored by cross-linking density or using the addition
of silicone oil and a curing agent. However, there is still a lack of compatibility of PDMS with common
fillers such as MWCNT, graphene, or even GO and, therefore, such fillers need to be modified in
order to improve compatibility and dispersibility as well as overall properties of prepared composite
materials. There are various techniques of modification using surfactants [34], but such systems
are rather instable or uncontrolled polymerization from the surface, which significantly changes the
properties of filler [35] and, therefore, the SI-ATRP approach seems to be a very convenient method of
surface modification using a variety of monomers [27,32,36,37] or copolymers [38], which significantly
improves the compatibility while the basic physical properties such as mechanical or electrical are
affected only negligibly.

Therefore, this article is focused on the SI-ATRP of glycidyl methacrylate (GMA) from the surface
of GO particles in order to improve their compatibility with PDMS. Successful modification of GO by
short polymer chains was proved using TEM and TGA-FTIR measurements. The compatibility,
mechanical, dielectric, and photo-actuation properties were investigated when special aim was
concentrated on the effect of light intensity on the final photo-actuation performance.

2. Materials and Methods

Graphite (powder, <20 um, synthetic), sulfuric acid (HySO4, 95%-98%), sodium nitrate (NaNOj3,
>99%), potassium permanganate (KMnOy, 97%), hydrogen peroxide (HyO,, 29.0-32.0 wt %),
a-bromoisobutyryl bromide (BiBB, 98%), triethylamine (TEA, >99%), glycidyl methacrylate (GMA,
98%), ethyl a-bromoisobutyrate (EBiB, 98%), N,N,N’,N”,N”-pentamethyldiethylenetriamine (PMDETA,
>99%), copper bromide (CuBr, >99%), anisole (99%), and diethyl ether (>99%) were all purchased
from Sigma Aldrich and were used as received.

The graphene oxide was fabricated from graphite powder by a modified Hummers method [39].
The product was separated in a high-speed centrifuge (Sorvall LYNX 4000, Thermo Scientific, Waltham,
MA, USA) operating at 10,000 rpm for 20 min at 25 °C. The cleaning routine was based on the dispersion
of the GO in 0.1 M HCI and their re-separation in a centrifugal field. The procedure was repeated
with distilled water several times until the pH has reached a value of 7. Afterward, the particles
were lyophilized in order to remove the residual amount of water after purification and remove the
brown powder that was obtained. The initiator BiBB was immobilized, according to the procedure
described in detail elsewhere [32]. Two various polymerizations from the surface of GO particles
in order to prepare poly (glycidyl methacrylate)-modified GO (GO-PGMA and GO-PGMA-2), were
performed by the following procedure. The molar ratio of reactants [GMA]:[EBiB]:[CuBr]:[PMDETA]
was [100]:[1]:[1]:[4] and [100]:[1]:[1]:[2] while anisole (50 vol. %) was used as a solvent. The presence of
oxygen was minimized by degassing the system by several freeze-pump-thaw cycles and after the
last cycle by filling the system with argon. Lastly, the CuBr catalyst was added under argon flow and
polymerization was carried out at 60 °C for 4 h and at 50 °C for 12 h for polymerizations performed
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with 4:1 and 2:1 ratio of PMDETA to CuBr, respectively. The product was purified by filtration using
DME, acetone, and diethyl ether and dried using lyophilization.

'H nuclear magnetic resonance (NMR) spectra were recorded at 25 °C using an instrument
(400 MHz VNMRS Varian, Tokyo, Japan) with deuterated chloroform (CDCl3) as a solvent. The H
NMR was used to determine the monomer conversion from the ratio of area of peaks assigned to
PGMA to the area of peaks assigned to both PGMA and GMA (Figure 1). The molar mass and
polydispersity (D) of PGMA chains were investigated using gel permeation chromatography (GPC)
on the GPC instrument (PLGPC220, Agilent, Hachioji, Japan) equipped with GPC columns (Waters
515 pump, two PPS SDV 5 Im columns (diameter of 8 mm, length of 300 mm, 500 A +105A))and a
Waters 410 differential refractive index detector tempered to 30 °C. The neat GO and GO with a grafted
PGMA polymer layer were observed using a transmission electron microscope (TEM, JEM-2100Plus,
Jeol, Tokyo, Japan). The samples for the TEM analysis were prepared by dispersing the particles in
acetone using mechanical stirring for 5 and 2 min of sonication and dropping the resultant suspension
onto a copper grid. The Raman Shift (3 scans, resolution of 2 cm~!) were collected on a Nicolet DXR
(Nicolet, Rhinelander, WI, USA) using an excitation wavelength of 532 nm. The integration time
was 30 s while the laser power on the surface was set to 1 mW. The powders under investigation
were compressed to the form of pellets (diameter of 13 mm, thickness app 1 mm). The pellets were
used for electrical conductivity measurements using a two-point method (Keithley 6517B, Cleveland,
OH, USA). The contact angle (CA) values were evaluated from the static sessile drop method on
the pellets carried out on a Surface Energy Evaluation system equipped with a CCD camera (Advex
Instruments, Brno, Czech Republic). A droplet (5 uL) of PDMS was carefully dripped onto the surface
and the CA value was recorded. The presented CA results are the average values from 10 independent
measurements. The thermo-oxidation decomposition of the samples was on-line monitored using
a thermogravimetric analyzer (TGA) operating in an oxygen atmosphere coupled with FTIR with a
help of Nicolet i510 equipped with TGA-IR module (Thermo Scientific, Waltham, MA, USA). In the
Figure 2, the highlighted bands are those where the FTIR signal was collected in order to prove the
presence of the various components in the GO-based powders.

The composites containing various amount of GO-based particles were prepared using the
following standard procedure: PDMS (Sylgard 184, Atlanta, GA, USA) was mixed with silicone oil
and subsequently a cross-linker was added in ratios of PDMS: silicone oil: cross-linker 7/3/1 and,
lastly, 0.1 vol. % of the particles was added before the curing. In the case of the neat PDMS matrix, we
further investigated the same ratio of PDMS in this paper. Silicone oil and a cross-linker was used but
without the addition of the particles. In the case of all samples, the mixtures were degassed using a
vacuum oven in the four cycles at 10 mbar at room temperature and then placed into the oven and
cured at an elevated temperature set to 60 °C for 6 h.

The thermal conductivity was measured by one side contact method using the TCi model (C-Term
Technologies, Vancouver, BC, Canada). The viscoelastic properties of both the nanocomposite and
pure polymer matrix were studied through the dynamic mechanical analysis (DMA) in tensile mode.
All measurements were performed at a linear viscoelastic region. The measurement was done at 1 Hz
in the temperature range from —150 to 150 °C. To provide information about how the modification of
the GO with PGMA grafts influences the strain of the materials, a dependence of the storage and loss
moduli was plotted against the change in the length AL, i.e., parameter specified in the experimental
photo-actuation investigations. The measurements were performed at 1 Hz and at 25 °C. The dielectric
spectroscopy ranged from a temperature of —150 to 100 °C and ranged in frequency from 10~! to
107 Hz, which were employed to investigate the polymer chains dynamics.

The glass transition process was evaluated through activation energies calculated from the
Arrhenius equation (Equation (1)) in order to see the effect of modification on the relaxation processes
in the PDMS based composites.

fs = Foexp (15 ). <1>
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where E, is the activation energy, fo is the pre-exponential factor, T is thermodynamic temperature,
and kg is the Boltzmann constant.

In order to properly investigate the polymer chains dynamics, the loss permittivity need to be
recalculated to the loss modulus. This recalculation was based according to Equation (2) [40].

1
M* - =
’_ 4
- s’2+s’/2 (2)
1"
" — €
M" = €/2+€//2

where ¢* is complex permittivity and ¢ and ¢” are relative permittivity and loss permittivity,
respectively. M* is the complex dielectric modulus and M’ and M” are storage and dielectric loss
moduli, respectively.
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Figure 1. Representative 'H NMR spectrum from filtered polymerization mixture of glycidyl
methacrylate performed with [GMA]:[EBiB]:[CuBr]:[PMDETA] ratio of [100]:[1]:[1]:[4] at 60 °C for 4 h.
The monomer conversion was 43%.

The photo-actuation ability of both the matrix and composite samples was investigated using
thermal mechanical analysis (IMA, Mettler Toledo, Columbus, OH, USA), which was previously
published [15]. Red LED diode (Luxeon Rebell, Philips, Amsterdam, the Netherlands) was used for
irradiation. Irradiation was applied for 10 s at 627 nm with 6, 9, and 12 mW light source intensity
under 10% pre-strain of the samples. The maximum value of actuation is characterized by a change in
sample length during the exposition to light, AL = (Lo — L)/Lo, where Ly is the length of non-irradiated
sample and L is the length of an irradiated sample.
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3. Results and Discussion

Successful polymerization of GMA from the surface of GO was confirmed by various techniques
such as 'TH NMR, GPC, TEM, and TGA-FTIR. The conversion of GMA was calculated to be 43% and
46%, according to 'H NMR spectra and the molar mass and D of PGMA chains determined from
GPC were 5900 g-mol ! and 1.28 and 6100 g-mol ! and 1.26 for the GO-PGMA 1 and GO-PGMA 2,
respectively, fit the experimental molar mass with the theoretical one. Furthermore, from the TEM
investigation, the 2D nature of the neat GO particles (Figure 2a) can be clearly seen. Moreover, the
2D structure was also observed in the case of GO-PGMA while the presence of the PGMA chains
exhibit rather flossy-like structures, which provided substantial coating for the GO particle (Figure 2b).
The change in the reaction mixture for GO modification (Figure 2c) does not lead to a significant change
in the morphology and provides nearly the same morphology than the previous one (Figure 2b).

Figure 2. TEM images of (a) neat GO; (b) GO-PGMA; and (c) GO-PGMA-2.

The TGA-FTIR technique utilizing the on-line monitoring of the FTIR spectra during thermal
decomposition of the neat GO (Figure 3a,b), GO with bonded initiator (Figure 3c,d), and GO-PGMA
(Figure 3e,f) particles was employed to further prove the successful coating of GO with PGMA chains.
In this case, the TGA spectra of the left side of Figure 3 correspond to the FTIR spectra on the right side
of Figure 3. For the neat GO particles and GO with an initiator, the detailed description was already
published elsewhere [41]. However, the following description is novel for GO-PGMA particles. It can
be clearly seen that the particles peak around 200 °C, which corresponds to oxygen-containing groups
that decrease as side information to prove the partial reduction of the GO-PGMA particles. Moreover,
the presence of the successful coating is remarkable from Figure 3e when, in the range from 250 to
450 °C, we observed two peaks both corresponding to the thermal decomposition of PGMA. A similar
range of PGMA decomposition was also found in the case of modification of carbonyl iron [42] as well
as in the case of GO-PGMA modified through SI-ATRP where the mass loss in Figure 3e is very similar
to the following reference [27]. In case of GO-PGMA-2, the TGA-FTIR scan looked nearly identical
because, from the structural point of view, the FTIR spectra in Figure 3f represent the collection of
the signal during the period highlighted in Figure 3e by a cyan color. Specific absorption bands were
found at 1722 cm~! (carbonyl), 1318 cm~! C-O-C stretching, 2961, and 2791 cm ™! (alkyl vibrations).
Furthermore, the sharp peak at 750 cm ™! is based on an epoxy ring absorption and, therefore, confirms
the presence of PGMA polymer chains grafted on the surface of GO.

Graphene oxide reduction is a very important factor from its applicability point of view. If the
material has a higher electric conductivity, the thermal conductivity is higher. The thermal energy
redistribution in the sample is a crucial factor for the final photo-actuation performance. In addition,
the composite material upon its deformation can show a sensing capability only if certain resistivity
of the material is reached. Therefore, the high conductivity of the final composite is very important.
This is similarly observed in the study by Georgousiss et al. [43]. Therefore, the conductivity and
Raman spectroscopy (Figure 4) were investigated to prove the degree of reduction of GO and variously
reduced GO-PGMA particles. The intensities ratios (Ip/Ig) were found to be 0.9 for neat GO (Figure 4a)
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and 1.08 and 1.26 for GO-PGMA 1 (Figure 4b) and GO-PGMA 2 (Figure 4c) corresponding to the
determined conductivities of 1.2 x 1078, 5 x 1077, and 2.3 x 1073 S-cm™1, respectively. The ratios
indicate a significant and controllable reduction during the SI-ATRP process, which is very promising
for further industrial applications.

Compatibility of the filler with a matrix is a crucial factor for improvement of the physical as well
as mechanical properties of the final composite material. Inhomogeneity present in the sample due
to the weak compatibility can be mainly responsible for mechanical instabilities during a repeatable
mechanical load or, in the case of materials with desired electrical or thermal conductivities, can lead
to their suffered performances. Therefore, the contact angle values of PDMS drops, as the elastomeric
matrix used in this study, onto the surface of pellets prepared from the neat GO or GO-PGMA particles,
which were investigated (Figure 5). It can be clearly seen that the contact angle of neat GO was
determined to be 49.9° &+ 3.2°, which showed relatively poor compatibility while the modification
of the GO with short polymer chains of PGMA decreased the contact angle to 40.1° & 1.3° and,
therefore, improved the wettability between the PDMS and GO-PGMA surface due to the presence of
the aliphatic polymer backbone. In this case, the influence of various conductivities was not proven
and contact angles were in the range of error. However, the contacts angles were not so low as was
previously found by our research group for PMMA or PBMA grafts [36].
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Figure 3. TGA analysis (a,c,e) with on-line monitoring of the FTIR spectra (b,d,f) for neat GO (a,b);
GO-iniciator, and (c,d) and GO-PGMA (e f) particles.
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Figure 4. Raman spectra of the neat GO (a) GO-PGMA 1; (b) GO-PGMA 2; and (c) particles and
corresponding chemical structures.

(b)

Figure 5. Images from CCD camera of the 5 uL. PDMS droplets on the neat GO (a) and GO-PGMA (b).

In order to show how the optical properties of the composites were changed after adding various
fillers, the images of neat PDMS as well as the GO-based composites were performed (Figure 6a).
It can be seen that the best optical properties had a neat PDMS. However, the modification using the
SI-ATRP approach provided the composites with better dispersed filler in comparison to the neat GO
due to the fact that neat GO/PDMS composites seem to be of higher transparency with relatively
big agglomerates and less uniform filler dispersion compared to the GO-PGMA grafted particles.
In addition, the change of the contact angles between the water and composites is nearly negligible
and is more affected by the modification than the time of storage (Figure 6b). This means that the
properties that were changing over 7 days did so negligibly. The contact angle for neat as-prepared
PDMS and after 7 days of storage is 105.4° and 105.1°, respectively. Similar results were found for other
composites where the as-prepared GO-PGMA 1 after 7 days of storage show contact angles of 98.7°
and 98.2°, respectively. The longer grafts provided composites with a slightly lower contact angle of
97.4° and 96.8° for as-prepared GO-PGMA 2 and after 7 days of storage, respectively, due to the higher
amount of the hydrophilic epoxy groups presented on the GO-PGMA 2 particles surface. The lower
contact angle was observed for neat GO, which was expected due to the presence of hydroxyl, carboxyl,
and epoxy groups on its surface. Therefore, showing contact angle of 87.7° and 87.1° for as-prepared
GO composite after 7 days of the storage, respectively.

(a) Ty g (b) PDMS GO- GO- GO
FDMS G PGMA PGMA 2

1. m i .
WL Rl S -

105.4° 98.7° 97.4° 87.7°
.

s B - —
105.1° 98.2° 96.8° 87.1°

»

Figure 6. (a) Images of the neat PDMS and prepared composites and (b) Images from CCD camera of
the 5 uL water droplets on the neat PDMS and various composites. Line 1 represents measurements for
as-prepared samples while line 2 represents the measurements of the samples after 7 days of storage
at RT.
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Investigations of dielectric properties (Figure 7) is very important due to the fact that, with the
help of measurement in a broad temperature range and frequency-dependent permittivity, it is possible
to calculate E; of the glass transition and Ty, which provides information about the polymer chain
flexibility in the presence of GO particles. In our study, however, the prepared composites exhibited a
rather strong electrical response to the applied electric field and, therefore, obtained ¢’ and ¢” exhibited
electrode polarization and were not suitable for E, calculation [40]. Therefore, the expression of M’ and
M” was used, which was mainly M"” according to Equation (2). Therefore, this quantity was also used
for the interpretation of the dielectric spectra in Figure 5. Here the peak around —120 °C indicating the
presence of T can be seen for all investigated samples.

(@) e

(d)

Figure 7. 3D plots of the dielectric properties of the neat PDMS matrix, (a) neat GO-PDMS; (b)
GO-PGMA 1; (c) and GO-PGMA 2; (d) All at 0.1 vol. % content in PDMS.

From the position of the maxima of this peak at various temperatures, the E, of Tg was calculated
according to Equation (1) and results are listed in Table 1. It can be clearly seen that the highest E, of
45.70 kJ-mol~! was found for neat PDMS by following the neat GO composite with E, of 36.57 k]J-mol 1.
The sample GO-PGMA 1 with 0.1 volume percentage of particles of lower conductivity possess only a
slight decrease in E, showing an improved PDMS chain mobility after modification while the sample
GO-PGMA 2 with same particle loading. However, with significantly higher conductivity possesses
significantly better chain mobility and, lastly, the lowest E, of 23.80 k]J-mol~! further enhanced the
photo-actuation capability. These results indicate that the presence of the GO-PGMA particles in the
composite significantly improves the flexibility of the PDMS chains due to the fact that the energy
necessary for the polymer chain movement is lower. As it will be shown below, these results were also
confirmed by the investigation of DMA and photo-actuation performance since the results from these
experiments well-correlates with these dielectric investigations.
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Table 1. Activation energies of a glass transition process for pure PDMS and PDMS composites with
variously conducting particles.

Sample Code E, (kJ-mol~1) of T (—120 °C)
pure PDMS 45.70
0.1 vol % neat GO/PDMS 36.57
0.1 vol % GO-PGMA 1/PDMS 31.32
0.1 vol % GO-PGMA 2/PDMS 23.80

Dynamic mechanical properties (Figure 8) are one of the most crucial factors influencing the
applicability of materials as photo-actuation systems. Reversible contraction/elongation of the sample
by light stimulation is a rather dynamic process and, therefore, investigation upon dynamic conditions
is very important. As can be seen in Figure 8a, the storage moduli below Ty were nearly the same for
all investigated samples. The first difference can be seen above Ty when the lowest storage modulus
was obtained for neat PDMS and was followed by the GO-PGMA sample. The highest values were
observed for samples containing neat GO particles. A similar situation occurs above the melting
region when the neat GO possessed the highest storage modulus. This observation can be explained
by possible covalent bonding between the PDMS and hydroxyl groups of GO particles [44]. Since the
amount of the hydroxyl groups significantly decreased due to both the modification with PGMA chains
and the reduction of the GO (clearly seen from Figures 3 and 4), the mechanical response is mostly
based on the good compatibility of the GO-PGMA particles with the PDMS. From the temperature
dependence of the tan & (Figure 8b), it can be seen that the peak of tan & for the sample containing
GO-PGMA decreased when compared with pure PDMS or PDMS filled with neat GO, which indicated
enhanced compatibility of GO-PGMA with the PDMS matrix. Yet, the absolute value of tan ¢ after all
transitions was higher for GO-PGMA than for PDMS matrix and PDMS containing neat GO due to
the fact that physical entanglements of PGMA short polymer chains provide more flexible structure
than in the case of GO with possible covalent bonding to the PDMS. Composites consisting of various
GO-PGMA with different conductivities show nearly the same mechanical behavior. The differences
were in the range of error. Therefore, only the one consisting of GO-PGMA particles with higher
conductivities are shown in Figure 8. Therefore, it can be stated that GO-PGMA /PDMS composite
provides a system with enhanced damping and also with improved flexibility of the composite system,
which well-correlates with dielectric studies and which is in the same time highly suitable for the
photo-actuation point of view.
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Figure 8. Dependence of the storage modulus (a) and tan $ (b) for broad temperature range for neat
PDMS (black solid line) and for PDMS composites containing 0.1 vol % of neat GO (red dash dot line)
and GO-PGMA 2 (blue dashed line).

In order to investigate the mechanical properties of the prepared composites, dependence on
the change in the length AL in the range of potential photo-actuation on the viscoelastic moduli were
measured. Various natures of the filler can provide the system with multiple mechanical performances
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at the strain deformation obtained during light-stimulation. As can be seen in Figure 9, the composite
consisting of the neat GO particles has the highest values of the storage modulus. However, the
significant drop is visible at lower deformations. However, the GO-PGMA-based composites show
lower values, which corresponds to their softer nature and higher possible elongation. According to
the performed measurements, it can be expected that GO-PGMA composites will provide systems
with better photo-actuation performance due to more suitable mechanical properties.

—eo—,—0— PDMS; —=—, GO; —4—,—+— GO-PGMA 1;
., GO-PGMA 2

10’

107

Storage and loss moduli (Pa)

10 1(‘)0
AL (gm)

Figure 9. Dependence of the storage (solid symbols) and loss (open symbols) moduli on the change in
deformation upon dynamic tensile testing at 1 Hz and 25 °C.

According to the previous study [45], the thermal conductivity is another crucial parameter
affecting the photo-actuation performance. As can be seen from Table 2, the pure PDMS matrix has
thermal conductivity of 0.071 W-m-K~1. It increases with the addition of filler for both investigated
samples. Due to the improved compatibility of GO particles with the PDMS matrix by PGMA chains
grafted on the GO surface, these composites with GO-PGMA exhibited further improvement of
thermal conductivity compared with the composite based on neat GO (Table 2). Therefore, the
composite sample containing GO-PGMA particles could provide significant contribution to the
enhanced photo-actuation capabilities due to the improved heat redistribution within the sample.

Table 2. Thermal conductivity of pure PDMS and PDMS composites with various fillers.

Sample Code Thermal Conductivity (W-m-K~1)
pure PDMS 0.071
0.1 vol % neat GO/PDMS 0.144
0.1 vol % GO-PGMA-1/PDMS 0.152
0.1 vol % GO-PGMA-2/PDMS 0.161

In order to confirm the photo-actuation ability of the GO-PGMA/PDMS composite, the
photo-actuation performance in this case expressed as the change in the length AL was investigated
(Figure 10). It can be seen that there was only a slight increase of the photo-actuation performance
for PDMS containing neat GO compared with the neat PDMS provided that AL is 9.1 and 7.1 um,
respectively. The situation was considerably different in the case of the sample containing GO-PGMA
particles (Figure 10c,d). The AL after irradiation reached a value of 20.2 um, which is nearly three times
higher than that obtained for the neat PDMS matrix (Figure 10a) and more than two times higher than
that for PDMS composite with neat GO particles (Figure 10b). This significant enhancement is caused
by several factors: (i) the particles has better wettability to PDMS and, therefore, better compatibility of
the filler with the matrix, (ii) the presence of PGMA prevents the additional cross-links presented in the
PDMS or GO/PDMS providing the system with more flexible structure, and (iii) increased electrical
conductivity due to GO reduction during the SI-ATRP modification of GO leading to the enhanced
thermal conductivity. The first and the third factors are responsible for more effective heat transport
and homogeneous heat redistribution. The second mentioned factor ensures good flexibility, which is
very important for reversible actuation and positively influences the overall performance.
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Figure 10. Photo-actuation performance of pure PDMS (a) and PDMS composites containing 0.1 vol.%
of neat GO; (b) GO-PGMA-1; (c) and GO-PGMA-2 (d) at 6 mW irradiation intensity.

With increased intensity of the radiation, the difference between the investigated systems became
even more pronounced. First, it should be mentioned that for neat PDMS, the changes were negligibly
affected by the increasing intensity (results are not presented). The PDMS composite containing
neat GO showed only a slight increase of AL in the line 9.1, 10.7, and 12.5 pm for 6, 9, and 12 mW,
respectively (Figure 11).

50 M
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Figure 11. Photo-actuation performance of GO/PDMS composite at (a) 6 mW; (b) 9 mW; and (c) 12
mW irradiation intensity.

However, the PDMS containing GO-PGMA showed significant enhancement in photo-actuation
performance with AL in the line 20.2, 30.2, and 36.7 um for 6, 9, and 12 mW, respectively (Figure 12).
The main reason for this behavior is possible covalent interactions of the neat GO and PDMS already
observed from DMA investigations. Therefore, it can be stated than the developed composite system
based on the PDMS matrix containing GO nanoparticles simultaneously reduced and grafted with
PGMA chains provided the reversible photo-actuation phenomenon and has excellent mechanical
properties in a dynamic mode, which is highly promising for their potential applications.

” 6 mw (a) 9 mw (b) 12mw (c)
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Light off
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Figure 12. Photo-actuation performance of GO-PGMA 2/PDMS composite at (a) 6 mW; (b) 9 mW; and
(c) 12 mW irradiation intensity.
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4. Conclusions

In this paper, the successful grafting of the PGMA on the surface of the GO particles was performed
by SI-ATRP and confirmed using TGA-FTIR and TEM investigations. Simultaneous reduction of
GO during SI-ATRP was proven by Raman spectroscopy and electrical conductivity measurements.
The enhanced compatibility of PDMS with GO after its modification with PGMA chains was confirmed
by the contact angle measurements of PDMS drops on the GO and GO-PGMA pellets. Lower E,
of Tg of PDMS chains in the GO-PGMA /PDMS composite calculated from dielectric measurements
compared with neat PDMS or GO/PDMS composite pointed to higher polymer chain dynamics thanks
to the incorporation of GO-PGMA nanoparticles. Important mechanical performance upon dynamic
conditions was investigated using DMA at a broad temperature range and it was found that GO
surface modification provides the materials with enhanced damping properties, which positively
affects the photo-actuation performance. Lastly, the photo-actuation capability measurements showed
significantly improved performance of GO-PGMA-based composites due to the improved dispersibility,
enhanced flexibility, and increased thermal conductivity. All these aspects provided the system with
very promising performance and with values suitable for real-life applications.
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