Effective Reduction of Volumetric Thermal Expansion of Aromatic Polyimide Films by Incorporating Inter-chain Crosslinking

Shinji Ando *, Mari Harada, Tomohiro Okada, and Ryohei Ishige

Department of Chemical Science and Engineering, Tokyo Institute of Technology,
Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo, 152-8552, Japan

* Correspondence: sando@polymer.titech.ac.jp; Tel.: +81-3-5734-2137; Fax: +81-3-5734-2889

Figure S1. Mid-IR-ATR spectra of (a) PPD-PI and (b) MPD-PI films cured at different temperatures.
(a)

Model-A
(b)

Model-B
(c)

Scheme S1. Structures of model compounds used for the DFT calculation to estimate the packing coefficients before and after crosslink reactions. (a) Model-A (before crosslinking) and (b, c) ModelB and -C (after crosslink reactions which formed a fused naphthalene or a biphenyl structures).

- Calculation of intrinsic birefringence (Δn^{0}) using anisotropic molecular polarizability ($\alpha_{/ /}$ and α_{\perp})

Table $\mathbf{S 1}$ shows the molecular polarizabilities ($\alpha_{11}, \alpha_{22}, \alpha_{33}$), intrinsic refractive indices parallel and perpendicular to the molecule long axis ($n^{0} \|, n^{0} \perp$), the intrinsic birefringence (Δn^{0}) and van der Waals volume (V_{vdw}) of Model-A, -B, and -C. The values of $\alpha_{11}, \alpha_{22}, \alpha_{33}$ were obtained from the DFT calculations, and those of $n^{0} \|, n^{0} \perp$ were obtained based on the following equations by using experimental average refractive index (n_{av}), in which the n_{av} s of Model-A, -B , and -C were assumed as same as that of PPD-300.

$$
\begin{gather*}
n_{/ /}^{0}=\left[\frac{\alpha_{/ /}}{\alpha_{\mathrm{av}}}\left(n_{\mathrm{av}}^{2}-1\right)+1\right]^{\frac{1}{2}} \tag{S1}\\
n_{\perp}^{0}=\left[\frac{\alpha_{\perp}}{\alpha_{\mathrm{av}}}\left(n_{\mathrm{av}}^{2}-1\right)+1\right]^{\frac{1}{2}} \tag{S2}\\
\alpha_{/ /}=\alpha_{11}, \alpha_{\perp}=\frac{\alpha_{22}+\alpha_{33}}{2}, \alpha_{\mathrm{av}}=\frac{\alpha_{11}+\alpha_{22}+\alpha_{33}}{3} \tag{S3}
\end{gather*}
$$

The Δn° is given by

$$
\begin{equation*}
\Delta n^{\circ}=n_{/ /}^{0}-n_{\perp}^{0} \tag{S4}
\end{equation*}
$$

Table S1. Calculated values of average molecular polarizability (α_{av}), principal values of polarizability tensor ($\alpha_{11}, \alpha_{22}, \alpha_{33}$), van der Waals volume (V_{vdw}), $\alpha_{\mathrm{av}} / V_{\mathrm{vdw}}$ values, intrinsic refractive indices parallel and perpendicular to the molecule long axis ($n^{0} \|, n^{0} \perp$), and intrinsic birefringence $\left(\Delta n^{0}\right)$ of Model-A, -B, and -C. The calculation procedures were reported elsewhere.[13]

Model	$\alpha_{\text {av }}$ $\left(\AA^{3}\right)$	$\left(\alpha_{11}\right.$, $\left(\AA^{3}\right)$	α_{22}, $\left(\AA^{3}\right)$	$\left.\alpha_{33}\right)$ $\left(\AA^{3}\right)$	$V_{\text {vdw }}$ $\left(\AA^{3}\right)$	$\alpha_{\text {av }} / V_{\text {vdw }}$	$n^{0}{ }_{\text {av }}$	$n^{0} / /$	$n^{0}{ }_{\perp}$	Δn^{0}
A	52.7	90.0	44.6	23.3	330.1	0.160	1.743	2.118	1.515	0.602
B	54.5	90.2	47.0	26.3	350.6	0.155	1.715	2.052	1.514	0.539
C	53.5	68.2	53.3	39.0	378.8	0.141	1.633	1.767	1.560	0.208

Figure S2. Calculated far-IR absorption spectra of the model depicted in Fig. 3(a).

Figure S3. Calculated vibration modes of representative far-IR absorption peaks of the model depicted in Fig. 3(a).

Figure S4. Calculated far-IR absorption spectra of model compounds for PPD-PI and MPD-PI.

$\nu=527 \mathrm{~cm}^{-1}$

$$
v=621 \mathrm{~cm}^{-1}
$$

Figure S5. Calculated vibration modes of representative far-IR absorption peaks of the models depicted in Fig. S4.

