Effective Reduction of Volumetric Thermal Expansion of Aromatic Polyimide Films by Incorporating Inter-chain Crosslinking

Shinji Ando *, Mari Harada, Tomohiro Okada, and Ryohei Ishige

Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo, 152-8552, Japan

* Correspondence: sando@polymer.titech.ac.jp; Tel.: +81-3-5734-2137; Fax: +81-3-5734-2889

Figure S1. Mid-IR-ATR spectra of (a) PPD-PI and (b) MPD-PI films cured at different temperatures.

Scheme S1. Structures of model compounds used for the DFT calculation to estimate the packing coefficients before and after crosslink reactions. (a) Model-A (before crosslinking) and (b, c) Model-B and -C (after crosslink reactions which formed a fused naphthalene or a biphenyl structures).

· Calculation of intrinsic birefringence (Δn^0) using anisotropic molecular polarizability ($\alpha_{//}$ and α_{\perp})

Table S1 shows the molecular polarizabilities (α_{11} , α_{22} , α_{33}), intrinsic refractive indices parallel and perpendicular to the molecule long axis (n^0 //, n^0 _ \perp), the intrinsic birefringence (Δn^0) and van der Waals volume ($V_{\rm vdw}$) of Model-A, -B, and -C. The values of α_{11} , α_{22} , α_{33} were obtained from the DFT calculations, and those of n^0 //, n^0 _ \perp were obtained based on the following equations by using experimental average refractive index ($n_{\rm av}$), in which the $n_{\rm av}$ s of Model-A, -B, and -C were assumed as same as that of PPD-300.

$$n_{//}^{0} = \left[\frac{\alpha_{//}}{\alpha_{\text{av}}} (n_{\text{av}}^{2} - 1) + 1\right]^{\frac{1}{2}}$$
 (S1)

$$n_{\perp}^{0} = \left[\frac{\alpha_{\perp}}{\alpha_{\text{av}}}(n_{\text{av}}^{2} - 1) + 1\right]^{\frac{1}{2}}$$
 (S2)

$$\alpha_{//} = \alpha_{11}, \alpha_{\perp} = \frac{\alpha_{22} + \alpha_{33}}{2}, \alpha_{av} = \frac{\alpha_{11} + \alpha_{22} + \alpha_{33}}{3}$$
 (S3)

The Δn° is given by

$$\Delta n^{\circ} = n_{//}^0 - n_{\perp}^0 \tag{S4}$$

Table S1. Calculated values of average molecular polarizability (α_{av}), principal values of polarizability tensor (α_{11} , α_{22} , α_{33}), van der Waals volume (V_{vdw}), α_{av}/V_{vdw} values, intrinsic refractive indices parallel and perpendicular to the molecule long axis (n^0 //, n^0 _1), and intrinsic birefringence (Δn^0) of Model-A, -B, and -C. The calculation procedures were reported elsewhere.[13]

Model	α av (ų)	(α 11, (Å ³)	0 (22, (Å ³)	0 (33) (Å ³)	$oldsymbol{V}_{ extsf{vdw}}$ (Å 3)	$lpha_{ m av}/\ V_{ m vdw}$	$n^0_{ m av}$	n ⁰ //	n^0 \perp	Δn^0
A	52.7	90.0	44.6	23.3	330.1	0.160	1.743	2.118	1.515	0.602
В	54.5	90.2	47.0	26.3	350.6	0.155	1.715	2.052	1.514	0.539
C	53.5	68.2	53.3	39.0	378.8	0.141	1.633	1.767	1.560	0.208

Figure S2. Calculated far-IR absorption spectra of the model depicted in Fig. 3(a).

Figure S3. Calculated vibration modes of representative far-IR absorption peaks of the model depicted in Fig. 3(a).

Figure S4. Calculated far-IR absorption spectra of model compounds for PPD-PI and MPD-PI.

Figure S5. Calculated vibration modes of representative far-IR absorption peaks of the models depicted in Fig. S4.