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Abstract: Neutral nickel complexes containing an anilinobenzoic acid methyl ester ligand are
prepared and applied for the ethylene polymerization and copolymerization with polar monomers.
The complex C2 containing isopropyl substituent on the aniline ligand conducts ethylene
polymerization with high activity and good thermal stability. Most importantly, the catalyst promotes
the copolymerization of ethylene and polar monomers with high activity (up to 277 kg·mol−1·h−1),
affording ester-functionalized semicrystalline polyethylene with reasonable polar monomer content
(up to 3.20 mol %).

Keywords: nickel catalyst; anilinobenzoic acid methyl ester; ethylene; polar
monomer; copolymerization

1. Introduction

Although polyolefins have been extensively used in a wide range of application, the
nonpolarity of polyolefins limits their further application [1]. This limitation could be dramatically
improved by the introduction of even a small amount of polar functional groups to the polyolefin
backbone [2]. A pioneering discovery was reported by Brookhart and co-workers that the
α-diimine-nickel/palladium catalysts can initiate direct copolymerization of ethylene with polar
monomers in the 1990s [3]. Since then, late-transition-metal catalysts based on palladium complexes
have been extensively studied for olefin copolymerization with polar monomers [4–11]. Recently,
low cost nickel catalysts were also developed extensively for the synthesis of functionalized polyolefins,
although their copolymerization activities and resulting copolymer molecular weight are far from
those required for industrial application [12–20].

The significant interest was attracted in developing the neutral nickel catalysts because
they exhibit higher tolerance toward functional polar groups [21]. Early examples of SHOP
type neutral nickel catalysts have been commercialized for the synthesis of α-olefins [22–24].
A series of neutral nickel catalysts bearing salicylaldimine ligands (Chart 1A) was reported by
Grubbs et al., which showed excellent tolerance towards polar monomers to give functionalized
polyethylene [25–28]. The β-ketoiminato neutral nickel complexes with six-membered-ring were
synthesized and applied as the olefin (co)polymerization catalyst (Chart 1B) [29–37]. Brookhart et
al. successively developed the anilinotropone-based (Chart 1C) and anilinoperinaphtenone-based
(Chart 1D) neutral nickel catalysts [38–41]. These nickel catalysts exhibited higher activity than

Polymers 2018, 10, 754; doi:10.3390/polym10070754 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0001-5784-3920
http://www.mdpi.com/2073-4360/10/7/754?type=check_update&version=1
http://dx.doi.org/10.3390/polym10070754
http://www.mdpi.com/journal/polymers


Polymers 2018, 10, 754 2 of 10

salicylaldimine neutral nickel catalyst A in ethylene polymerization. Shiono et al. reported
that five-membered anilinonaphthoquinone ligated neutral nickel complexes (Chart 1E) exhibited
unique performances for the polymerization of ethylene and norbornene and copolymerization
of ethylene with polar monomers [16,42–45]. Recently, we found that a novel six-membered
anilinoanthraquinone-based neutral nickel complex promoted random copolymerization of ethylene
with norbornene and polar monomers with high activity and good thermal stability (Chart 1F) [46,47].
Here, we report the synthesis, characterization, and application of six-membered neutral nickel
complexes bearing anilinobenzoic acid methyl ester ligand for the ethylene polymerization and
copolymerization with polar monomers to investigate the electronic effect of the ligand backbone.
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Chart 1. Representative [N,O] Ni Catalysts.

2. Experimental Section

2.1. Materials

All experiments were performed under dry nitrogen atmosphere using standard Schlenk
techniques or in a glovebox. All solvents were dried by the PS-MD-5 (Innovative Technology (China)
Ltd., Hong Kong, China) solvent purification system. Ethylene was purified by passage through
dehydration column of ZHD-20 and deoxidation column of ZHD-20A before using. Commercial polar
monomers were distilled ov‘er calcium hydride before using. The other reagents were purchased and
used without purification.

2.2. Analytical Procedure

NMR spectra were measured on a Bruker AsendTM 600 spectrometer (Bruker, Karlsruhe,
Germany). CDCl3 was employed as solvent and the central peak of the solvent was used as an
internal reference (CDCl3, 7.26, {77.16} ppm). Differential scanning calorimeter (DSC) analyses were
carried out on a TA Q2000 instrument (Waters, New Castle, DE, USA). The DSC curves of the samples
were recorded under a nitrogen atmosphere at a heating rate of 10 ◦C·min−1. The single crystals
data was made on a Bruker APEX2 diffractometer (Bruker, Karlsruhe, Germany) using graphite
monochromated with Mo Kα radiation (l = 0.71073 Å), and the measurement were mounted under
nitrogen atmosphere at low temperature. Crystallographic data are summarized in Table S1. Molecular
weight and molecular weight distribution of polymers obtained were tested by a polymer laboratory
PL GPC-22 (Agilen, Santa Clara, CA, USA) at 150 ◦C using 1,2,4-trichlorobenzene as a solvent.

2.3. General Polymerization Procedure

Atmospheric pressure polymerization was carried out in a 100 mL glass reactor equipped with a
magnetic stirrer and the high pressure polymerization was performed in Parr Instrument Company
autoclave. At first, the reactor was vacuumized at 110 ◦C and charged with nitrogen several times
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before polymerization procedure. Then the prescribed amounts of toluene, monomers and cocatalyst
under nitrogen were charged into the reactor and polymerization was initiated by adding the catalyst
solution at desired temperature and desired pressure. The polymerization was conducted for a certain
time and terminated with acidic methanol. The polymer obtained was stirred overnight, collected by
filtration, adequately washed with alcohol and acetone, and dried under vacuum at 80 ◦C overnight
until a constant weight was reached.

2.4. Synthesis of Ligands and Complexes

2.4.1. Synthesis of 2-Anilinobenzoic Acid Methyl Ester Ligand L1

A solution of bis(dibenzylideneacetone) palladium (Pd(dba)2) (0.230 g, 0.4 mmol),
1,1′-bis(diphenylphosphino)ferrocene (dppf) (0.333 g, 0.6 mmol), Methyl 2-bromobenzoate (1.42 mL,
10 mmol), aniline (1.1 mL, 12 mmol) and CsCO3 (4.89 g, 15 mmol) in toluene (100 mL) was heated to
110 ◦C and stirred for 24 h to afford a brown solution. The solvent was evaporated under reduced
pressure, and then the residue was dissolved in dichloromethane. The organic phase was washed with
water (20 mL × 5) and dried over anhydrous sodium sulfate. Then the solvents were filtrated and
evaporated under reduced pressure. The residue l was extracted with ether and washed three times by
20 mL hexane to yield brown oil. Yield 2.091 g (92%). 1H NMR (CDCl3) (Figure S1): δ = 9.47 (s, 1H,
–NH), 7.98–7.96 (d, J = 9.3 Hz, 1H, aryl–H), 7.36–7.30 (m, 3H, aryl–H), 7.26–7.24 (m, 3H, aryl–H), 7.11–7.08
(t, J = 7.3 Hz, 1H, aryl–H), 6.75–6.72 (t, J = 7.4, 7.52 Hz, 1H, aryl–H), 3.91 (s, 3H, –OCH3). 13C NMR
(CDCl3) (Figure S2): δ 168.90, 147.93, 140.77, 134.10, 131.54, 129.38, 123.54, 122.46, 117.11, 114.00, 111.89,
51.74. Elemental Analysis: C14H13NO2: Calcd. C 73.99, H 5.77, N 6.16; Found: C 73.34, H 5.35, N 6.23.
Elemental Analysis: C14H13NO2: Calcd. C 73.99, H 5.77, N 6.16; Found: C 73.34, H 5.35, N 6.23.

2.4.2. Synthesis of 2-(2,6-Diisopropylaniline)-Methyl Benzoate Ligand L2

Ligand L2 was synthesized in a similar way to that for ligand L1. L2 was recrystallized in hexane
to yield a reddish crystal. Yield 2.62 g (84%). 1H NMR (CDCl3) (Figure S3): δ 9.03 (s, 1H, –NH),
7.98-7.97 (dd, J = 8.0, 1.5 Hz, 1H, aryl–H), 7.38–7.30 (t, 1H, aryl–H), 7.28–7.23 (m, 2H, aryl–H), 7.20–7.17
(m, 1H, aryl–H), 6.63–6.60 (td, J = 7.6, 0.9 Hz, 1H, aryl–H), 6.22–6.21 (d, J = 8.5 Hz, 1H, aryl–H), 3.95
(s, 3H, –OCH3), 3.17–3,10 (hept, J = 6.8 Hz, 2H, –CH), 1.19–1.12 (dd, J = 34.4, 6.9 Hz, 12H, –CH3). 13C
NMR (CDCl3) (Figure S4): 185.61, 183.97, 155.70, 150.10, 135.23, 134.40, 134.33, 134.02, 133.30, 133.13,
127.07, 127.03, 126.84, 121.49, 117.27, 116.53, 114.14, 104.58, 56.08. Elemental Analysis: C20H25NO2:
Calcd. C 77.14, H 8.09, N 4.50; Found: C 77.47, H 7.92, N 4.21. 13C NMR (CDCl3) δ 169.41, 151.51,
147.80, 134.48, 134.45, 131.49, 127.80, 124.01, 115.39, 113.03, 109.59, 77.37, 77.16, 76.95, 51.72, 28.52, 24.74,
23.14, 0.13.

2.4.3. Synthesis of Nickel Complex C1

A mixture of the ligand L1 (0.227 g, 1 mmol) and KH (0.044 g, 1.1 mmol) in 50 mL of THF
was stirred for 3 h to afford potassium salts of L1. The THF solution of potassium salts was slowly
dropped into a solution of trans-[Ni(PPh3)2 PhCl] (0.696 g, 1 mmol) in 5 mL of the same solvent.
The mixture was stirred over night at 25 ◦C. The reaction mixture was filtered off under a nitrogen
atmosphere (PTFE, 0.45 µm) and evaporated under vacuum. The solid thus obtained was purified
by recrystallization with a mixture of toluene/hexane to afford crimson single crystals. Yield 0.305 g
(49%). Elemental Analysis: C38H32NNiO2P, Calcd. C 73.10, H 5.17, N 2.24; Found: C 73.48, H 5.20, N
2.34.

2.4.4. Synthesis of Nickel Complex C2

Complex C2 was synthesized in a similar way to that for Complex C1. C2 was purified by
recrystallization with a mixture of THF/hexane to afford orange-red single crystals. Yield 0.291 g
(41%). Elemental Analysis: C44H44NNiO2P, Calcd. C 74.59, H 6.26, N 1.98; Found:C 74.37, H 6.29, N 2.08.
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3. Results and Discussion

3.1. Synthesis and Molecular Structure of Nickel Complexes

The synthesis procedure of the ligands L1–L2 and the corresponding nickel complexes C1–C2
is shown in Scheme 1. 2-Anilinobenzoic acid methyl ester ligands were easily obtained by the
amination of methyl 2-bromobenzoate in the presence Pd(dba)2/dppf and Cs2CO3 [48]. The nickel
complexes were prepared from the reaction of corresponding potassium salt of ligand with 1 equiv of
trans-[Ni(PPh3)2PhCl] in good yields according to the literature procedure [49].
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Scheme 1. Synthesis of the Anilinoanthracenequinone Ligands and the Corresponding
Nickel Complexes.

The molecular structures of nickel complexes were determined by single-crystal X-ray diffraction
analysis (Figure 1). Complexes C1 and C2 showed very similar structure in view of the bond distances
and the bond angles and exhibited a six-membered (N, O) nickel chelate ring with a puckered
conformation. Each nickel center adopted a square planar coordination geometry, and the phosphine
occupied the trans position to the nitrogen.
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Figure 1. Molecular structures of complexes C1 and C2. H atoms are omitted for clarity. Selected bond
lengths (Å) and angles (deg) for C1: Ni1-N1 = 1.9223 (14), Ni-C1 = 1.8841 (17), Ni1-O1 = 1.9180 (12),
Ni1-P1 = 2.1758 (5), O1-Ni1-N1 = 91.14 (6), C1-Ni1-P1 = 87.12 (5); C2: Ni1-N1 = 1.932 (2), Ni-C1 = 1.891
(2), Ni1-O1 = 1.9193 (17), Ni1-P1 = 2.1816 (7), O1-Ni1-N1 = 91.33 (8), C1-Ni1-P1 = 86.59 (7).

3.2. Ethylene Polymerization

The nickel complexes C1 and C2 were applied in ethylene polymerization. The results are
summarized in Table 1. C1 containing nonsubstituted aniline ligand was inactive regardless of
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the cocatalyst used. In contrast, C2 containing isopropyl substituent on the aniline ligand in the
presence of trialkylaluminum-free dried modified methylaluminoxane (dMMAO) or Ni(COD)2

promoted ethylene polymerizaiton with almost the same activities. The results suggested that the
substituent on the aniline ligand and the cocatalyst as a phosphine scavenger are necessary for
ethylene homopolymerization. The similar effects of the ligand substituent were observed with both
cationic and neutral nickel catalyzed ethylene polymerization [3–10]. The Ni(COD)2 system gave
high molecular-weight polyethylene (up to 76.3 kg·mol−1) with narrow molecular weight distribution,
while the dMMAO system produced ethylene oligomers along with a small amount of polyethylene
(entry 2, Table 1). The improved chain transfer rate in the dMMAO system may be attributed to the
efficient dissociation of the phosphine, owing to the stronger Lewis acidity of dMMAO than that
of Ni(COD)2. The same phenomenon was also reported by Kim et al. by using ketoenamine-based
neutral nickel complexes, in which the use of MAO conducted ethylene oligomerization with high
activity [50].

Table 1. Ethylene polymerizations with complexes C1 and C2 a.

Entry Catalyst Cocatalyst P (MPa) Temp (◦C) Yield (g) Activity
(kg·mol−1·h−1) Mn

b (103) PDI b Tm
c (◦C)

1 C2 - 1.5 40 0.06 36 10.4 2.14 97.0
2 d C2 dMMAO 1.5 40 oligomer 616 - - -
3 C1 Ni(COD)2 1.5 40 trace - - - -
4 C2 Ni(COD)2 1.5 40 1.29 774 12.2 2.08 90. 6
5 C2 Ni(COD)2 1.5 20 0.14 84 76.3 2.28 125.9
6 C2 Ni(COD)2 1.5 60 0.56 336 6.9 2.11 45.2
7 C2 Ni(COD)2 0.5 40 0.17 99 8.6 1.85 87.3
8 C2 Ni(COD)2 3.0 40 1.46 876 19.1 2.54 95.2
a Polymerization conditions: solvent = toluene, total volume = 25 mL, Ni = 10 µmol, time = 10 min, temperature = 40 ◦C,
Ni(COD)2 = 24 µmol, dMMAO = 10 mmol. b Determined by GPC using polystyrene standard. c Determined by
DSC. d Activity was determined by 1H NMR.

Polymerization activity is strongly depended on the polymerization temperature and the ethylene
pressure. The decrease of the temperature to 20 ◦C resulted in the decrease of the activity in one order
of magnitude (entry 5). Although activity decreased as the temperature was increased to 60 ◦C (entry
6), the catalyst still showed high activity of 336 kg·mol−1·h−1, indicating good thermal stability of
this catalytic system. The reason for the small decrease of the activity at 60 ◦C could be attribute
to the reduced ethylene concentration at the high polymerization temperature [51]. The molecular
weight increased with decreasing the polymerization temperature, indicating that the increase of chain
transfer rate is more effective than chain growth rate with rising the polymerization temperature
(Figure 2). Further increase in activity and molecular weight was observed by the increase of ethylene
pressure at 40 ◦C.
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3.3. Copolymerization of Ethylene with Polar Monomers

The ethylene copolymerizations with polar monomers such as 5-hexene-1-yl-acetate (HAc),
5-norbornene-2-yl acetate (NBAc), vinyl acetate (VAc), and methyl acrylate (MA) were conducted
(Table 2). Although the Ni(COD)2 system showed slightly higher comonomer incorporation than
the dMMAO system, the copolymerization activity of Ni(COD)2 system was much lower than that
of the dMMAO system, affording lower molecular weight copolymers (entries 1 and 3). In general,
the polymerization of the sterically bulky monomers such as higher α-olefins and norbornene catalyzed
by the neutral nickel complexes require MAO or MMAO as the phosphine scavenger to provide
reasonable monomer coordination site [10].

Table 2. Copolymerization of ethylene with polar monomers using complex C2 a.

Entry Comonomer
(mmol) Cocatalyst Yield (g) Activity

(kg·mol−1·h−1) Mn
b (104) PDI b Tm

c

(◦C)
Incorp. d

(mol %)

1 HAc(30) Ni(COD)2 0.05 5 0.87 1.92 97.8 1.01
2 HAc(10) dMMAO 2.77 277 1.97 2.00 97.9 0.35
3 HAc(30) dMMAO 2.01 201 1.31 2.39 78.1 0.88
4 HAc(60) dMMAO 1.74 174 1.17 2.16 71.4 1.33
5 NBAc (30) dMMAO 1.14 114 1.52 3.21 67.1 3.20
6 VAc(30) dMMAO trace - - - - -
7 MA(30) dMMAO trace - - - - -

a Polymerization conditions: solvent = toluene, total volume = 25 mL, Ni = 10 µmol, pressure = 15 atm, temperature = 40 ◦C,
time = 1 h, dMMAO = 10 mmol, Ni(COD)2 = 24 µmol. b Determined by GPC using polystyrene standard.
c determined by DSC. d Incorporation determined by 1H NMR.

The incorporation of the copolymers obtained was investigated by 1H NMR, and the typical
1H NMR spectra of copolymers obtained by complex C2 are illustrated in Figure 3. The signals at
4.06 ppm and 2.05 ppm in copolymers were assigned for CH2 and CH3 protons of ester-group label
as a and e, respectively. The microstructure of the E-HAc copolymer was also investigated by 13C
NMR to demonstrate the incorporation of polar monomers (Figure S5) [16,52]. HAc incorporation
was increased (up to 1.33 mol %, entry 4) by increasing HAc concentration in the feed, although
copolymerization activity and copolymer molecular weight were decreased slightly. As compare to
the results with complex F [47], anilinobenzoic acid methyl ester-ligated complex C2 showed slightly
lower copolymerization activity and HAc incorporation.

The nickel complex C2 was also capable of copolymerizing ethylene with 5-norbornene-2-yl
acetate (NBAc) with good activity, generating E-NBAC copolymer with reasonable incorporation
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(3.20 mol %, in Figure S6)). Unfortunately, the commercial polar comonomers such as VAc, and MA
shut down copolymerization activity (entries 6, 7). This was mainly caused by the coordination
of the carbonyl oxygen atom to the nickel center to generate a stable six-membered nickel chelate
compound [4].
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ethylene polymerization activity. The complex C2 was also able to promote copolymerization of
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