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Abstract: The main purpose of this work is to show the thermal dependence of the refractive and
extinction indices of conjugated polymer films used in optoelectronics devices. Herein, we present
the results of optical investigations performed for the following polymers: poly(3-hexylthiophene)
(P3HT), poly(3-octylthiophene) (P3OT), and their blends with [6,6]-phenyl C61 butyric acid methyl
ester (PCBM). For our analysis, we chose well-known polythiophenes such P3HT and P3OT, often
used in photovoltaic cells. Our addition of PCMB to the polythiophenes allows their conversion
efficiency to be increased. This paper presents the results of our investigation determining the
spectral dispersion of optical constants in a wavelength range of 190–1700 nm by using spectroscopic
ellipsometry (SE). Furthermore, we show the temperature dependence of the refractive indices
of polythiophene films for a heating and a cooling process in the temperature range 25–130 ◦C.
Additionally, thermo-optic coefficients and an optical gap were established and are presented in
the paper, followed by a discussion on the conditions of the thermal stability of polythiophene
blends and reversibility issues in thermal processes. Our paper presents a new and fresh analysis
of depolarization beams after their reflection from the studied films. The paper presents the
results of thermo-optical studies of polymer blends which have not been included in previously
published works.

Keywords: conjugated thin films; polythiophene blends; spectroscopic ellipsometry; thermo-optical
investigations

1. Introduction

For many years, conjugated polymers have attracted the attention of researchers in the field of
organic semiconductors. One of the reasons for this interest is their optoelectronic properties that
make them suitable for application in organic light emitting diodes (OLEDs) [1–4] and photovoltaic
(PV) cells [2,4–6]. The unique optoelectronic properties of π conjugated polymers are the result of π
bonds in the electronic structure of the polymer [7]. Because π bonds are not strong, it is possible to
excite electrons to excited states by the photons from the visible range of the electromagnetic spectrum
(VIS). For comparison, in most semiconductive polymers, σ bonds are much stronger than π bonds,
and they can therefore be excited only by photons from the ultraviolet range (UV). Consequently,
optical properties in the VIS region determined by π electrons and σ excitations are usually not taken
into consideration [7]. The other attractive properties of conjugated polymers are the following: their
easy solubility, environmental stability, and solution processability [1,4].
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The effectiveness of semiconductive polymers used as LED or PV devices depends on their optical
parameters, especially on the refractive index (n), the extinction coefficient (k), and the optical gap
(Eg) [8–10]. The optoelectronic properties of π conjugated polymers are a function of their chemical
structure, the spatial arrangement of polymeric chains, and the film morphology [1,11–13]. In turn,
both the polymer microstructure and the film morphology are strongly dependent on the processing
conditions. It has been found that, besides the specific chemical structure, optoelectronic properties
vary with changing molecular weight [5,14], the deposition method used [15], solution concentration,
and film thickness [15].

For our studies we chose poly(3-octylthiophene) (P3OT) and poly(3-hexylthiophene) (P3HT) [16,17]
and their blends with fullerene derivatives ([6,6]-phenyl C61 butyric acid methyl ester, PCBM).
P3HT:PCBM blends have high quantum efficiency and they are a very popular research subject
due to their photovoltaic applications [18–20]. Therefore, the authors focused their attention on
examining which organic devices are the best (OLED, PV cells, polymer transistors, or even organic
lasers) based on the optoelectronic properties of π bonding conjugated polymers.

To design the architecture of electronic devices such as LEDs and solar cells, it is essential to
know the energetic structure of the materials used. Therefore, it is important to choose the best
testing methods that provide accurate information about the energy gap and the electronic structure of
polymer films. So far, the value of the energy gap of tested materials has been deduced based on the
dispersion of the extinction coefficient determined by spectrophotometric measurements using Tauc or
Cody models [9,21].

The most sensitive optical method allowing the determination of the optical parameters of the
films and their thickness is spectroscopic ellipsometry (SE). The SE allows the determination of the
most important quantities of the electronic structure of polymer semiconductors, carried out in the
widest possible spectral range [8,12,22]. For layers with thickness less than 200 nm, ellipsometric
techniques give the most reliable results [22]. The analysis of ellipsometric data allows establishment
of the dispersion of optical constants in the range of classical optics (190–2500 nm). In turn, these
dependencies allow band structure parameters to be found using appropriate optical models [11,22,23].

The interactions between a polymer thin film and incident light are expressed at a macroscopic
scale through dispersive relations of the optical constants of studied layers. Namely, the extinction
coefficient (k) and the refractive index (n) are related with the electronic parameters of the
band structure.

Obviously, macroscopic optical indices depend on the temperature. This is called a thermo-optic
effect [24,25]. In some polymer layer applications (i.e., thermo-optical switches), large changes in
refractive indices upon temperature changes are the basis for these devices [24,26]. Thus, the changes
in optical constants with the temperature should be considered in issues related to the design of devices
based on polymer conducting films.

To date, the optical qualities of polythiophenes and P3HT/PCBM as well as P3OT/PCBM
structures have mostly been studied at room temperature [10,21]. The results of these works are
referred to in this section of the article. In our paper, however, we present the results of thermo-optical
analysis done for P3HT/PCBM and P3OT/PCBM blends in the temperature range of 25–130 ◦C. Such
results and their analysis have yet to be presented in the literature. The key parameter that describes
the results of the study of optical qualities depending on the temperature is the thermo-optic coefficient
(TOC)—a parameter which is not especially popular in the works of experts in the field. The authors of
this article previously described the thermo-optical qualities of clean layers of P3HT and P3OT, and are
refer to their results in this paper [8].

The novelty and originality of the work is related to undertaking research in the field of material
optics in the field of conductive organic compounds that find application in such fields as the design
and manufacture of new LED materials and photovoltaic cells. As can be seen in the literature, there are
few publications available which describe changes in the optical parameters of polymeric conductive
layers—in particular polythiophenes in the temperature range within which they are used. Extreme
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temperatures in which optoelectronic systems can work range from 20 to 100 degrees Celcius. In our
work, however, as we have explained, we have expanded the measurement temperature range of blend
layers to 130 ◦C. Such temperatures exceed the application thresholds of these materials, but allow a
temperature limit to the repeatability of polymeric optoelectronic components to be found.

An innovative aspect of this work is the analysis of the thermal stability of polythiophenes
and their blends based on the depolarization of reflected beams. This type of approach has not
been used before and constitutes a significant added value in terms of the experiments conducted
and the method used. Based on the available literature, our work is a pioneer in the study of the
thermo-optical properties of polythiophenes. The temperature hysteresis of optical coefficients for
conjugative polymers has not been presented before.

Optical Modelling

The key macroscopic quantities determined in spectral measurements are the material constants
ε1 and ε2, expressed as functions of the photons’ energy [27]. They can be transformed into refractive
and extinction coefficients through simple transformations which are more common for presenting
results in optical ranges [22,28,29].

The basic parameters of the electronic structure of the polymer layers must be determined by
means of an appropriate optical model describing the band optical transitions between the excited and
valence states [22,23]. For this purpose, appropriate mechanical quantum oscillators should be selected.
Electronic parameters such as amplitude (A), broadening (Г), energy center (E0), and common energy
gap (Eg) [30] are fundamental quantities of the electronic structure of any material. They are fitted to
the spectral dependencies n(hν) and k(hν), where ν is light frequency [23,31].

Macroscopic parameters such as ε2(hν) and k(hν) are responsible for absorption. In Expressions
(1) and (2) we present the spectral dependence of the imaginary part of dielectric function ε2(hν) that
occurs in the original works.

There are many dispersion relationships that combine macroscopic material parameters with
their electronic structure [23]. They are based on the band theory which describes absorption in
various materials.

In the case of materials that can be presented as a set of isolated, non-interacting oscillators,
the classical Lorentz oscillator is the most natural model that can be applied to describe their optical
properties [30]. According to the Lorentz model, the imaginary part of the dielectric function may be
expressed as:

ε2L(hν) =
A·E0·Γ·hν(

E2
0 − (hν)2

)2
+ Γ2(hν)2

. (1)

However, in building polymers there are many resonant states resulting from their chain structure,
situated in small spectral distances from each other [32]. This is a characteristic feature of disordered
materials. The convolution of these oscillators causes inhomogeneous broadening of the spectral line.
This phenomenon is described by the Gaussian oscillator model (GO). Conjugated polymer films can
be quoted here as an example of the problem [22]. The imaginary part of the dielectric function for GO
is given in the following equation:

ε2G(hν) = An

(
exp

[
−
(
(hν− En)

σn

)2
]
+ exp

[
−
(
(hν + En)

σn

)2
])

, (2)

where:
σn =

Γn

2
√

ln 2
(3)

An− n-th amplitude,
En− n-th center energy,
Γn− n-th broadening parameter.
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Organic layers are modelled using Gaussian oscillators. For narrower spectral ranges,
the imaginary part of the dielectric function ε2G can be described by the first exponent appearing in
Equation (2).

Gaussian oscillators adequately describe the optical properties of conjugated polymers in a wider
spectral range (for photon energy from 0.7 to 7 eV). However, it should be underlined that both
Lorentzian and Gaussian theorems are not able to determine the common optical gap for polymer
films [31].

If the crystallinity of polymer films is low, then the Tauc-Lorentz model (TL) can be used in the
first approximation [33,34]. The TL oscillator is used for modelling amorphous and amorphous-like
thin films. Moreover, the TL model describes absorption phenomena that occur in amorphous films
near the absorption edge. In the Tauc-Lorentz model, the ε2 introduced by Jellison and Modine [33] is
given as the product of the Tauc function ε2TL and the Lorentz oscillator function L(E):

ε2TL(hν) = G
[

hν− Eg

hν

]2

, (4)

where: hν is the photon energy, Eg is the optical gap, and G stands for constant parameters.

2. Materials and Methods

In the present work, P3HT, P3OT, and PCMB solutions purchased from Sigma Aldrich (St. Louis,
MO, USA) [35] were used for the preparation of polymer and polymer blend layers. The blends of
P3HT:PCBM, P3OT:PCBM, and P3HT:P3OT:PCBM (1:1 w/w, 10 mg/mL for polymer) were dissolved
in chloroform. The polymer solid layers were deposited by a spin coating technique onto crystalline
silicon substrates using spin coater model SCV-15 (LOT-Oriel GmbH, Darmstadt, Germany) with
aligned rotational speed 1500 rotations per minute. Then, the layers were annealed in a vacuum
for 30 min at the temperature of 60 ◦C. The crystalline silicon was applied as a substrate due to
its well-defined thermo-optical properties in a wide temperature range [36]. Moreover, a higher
refractive indices difference (∆n) on the layer-substrate interface enhances the signal-to-noise ratio of
the experimental data and thereby increases the sensitivity of the ellipsometric measurement [8,37].
For a polythiophene-Si interface, ∆n is about 1.8 for a wavelength of 633 nm, while for a
polythiophene-glass interface it is about 0.5.

The optical and electronic properties of conjugated polymer thin films were investigated using
ellipsometric spectroscopy. In this technique, changes of the light polarization due to its reflection
at a surface were measured. The experimentally recorded data were ψ and ∆ (Psi and Delta), which
are angles defining the ratio of the amplitude of Fresnel reflection coefficients rp and rs components,
parallel and perpendicular to incidence plane of the light, respectively.

rp

rs
= exp(i∆)· tan Ψ (5)

The angle ∆ is a phase shift between both waves.
Ellipsometric parameters Ψ and ∆ are complex functions of the optical parameters of the layers

(n, k), thickness (d), the angle of incidence (θi), and the wavelength (λ) of the light:{
∆ = ∆(n, k, λ, d, θi)

Ψ = Ψ(n, k, λ, d, θi)
(6)

Based on a single ellipsometric measurement performed for selected angles of incidence, one
system of equations is obtained. Solving the above equation, two unknown parameters can be found,
(i.e., n and k). Performing measurements for m angles of incidence, it is theoretically possible to
determine 2m unknown parameters. In reality, the number of determined parameters is lower, but the
accuracy and reliability of simultaneous fittings of an optical model to experimental data performed



Polymers 2018, 10, 454 5 of 13

for many incidence angles are much higher. Spectral dependences of ellipsometric angles (i.e., ψ(λ)
and ∆(λ)) were measured in the spectral range 300–1700 nm by using a variable-angle spectroscopic
ellipsometer M-2000 manufactured by J.A.Woollam Co. Inc. (Lincoln, NE, USA). The measurements
were performed in air for incident angles 60◦, 65◦, and 70◦ at room temperature. The selected range of
incident angles was near the effective Brewster angle of thin polymer films. This is important because
the largest changes in polarization occur when the incident angle is close to the Brewster angle, where
the ellipsometric measurements are most sensitive [38].

To analyse the data, we combined all angular spectra and fitted all data simultaneously. The data
were analysed using CompleteEASE 5.2 software.

By means of the in situ ellipsometric (ISE) technique, temperature dependences of Psi and Delta
angles were measured at the incidence angle of 70◦. Temperature was changed during the heating
process from 25 to 130 ◦C and then cooled down to the starting level. The temperature step was
10 ◦C, and after heating the temperature was stabilized for 5 min. During the heating and cooling
process, the ellipsometric angles were measured every 30 s. This procedure allowed us to determine a
temperature hysteresis loop. During all experiments, the reflected light intensity and depolarization
coefficients (D) were measured simultaneously [14].

D is a ratio of the incoherent component of reflected light (RInc) to the total light reflected from
the sample (RTot):

D =
RInc

RTot
=

RDep

RTot
. (7)

Basing on depolarization measurements, a quality assessment of the studied samples is possible.
The temperature dependence of refractive index is described using the thermo-optic coefficient

(TOC), which is the derivative of the refractive index upon temperature dn/dT [8,24,25,39]. According
to Prod’homme’s theory [40], the temperature variation of the refractive indices n results from the
change in polarizability of the electron cloud and the density of the material changing with the
temperature [41].

dn
dT

= f (n) =
(n2 − 1)

(
n2 + 2

)
6n

(Φ− 3α), (8)

where α is the linear thermal expansion coefficient, ϕ is the temperature coefficient of the electronic
polarizability, defined as: Φ = P−1 * dP/dT, where P is mean polarizability. Equation (8) shows
the refractive index increasing with temperature in a case where the electronic polarizability term
dominates. In turn, TOC is negative when the thermal expansion term is dominant. For most polymer
materials, dn/dT strongly depends on the volume thermal expansion term, and it is higher than Φ.

3. Results and Discussion

Measurements of depolarization degree gave us insight into the homogeneity, bulk variation,
and microstructure of presented films [7,15]. Moreover, we estimated the quality of polymer layers
in the initial state and in heating and cooling processes. Figure 1 shows changes of depolarization
coefficients determined for a light wavelength of 900 nm as a function of time of heating and cooling
processes. Photons with energy corresponding to this wavelength were outside of the absorption area.
The quality of the received polymer layers was assessed as fine.

Moreover, the value of the depolarization coefficient depends on the variation of the refractive
thin film’s refractive index. This effect is caused by various crystalline phase fractions embedded in
the amorphous medium. It is obvious to expect that a higher degree of crystallinity will give rise to a
higher depolarization. In our case, the analysis of depolarization is justified because (assuming low
film roughness) the higher depolarization value can partly come from crystallites randomly oriented
in the film bulk and partly from the optical anisotropy of entire films. The depolarization coefficients
are presented in Figure 1. The strong non-directional scattering observed in the reflection (discussed in
detail here) assured us that in the main part of the layers there was an amorphous phase mixed with a
smaller amount of polycrystalline phase. Thus, films can be represented by a single refractive index
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and an extinction coefficient. As is shown in Figure 1, the largest depolarization was exhibited by the
ternary P3HT-P3OT-PCMB sample. The most thermally stable film was P3HT-PCMB, for which the
depolarization coefficient was practically constant in the whole heating and cooling process.

In Figure 2a–d we present Psi and Delta angles versus light wavelength obtained from
ellipsometric study for incidence angle 70◦ carried out in a wide spectral light wavelength range
of 190 to 1700 nm for blended polymer films. In the first fit, we chose an optical homogenous film
model for the studied films. Additionally, we assumed K-K consistency in a full measured spectral
range. It is shown in Figure 2 that the obtained fits were very good. However, from the practical point
of view, the most important spectral range for conjugated polymer is the VIS region, which is also an
area of abnormal dispersion of the presented films. We present the dispersion of optical constants n(hν)
and k(hν) for polythiophene films within the photon energy range of 1 to 4 eV in Figure 3.Polymers 2018, 10, x FOR PEER REVIEW  6 of 13 
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Figure 2. Spectral dependence of ellipsometric angles measured for (a) P3OT and P3HT;
(b) P3HT/PCBM blend; (c) P3OT/PCBM blend; and (d) P3HT/P3OT/PCBM blend thin films.
The results were recorded at an incidence angle of 70◦.
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Figure 3. Dispersion of refractive index and extinction coefficient obtained at 25 ◦C for (a) pure P3OT
and P3HT; (b) P3HT/PCBM blend; (c) P3OT/PCBM, blend and (d) P3HT/P3OT/PCBM blended
thin films.

The light absorption occurred in range of photon energy from 1 to 3 eV. In this region, the area of
the square dependence of the imaginary part of the dielectric function vs. photon energy can be found.
This procedure was used to determine the optical gaps of the examined films.

All absorption maxima for polymer films were within the range of 2.5 to 2.6 eV. The broad
peaks visible in Figure 3 in k(hν) spectra are associated with the heterogeneous Gaussian scattering.
For polymers in the pure form (i.e., P3HT and P3OT), maximum values were lower by about
0.1 eV, while blending polymers shifted the maxima towards the larger photons’ energies. Moreover,
the values of the refractive index of P3HT and P3OT layers were greater than their polymer blends.

Figure 4 shows the spectral dependence of the extinction coefficients of polythiophene blend
films vs. light wavelength for different temperatures of heating and cooling process, namely spectral
dependences of k(λ) for initial, maximum, and final temperatures of heating and cooling processes
(40, 130, and 40 ◦C, respectively). Values of extinction peaks in Figure 4 for all blended layers were
definitely higher for the maximum temperature of the thermal process. In addition, for a higher
temperature, the peaks of maximum dispersion dependence k(λ) moved towards shorter wavelengths.
The final values of k(λ) were close to the initial ones for binary P3HT-PCBM and P3HT-PCBM blends.
However, for a ternary P3HT-P3OT-PCBM layer, the final value of k(λ) was much higher than for
the starting ones. Furthermore, the blended films exhibited lower refractive indices as well as lower
extinction coefficients than pure P3HT and P3OT polythiophenes. The refractive and extinction
coefficients for selected wavelengths and thickness of films are presented in Table 1.

Using Tauc-Lorentz and Gaussian oscillators in the fitting procedures, we determined the optical
gaps, which are shown in Table 2.
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The optical gap for P3HT was 2 eV, which was larger than that for P3OT (−1.8 eV). There was an
energy gap of about 3.4 eV for the pure fullerene PCBM. Values of the dielectric function varied as well,
but within a fairly narrow spectral region. Authors of publications in the field of conjugated polymers
focus only on the absorption spectrum of polythiophenes, neglecting strong bulk and surface scattering
losses [42]. This is the where our research is of great value, as we have undertaken this problem.
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the samples.

Table 1. Thermo-optical parameters of P3HT, P3OT, and their blends with PCBM. TOC:
thermo-optic coefficient.

Sample λ (nm) n k
TOC (10−4/K)

Thickness (nm)
Heating Cooling

P3HT 632.8 2.15 0.061 - - - - - - 75

P3OT 632.8 1.83 0.120 - - - - - - 54

P3HT/PCBM
450 1.81 0.224 - - - - - -

130632.8 1.95 0.056 −2.1 −5.8
900 1.83 0.029 −1.9 −5.1

P3OT/PCBM
450 1.74 0.330 - - - - - -

101632.8 2.02 0.090 −1.3 −7.3
900 1.83 3 × 10−4 −2.0 −4.1

P3OT/P3HT/PCBM
450 1.44 0.261 - - - - - -

84632.8 2.04 0.176 −7.7 −13.3
900 1.76 0.049 −5.0 −5.5
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Table 2. Values of energy gaps and their temperature gradients determined for studied polymer blends.

Sample Eg (eV) dE/dT 10−3 (eV/K)

Heating Cooling

P3HT 2.02 −1.91 - - -
P3OT 1.79 −1.26 - - -

P3HT–PCBM 2.11 −1.06 0.99
P3OT–PCBM 1.92 −1.46 1.13

P3HT–P3OT–PCBM 1.99 −0.91 0.78

The key to understanding reversible processes in polymeric conductive layers is the glass
transition temperature (Tg). For all the studied polymers and their blends, Tg ranged from 25 to
130 ◦C for the bulk pure materials. We planned to carry out the thermo-optical investigation below the
glass transition temperature. Therefore, to avoid a phase transition in the polymer structure, the lower
range of temperature was selected for thermo-optical studies. In a reversible process, we should obtain
closed thermal hysteresis for the heating and cooling of pure and mixed polythiophenes. Values of Tg

for thin films could be even lower than for bulk material. Moreover, in metallic alloys, the melting
temperature can be lowered by adding a new component. Consequently, the proportion of new organic
components in the polymer layers decreases the glass transition temperature.

For deeper insight into the thermo-optical properties of pure and blended polythiophene layers,
we analysed in situ thermal ellipsometric investigations.

Figure 5 presents temperature dependences of polythiophene film refractive indices for 632.8 and
900 nm light wavelengths.
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The linear dependencies were fitted for heating and cooling time of thermal treatments. The slopes
seen in Figure 5 are the thermo-optic coefficients of refractive index (TOC). The values of these
coefficients for selected wavelengths are shown in Table 1.

The values of TOC for heating and cooling processes of the polythiophene films were determined
in a temperature range from 40 to 130 ◦C, and they are shown in columns 5 and 6 of Table 1. All TOCs
had negative values. This behaviour is characteristic for the materials for which the temperature
dependence of the optical indices is associated with thermal expansion [43].

In order to fully evaluate the repeatability of the thermo-optical process, thermal hysteresis
loops for both n and k indices should be discussed. Figure 6a–c shows hysteresis loops of extinction
coefficients k for polymers and their mixtures.
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It is visible that after cooling down, optical parameters did not return to their initial values.
The values of n and k indices, which form unclosed loops, are presented in Figures 5 and 6. They
did not return to the initial values—the hysteresis loops are open for all of them. This means that the
thermal treatment in the temperature range 25 to 130 ◦C is definitely irreversible.

4. Conclusions

Our work presents a new approach to the analysis of optical results through depolarization
measurements carried out in situ during the heating and cooling processes of blended polythiophene
thin films. Our work proved the usefulness of this research technique. Temperature dependences of
optical constants have been presented in the form of temperature hysteresis. Moreover, the analysis of
the electron structure of polythiophenes films mixed with PCMB allowed us to determine optical and
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electronic parameters obtained from ellipsometric investigations. Thermal processes were carried out
for conjugated polymer films by means of spectroscopic ellipsometry investigations.

The optical gaps for the studied films were established using Tauc-Lorentz and Gaussian
oscillators in the fitting procedures.

To evaluate repeatability of the thermo-optical process, thermal hysteresis loops of optical indices
were determined. Moreover, the TOCs for the heating and cooling processes of the polythiophene
films were determined in a temperature range from 40 to 130 ◦C.

The study of the temperature dependence of optical constants could be used in the design of new
LEDs and photovoltaic materials. In our work, we pay special attention to a qualitative and easily
interpretable analysis of ellipsometric results.

A very interesting part of the work is the analysis of the depolarization of light beams reflected
from layered systems containing pure or mixed polythiophenes. The conclusions that we have drawn
from the analysis of the dependence of the degree of depolarization of light reflected for increasing
temperatures are innovative and have not been published previously. The method of temperature
analysis using the dependence of changes in the depolarization coefficient of the beam reflected from
the polymer layers has not been previously described. In addition this method could be used to test
new, divine materials.
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