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Abstract: Hydrophobic zinc oxide (ZnO) nanoparticles were produced through grafting
aminopropyltriethoxysilane (APS) and oleic acid (OA), which was activated by N,N′-carbonyldiimidazole
(CDI). The functional group containing ZnO nanoparticles were incorporated into unsaturated
polyester (UP) resin, and their dispersibility in the UP matrix and effects on the properties of UP/ZnO
nanocomposites were investigated. ZnO nanoparticles modified by APS and OA activated by
CDI, (CDI–OA–APS–ZnO), can be homogeneously dispersed as supported by transmission electron
microscopy (TEM) investigations and had been encapsulated in the UP resin. CDI–OA–APS–ZnO
nanoparticles were embedded in the net structure of the UP composites through chemical bonds
between oleic acid, styrene, and polyester resin, which significantly influence the cure reaction of
UP resin and the properties of UP composites. Thermogravimetric analysis (TGA) results show that
the incorporation of ZnO nanoparticles could improve the thermal stability of UP when thermal
cracking temperature exceeds 365 ◦C. The exothermic peak and the initial temperature of cure
reaction of the UP resin decreased with increasing ZnO content. The tensile strength and bending
strength of UP/CDI–OA–APS–ZnO nanocomposites increased by 91.4% and 71.3% when 3 wt %
CDI–OA–APS–ZnO nanoparticles was added into the composites, respectively, compared with pure
UP resin.

Keywords: nanocomposites; grafted polymers; interface; thermal properties

1. Introduction

Unsaturated polyester resins (UPs) are a type of thermosetting resin that are important for
their versatility in properties, flexibility in processing, and low cost [1]. However, because of such
shortcomings, such as low strength, poor toughness, and large shrinkage, polyester resins should
be improved to promote their performance. Nanoparticles usually have more active surfaces and
can easily bond to resins with sufficient strength. Also, scattering inorganic nanoparticles into the
polymer is considered an effective measure to promote mechanical properties and heat resistant
performance [2–4]. As a result, inorganic nanoparticle/polymer composites have received increasing
concern and interest in recent years [5–7]. ZnO nanoparticles have been widely used in scientific
research and practical applications because of their non-toxic nature and ability to block UV radiation.
ZnO nanoparticles can be used to protect matrix resins from environmental degradation, and increase
the toughness and antibacterial property of materials [8–11]. Moreover, because of their smaller
diameter and relatively lower quantity of addition, ZnO nanoparticles have little influence on the
materials’ transparency [12].

ZnO nanoparticles are hydrophilic and highly polar, whereas many common polymers, such as
polyester resin and polyolefin are nonpolar and hydrophobic. Consequently, the surface of ZnO
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nanoparticles is often modified for better compatibility and adhesion with the polymer matrix [13–15].
Fatty acid and silane couple agents are common surfactants that are used as surface modifier of
inorganic nanoparticles [16–18]. Nanocomposites composed of ZnO nanoparticles modified by oleic
acid that are added into polyaniline (PANI) matrix showed better thermal stability and homogeneous
distribution of zinc oxide in PANI [19]. The influence of different coupling agents on the mechanical
properties of composite laminates made from a bio-based epoxy resin matrix and basalt fabric was
evaluated by Españ et al. Through the addition of silanes, compatibility between basalt fibers and
epoxy resins generally increase, which substantially improved their mechanical properties compared
to samples without silane treatment [20].

Tzounis et al. [21] had successfully modified the halloysite nanotubes by sodium dodecyl sulfate
(SDS) and block copolymer organic materials via noncovalent bonds. The modifications of nanotubes
show their good dispersion in the PS polymer matrix and performance regarding thermal and optical
properties. The surface morphology and electrical properties of single fibers chemically grafted with
carbon nanotubes are studied and compared to physically adsorbing ones. Homogeneous MWCNT
networks (multiwall carbon nanotubes) were achieved by chemically grafting carbon nanotubes to the
glass fibers, whereas relatively big areas remained uncovered in the case of non-covalently bonded
CNTs. The electrical conductivity of single fibers grafted with MWCNTs was generally more than ten
times higher than the physically adsorbing ones [22].

Our previous experience showed that the long-carbon chain steric acid activated by
N,N′-carbonyldiimidazole (CDI), had higher reactivity with aminopropyltriethoxysilane (APS) grafted
on the surface of ZnO nanoparticles, resulting in a good dispersibility of ZnO particles in the
nanocomposites [23–25]. Oleic acid (OA) has carbon double bonds, which can conduct the addition
reaction with that of unsaturated polyester (UP) resin and styrene. Firstly, we prepared nano-ZnO
particles by coprecipitation, which was modified by APS. Then, APS–ZnO was grafted by OA,
which was activated by CDI. Lastly, the modified nano-ZnO nanoparticles were incorporated into the
polyester matrix and ZnO/UP composites were characterized and evaluated for their mechanical and
thermal properties.

2. Materials and Methods

2.1. Materials

N,N′-carbonyldiimidazole (CDI) and aminopropyltriethoxysilane (APS) purchased from Aldrich
Chemicals Co. Ltd. (Chengdu, China) were used as activator and coupling agent, respectively.
Toluene, zinc nitrate hexahydrate, sodium hydroxide, cyclohexane, oleic acid (OA), cobalt naphthenate,
methyl ethyl ketone peroxide (MEKP) were purchased from Chongqing Chuandong Chemicals Co.
Ltd. and used as received.

2.2. Preparation and Modification of Nano-ZnO

Zn(NO3)2 and NaOH solutions were added into a three-necked flask. APS/alcohol solution
was subsequently dropped into the flask and the mixture was stirred for 4 h. After filtration and
washing, the particles were dried in an oven to obtain APS–ZnO nanoparticles. The APS–ZnO
nanoparticles were added into the flask, in which OA–CDI had been made in the toluene solvent.
The mixture was separated by suction filtration, and extracted with toluene to remove the organic
residues, yielding CDI–OA–APS–ZnO nanoparticles. For comparison, one control experiment was
performed without CDI.

2.3. Preparation of ZnO/UPR Nanocomposites

The ZnO nanoparticles, with different mass ratios to UP resin (1, 3, 5, and 10 wt %), were added
into styrene and dispersed by ultrasonic vibration for 30 min, and then UP and the accelerator,
i.e., cobalt naphthenate were slowly introduced, and the mixture was vigorous mixed for 2 h.
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Once nanoparticles were uniformly dispersed in the UP, the initiator, i.e., methyl ethyl ketone peroxide,
was added into the mixture, which was further stirred for a few minutes. The hybrid UP composites
were left for 10 min and then spread on a tinplate substrate. After airing 72 h, the UP films were peeled
carefully from the substrate.

2.4. Characterization

Fourier Transform infrared spectroscopy (FTIR) spectrum of modified nano-ZnO particles were
obtained on a Nicolet 5DX 550 II spectrometer (Shimadzu, Japan). Thermogravimetric analysis (TGA)
was carried out on a Shimadzu model DTG-60H instrument (Shimadzu, Japan) with a heating rate
of 10 K/min in flowing N2 from ambient temperature to 800 ◦C. The morphology of ZnO samples
were investigated by scanning electron microscopy from an Oxford FEI Nova 400 electron microscope
(Hillsboro, OR, USA). The thickness of samples is about 0.5 mm for the superficial test. The film was
cut a small patch (about 2 mm × 2 mm) with a razor blade, and the surface was coated with a thin
sputtered gold layer because ZnO particles are not conductive. Differential scanning calorimetry (DSC)
was carried out on a Mettler Toledo TGA/DSC1 simultaneous thermal analyzer (Shanghai, China) with
a heating rate of 5 K/min in flowing N2 from ambient temperature to 200 ◦C. Mechanical properties of
the nanocomposites were determined by a universal testing machine (Electro-mechanical Universal
Testing Machines, WDT-W, Jinan, China).

3. Process and Mechanism

The nano-ZnO particles were prepared and modified with APS and OA. The modified ZnO
nanoparticles were then added into polyester resin and styrene hybrids, where crosslinking reactions
may occur. The modification sequence and crosslinking reaction are as follows:

• (I) APS–ZnO, ZnO nanoparticles were functionalized by APS (in the following reaction).

• (II) CDI–OA, OA was activated by CDI (in the following reaction).

• (III) CDI–OA–APS–ZnO, the condensation reaction between CDI–OA and APS–ZnO was
performed (in the following reaction).

• (IV) APS–ZnO was conducted for comparison (in the following reaction).



Polymers 2018, 10, 362 4 of 14

• (V) Preparing CDI–OA–APS–ZnO/UP composites. ZnO nanoparticles were linked on the styrene
and polyester resin through addition reaction of carbon double bonds of OA grafted on nano-ZnO
(in the following reaction).

4. Results and Discussion

4.1. Characteristics of Nano-ZnO Particles

Figure 1 shows the FTIR spectrum of unmodified ZnO (a), OA–APS–ZnO (b), CDI–OA–APS–ZnO
(c) and pure OA (d). Compared with spectra a, the peaks at 2920 and 2850 cm−1 in spectrum b and c are
caused by –CH2– stretch vibration. The peak at 1510 cm−1 corresponds to the deformation vibration of
the NH group of the APS molecule [26], which illuminates that APS was introduced on the surface of
the nano-ZnO through chemical bindings, as shown in R1. (Figure 1d) shows the characteristic bands
of –COOH and –CH=CH– of OA at 1710 and 1485 cm−1, respectively. The disappearance of the peak
at 1710 cm−1 in spectra d allied with the appearance of the peaks at 1570 and 1433 cm−1, which is
assignable to C=O and C–O stretching, respectively. This phenomenon confirms the occurrence of the
condensation reaction between the carbonyl imidazole and the amino function of APS-ZnO, as shown
in R3 [25]. The characteristic band of the –CH=CH– of OA at 1485 cm−1 is transferred at 1384 cm−1 in
the cures of c and d, which indicates that carbon double bonds of OA introduced ZnO nanoparticles
were not damaged.
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Figure 1. FTIR spectrum of nano-ZnO and the modified nano-ZnO, bare ZnO (a), OA–APS–ZnO (b),
CDI–OA–APS–ZnO (c), oleic acid (d).

Figure 2 shows the TG curves of APS–ZnO, OA–APS–ZnO, and CDI–OA–APS–ZnO nanoparticles.
It should be noted that the weight ratio of OA/ZnO increases to 25% for investigating the effect of
the activator. The ratio of the weight loss of APS–ZnO is 7.2%. The ratios of the weight loss of
SA–APS–ZnO particles and CDI–SA–APS–ZnO are 14.2% and 19.9%, respectively, indicating that the
amount of OA grafted on the ZnO nanoparticles with CDI is more than that without CDI. The activity
of carboxyl groups of OA may not be high enough to give stable covalent bond bindings with the
amino groups of APS–ZnO. By contrast, the carboxyl groups of the carbonyl imidazole, an intermediate
produced from CDI and OA, has high reaction activation, resulting in the accelerated reaction between
the carbonyl imidazole and the amino function of APS–ZnO.
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Figure 2. Thermogravimetric analysis (TGA) diagrams of the modified nano-ZnO particles, unmodified
ZnO (a), OA–APS–ZnO (b), CDI–OA–APS–ZnO (c).
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Figure 3 show the typical SEM images of unmodified ZnO (a), OA–APS–ZnO (b), and CDI–OA–
APS–ZnO (c). Clearly, morphological differences may be observed among the three kinds of samples.
The individual particle cannot be distinguished due to serious aggregation (Figure 3a). Aggregates of
ZnO nanoparticles modified by OA and APS are obviously reduced (Figure 3b). The decreased
aggregation of CDI–SA–APS–ZnO particles is evident owing to the sharp decrease in the surface
energy caused by the higher amount of OA bonded on the particles through the condensation reaction.
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APS–ZnO (c).

4.2. Characteristics of UPR/ZnO Nanocomposites

The thermal behavior of the UP composite films was investigated using a Shimadzu model
DTG-60H instrument (Shimadzu, Japan) (Figure 4). The 10% weight loss observed at 200 ◦C in the
TG curves of pure UP and ZnO/UP composites is attributed to the elimination of the unremoved
water molecules in the pure polymers and ZnO/UP composites. Most weight losses occurred
between 250 and 500 ◦C. The ZnO/UP nanocomposites show no significant improvement in thermal
stability as compared with pure UP, up to a temperature of 365 ◦C. After 365 ◦C, the TG curve
of CDI–OA–APS–ZnO/UP composites shifted to higher temperature as compared with pure UP.
Thermograms of pure UP resin, OA–APS–ZnO/UP, and CDI–OA–APS–ZnO/UP composites at
600 ◦C indicate 97%, 92%, and 83% weight losses, respectively. This is probably due to the oleic
acid grafted on ZnO. As temperature increases to 365 ◦C, the oleic acid used as a modifier in UP
nanocomposites starts to fragment into small chains, maintaining thermal stability up to a temperature
of 365 ◦C. However, once the chain breaks into small pieces after 365 ◦C, an increase in thermal
stability occurs [17,27]. As shown in Figure 5, weight loss rate of pure UP is clearly greater than
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that of nano-ZnO/UP composites in the range of 300–420 ◦C,with the peak values at 1.06, 0.82,
0.75 mg/K for pure UP, OA–APS–ZnO/UP, and CDI–OA–APS–ZnO/UP composites, respectively.
These results demonstrate that the thermal stability of the nano-ZnO/UP composites is improved
significantly. Comparing to the pure UP, the maximal weight-loss rate of OA–APS–ZnO/UP and
CDI–OA–APS–ZnO/UP nanocomposites are cut down 56% and 50.3%, respectively. Similar results
were obtained by Kuan et al. [28].
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Figure 5. Loss-weight rate of pure UP, OA–APS–ZnO/UP and CDI–OA–APS–ZnO/UP.

DSC curves of pure UP and CDI–OA–APS–ZnO/UP nanocomposites are shown in Figure 6.
Cure behaviors of pure UP and CDI–OA–APS–ZnO/UP nanocomposites are obviously different.
UP and CDI–OA–APS–ZnO/UP nanocomposites start the cure reaction at 83.2 and 80.8 ◦C. The peak
temperature of cure reaction reaches 119 ◦C for pure UP, whereas the peak temperature is 119.3, 113,
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114, and 110 ◦C for 1, 3, 5, and 10 wt % CDI–OA–APS–ZnO/UP composites, respectively. The decrease
in the cure temperature is caused by the carbon double bonds of oleic acid, which have higher reactivity
of crosslink reaction than that of polyester resin. Total enthalpy of CDI–OA–APS–ZnO/UP decreases
compared to pure UP. The higher the content of CDI–OA–APS–ZnO, the lower the total enthalpy it is.
The reason for this phenomenon is that the cure reaction of UP resin follows a free radical reaction
mechanism, which involves initiation, propagation, and termination, while nanoparticles usually
have a more active surface and can easily bond to free radical ionic. The acidic sites decompose
the peroxyketal initiator by a wasteful ionic mechanism, which results in the lower crosslinking
reaction rate and exotherms observed [29]. The similar results were obtained by Tzounis et al. [30].
Tzounis et al. employed cyclic butylene terephthalate oligomers as a low molecular weight additive,
and added them into the polycarbonate/MWCNT nanocomposite, which resulted in decreasing the
temperature of the processing of polycarbonate (PC) filled with MWCNTCOOH.
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Figure 7 shows the scanning electron micrographs of UP composite films with 3% weight
of unmodified ZnO (a), OA–APS–ZnO (b), and CDI–OA–APS–ZnO (c). The unmodified ZnO
nanoparticles aggregated heavily, which makes the surface of the unmodified ZnO/UP composite
film uneven. Moreover, gaps and chippings caused by the difference in the shrinkage rates between
ZnO aggregates and UP resin are clearly observed from the micrograph of the unmodified ZnO/UP
composite film. The micrograph of the OA–APS–ZnO/UP composite film became devoid of pinholes
and gaps when the dispersibility of OA–APS–ZnO nanoparticles in the UP matrix was improved.
However, aggregates were still observed on the micrograph of the OA–APS–ZnO/UP composite film,
which may be attributed to the small mass of OA grafted on the ZnO particles. CDI–OA–APS–ZnO
nanoparticles were found to be fully integrated into the UP, as seen in the smoother surface of its
composite film, compared with that of OA–APS–ZnO/UP (Figure 7c), which implies that a stronger
interfacial interaction exists between CDI–OA–APS–ZnO nanoparticles and the UP matrix.
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The dispersibility of different additive amount of CDI–OA–APS–ZnO in the UP matrix was also
examined as shown in Figure 8. The micrographs depicting the morphology of CDI–OA–APS–ZnO/UP
composite films reveal homogeneous and plain structures, and no gap and chipping was observed at
1 and 3 wt % CDI–OA–APS–ZnO. However, the composite films became uneven, and aggregates and
chippings were notable when ZnO contents exceeded 3 wt %. This result indicates that an unsuitable
additive amount negatively affect the dispersibility of nanoparticles in the UP matrix.
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4.3. Mechanical Properties

Figures 9a and 10a shows effect of ZnO nanoparticles on the tensile strength and bending strength
of pure UP and UP composite films. Tensile strength and bending strength decreased when unmodified
ZnO nanoparticles were added into the UP matrix, which contributed to the large surface energy of
bare ZnO nanoparticles, resulting in poor dispersibility and serious aggregation in the UP composites.
By contrast, the tensile strength and bending strength of the UP composite films containing 3 wt %
CDI–OA–APS–ZnO nanoparticles increased by 91.4% and 71.3%, respectively, compared with the pure
UP film. This may be attributed to the long carbon chains of OA that effectively entwine with the
polymer chain of UP matrix and share some stress [31]. Moreover, the carbon double bonds of OA
introduced on the surface of CDI–OA–APS–ZnO nanoparticles can take part in crosslinking reaction
with polyester resin and styrene, as shown in R (V). Consequently, the ZnO nanoparticles are embedded
in the net structure of the UP composites through chemical bonds, which significantly increase the
tensile strength and bending strength of the composites. Figures 9b and 10b show the tensile strength
and bending strength for pure UP and UP composites containing various levels of CDI–OA–APS–ZnO
nanoparticles. The tensile strength and bending strength of the UP nanocomposite films with the
addition of ZnO are greater than that of pure UP film, and the strength of UP composite film reaches up
to the maximum at 3 wt % CDI–OA–APS–ZnO particles. At 1 or 3 wt % ZnO particles, the micrographs
of PU/CDI–OA–APS–ZnO composite films showed homogeneous and plain structures. However,
chippings and gaps were observed in the composite films when ZnO exceeded 3 wt %, leading to a
decrease in the tensile strength and bend strength of the nanocomposites.
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4.4. UV–Vis Spectral Behavior

Figure 11 shows the UV–visible absorbance of pure UP and UP composites with 1 wt % ZnO
nanoparticles. Absorbance was remarkably enhanced with the addition of ZnO nanoparticles,
compared with pure UP, and the highest intensity was observed in the composite containing
CDI–OA–APS–ZnO nanoparticles in the UV range of 300–400 nm. This optical change is caused
by the quantum effect of the nanoparticles which is influenced by particle size [32,33]. Few aggregates
of CDI–OA–APS–ZnO nanoparticles were observed, which result in a smaller average particles size
and higher UV absorbance. Based on the results, CDI–OA–ASP–ZnO/UP composite is a potential
UV-shielding material. Also, almost no absorbance in the visible range of 500–800 nm was observed
both in pure polymer and the modified ZnO/UP composites, which shows that the addition of ZnO
particles has little influence on the transparency of UP resin.
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5. Conclusions

ZnO nanoparticles were prepared and modified with OA activated by CDI to improve
dispersibility. Results showed that CDI activator promotes the condensation reaction and increases
the grafting ratio of OA. The dispersibility of modified ZnO nanoparticle in the UP matrix improved,
owing to the enhanced compatibility and adhesion between the UP resin and the modified ZnO
particles. The carbon double bonds of OA grafted on nano-ZnO particles can conduct the crosslinking
reaction in the composites, thus, the ZnO nanoparticles are connected tightly on the UP resin
and styrene through chemical bonds, resulting in the marked influence on mechanical and curing
properties of the nanocomposite. The tensile strength and blending strength of UP/CDI–OA–APS–ZnO
nanocomposites increased by 91.4% and 71.3% when 3 wt % CDI–OA–APS–ZnO nanoparticles were
added into the composites, respectively, compared with pure polyester resin. TGA results show the
incorporation of ZnO at temperatures less than 365 ◦C, while the thermal stability of UP was promoted
when the temperature exceeds 365 ◦C. Compared to the pure UP, the maximal weight-loss rate of
OA–APS–ZnO/UP and CDI–OA–APS–ZnO/UP nanocomposites are cut down by 56% and 50.3%,
respectively. The cure temperature and exotherm of UP resin decreased with increasing the amounts
of nano-ZnO. CDI–OA–ASP–ZnO/UP composite proves to be a potential UV-shielding material with
promising versatility owing to the little influence that the addition of ZnO particles have on the
transparency of UP resin.
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