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Abstract: Poly(lactic acid) (PLA), a well-known biodegradable and compostable polymer, was
used in this study as a model system to determine if the addition of nanoclays affects its
biodegradation in simulated composting conditions and whether the nanoclays impact the microbial
population in a compost environment. Three different nanoclays were studied due to their
different surface characteristics but similar chemistry: organo-modified montmorillonite (OMMT),
Halloysite nanotubes (HNT), and Laponite® RD (LRD). Additionally, the organo-modifier of
MMT, methyl, tallow, bis-2-hydroxyethyl, quaternary ammonium (QAC), was studied. PLA and
PLA bio-nanocomposite (BNC) films were produced, characterized, and used for biodegradation
evaluation with an in-house built direct measurement respirometer (DMR) following the analysis
of evolved CO2 approach. A biofilm formation essay and scanning electron microscopy were used
to evaluate microbial attachment on the surface of PLA and BNCs. The results obtained from four
different biodegradation tests with PLA and its BNCs showed a significantly higher mineralization of
the films containing nanoclay in comparison to the pristine PLA during the first three to four weeks
of testing, mainly attributed to the reduction in the PLA lag time. The effect of the nanoclays on the
initial molecular weight during processing played a crucial role in the evolution of CO2. PLA-LRD5
had the greatest microbial attachment on the surface as confirmed by the biofilm test and the SEM
micrographs, while PLA-QAC0.4 had the lowest biofilm formation that may be attributed to the
inhibitory effect also found during the biodegradation test when the QAC was tested by itself.
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1. Introduction

Biodegradable polymers like poly(lactic acid) (PLA), poly(butylene adipate-co-terephthalate)
(PBAT), and thermoplastic starch (TPS), have great potential to replace fossil-based polymers, avoid
landfill disposal of most non-recyclable polymers, and help reduce environmental impacts. However,
these materials have some properties and processing shortcomings that have limited their use in many
applications, for example, brittleness, water sensitivity, low heat distortion temperature, medium to
high gas permeability, and low melt viscosity [1,2]. Therefore, the creation of bio-nanocomposites
(BNCs) in which the reinforcements have at least one dimension in the nanoscale dimension and the
matrix is a biodegradable polymer, preferably a bio-based polymer, has garnered attention [1,3,4].
Ideally, BNCs could be recycled or treated together with other organic wastes in composting facilities
and produce compost, a valuable soil conditioner and fertilizer [5].

One particularly useful class of nanofillers used to produce BNCs is inorganic layered
silicate minerals, or nanoclays, due to their commercial availability, low cost, significant property
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enhancement and relatively simple processability [3]. Natural nanoclays, such as montmorillonite
(MMT) with chemical structure [Na0.38K0.01][Si3.92Al0.07O8][Al1.45Mg0.55O2(OH)2]·7H2O, and synthetic
nanoclays, such as Laponite® RD (LRD) with chemical structure Na0.7[(Si8Mg5.5Li0.3) O20(OH)4]0.7,
and halloysite nanotubes (HNT) with chemical structure Al2(OH)4Si2O5(2H2O), offer a unique route
for enhancing the mechanical, physical and barrier properties of biodegradable polymers at low
levels of loading (<5 wt %), especially when the nanoclay particles are well dispersed in the polymer
matrix [2,6]. However, the dispersion of hydrophilic nanofillers in a polymer matrix is challenging.
Organophilization, or organic modification, is a technique that improves clay compatibility with
organic polymers by reducing the surface energy between the clay layers. Increasing the clay
inter-gallery spacing facilitates the intercalation and exfoliation of the clay in the polymer matrix [2,3].
The exfoliation into individual layers depends on the clay’s ability for surface modification in which
the interlayer inorganic ions are exchanged with organic cations [4,7].

The most broadly studied organo-modifiers are ammonium alkyls. When the clay inorganic ions
are exchanged with these organic cations, the inter-gallery spacing increases due to the bulkiness of
the alkyl–ammonium ions [7]. For example, organo-modified montmorillonite (OMMT), in which its
inorganic ions (e.g., Na+, K+, Ca2+, and Mg2+) have been replaced by organic alkyl-ammonium
ions, improving the wetting with the polymer chains [1,3]. Several researchers have reported
improvement in the properties and performance of PLA with addition of OMMT. For example,
Ray et al., through a series of papers, demonstrated that the addition of montmorillonite has a
significant effect in the improvement of PLA properties (in both solid and melt states), crystalline
behavior, and biodegradability in comparison with pristine PLA. Among the different mechanical
properties that have been improved are storage modulus, flexural modulus, flexural strength, tensile
modulus and elongation at break [8–10]. Additional benefits in performance have been reported
such as increased glass transition and thermal degradation temperatures [3,11]. Another reported
advantage, other than enhancement of the mechanical and thermal properties, is improvement in
the barrier properties due to the enhanced tortuous path provided by the silicate layers to gases
like oxygen [9,12,13]. The decreased transparency is a minor disadvantage of these BNCs [3]. Other
researchers have found significant improvement in thermo-mechanical and barrier properties of BNCs
based on PLA and OMMT [14,15].

Halloysite is another type of nanoclay that has received great attention as filler for polymer/clay
nanocomposites due to its biocompatibility, natural abundance, and relatively low cost. HNT has
almost no surface charge and does not require organic modification for adequate dispersion [16,17].
However, functionalized HNT has shown improved dispersion during processing and enhanced
mechanical and thermal properties [18,19]. HNT has been used as filler for several polymers like
poly(propylene) (PP), vinyl ester, polyamide (PA), poly(vinyl chloride) (PVC), epoxy, and natural
rubber for enhancing properties such as mechanical, thermal, crystallinity, and fire resistance [18,19].
Researchers have found that PLA-HNT nanocomposites exhibited improvement in properties like
tensile strength, Young’s modulus, impact properties, flexural properties, and storage modulus,
but no significant modification in the thermal properties in comparison with pure PLA [16,20–22].
The addition of HNT promotes crystallization and formation of different crystalline phases [21,22].
HNT was also found to slightly increase water absorption [23]. Other researchers found increased
thermal and flame retardant properties besides improvement in mechanical properties [19]. Esma et al.
also found enhanced thermal properties, but in their case mechanical properties were not significantly
improved [24]. Similarly, Kim et al. found decreased tensile strength with clay loading higher than
5 wt % but enhanced rheological properties [17].

Laponite® (LRD), another clay that might lead to novel properties, has not been widely
investigated for the development of PLA-based nanocomposites. LRD is an entirely synthetic hectorite
clay that belongs to the group of smectite phyllosilicate minerals, and it has great capacity for swelling
and exfoliation [25,26]. The advantage of using synthetic clays like LRD is the high structural
regularity, single layer dispersions of nanoparticles, and low level of impurities (e.g., silica, iron
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oxides, and carbonates). Due to its gelation properties, LRD has been used for different pharmaceutical
and cosmetic applications; for example, toothpastes, creams, and glazes [27–30]. Zhou et al. studied
PLA-LRD composite films and found improvement in the thermal stability, tensile strength and
hydrophilicity of PLA, especially when the LRD content is below 0.2 wt %. [31,32]. Similarly, Tang
et al. studied nanocomposites based on starch, poly vinyl alcohol (PVOH), and LRD and found
that an increase in LRD content (0–20%) enhanced tensile strength and decreased water vapor
permeability [26].

Besides performance limitations, one of the drawbacks of some biodegradable polymers, like
PLA, is that they do not biodegrade as fast as other organic wastes during composting, which in turn
affects their general acceptance in industrial composting facilities [33]. Therefore, increasing their
biodegradation rate in the composting environment should facilitate and encourage their disposal
through these facilities by degrading in a time frame comparable with other organic materials.

Several researchers studied the effect of OMMT on the biodegradation of biodegradable polymers
like polycaprolactone (PCL) [34], poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) [35], TPS [36],
and PLA [10,33,37–45]. Their results indicated that, in general, these BNCs biodegraded faster than
their respective pristine polymer. Therefore, the incorporation of nanoclays into a biodegradable
polymer matrix represents a promising approach not only for enhancing the polymer performance but
also for increasing its biodegradation rate in composting conditions. However, the effect of different
nanoclays and organo-modifiers on the abiotic and biotic degradation of PLA is still unclear and
needs further investigation. Even though it is well known that the biodegradation mechanism of PLA
involves chemical hydrolysis, the role of microorganisms and how they are affected by the presence of
nanoparticles is still not well understood [44].

Thus, this study aimed to understand the biodegradation mechanisms of BNCs made of PLA
and compounded with OMMT, HNT, and LRD, and to identify the main factors contributing to
their biodegradation rate such as those related to the polymer structure and also those related to the
soil/compost environments or to the microbial populations that could be impacted by the presence
of nanoparticles.

2. Materials and Methods

2.1. Materials

Poly(lactic acid) resin (IngeoTM 2003D) was obtained from NatureWorks LLC. (Minnetonka, MN,
USA) with 3.8–4.2% D-LA, number average molecular weight (Mn) of 121.1 ± 7.5 kDa, polydispesity
index (PDI) of 1.9 ± 0.1, and melt flow index (MFI) of 6 g/10 min (210 ◦C, 2.16 kg). Cellulose powder
(particle size ~20 µm) and Halloysite nanotubes (HNT) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Organo-modified montmorillonite (OMMT) (Cloisite® 30B) and Laponite® RD (LRD) were
acquired from BYK Additives Inc. (Gonzales, TX, USA). Additionally, TomamineTM Q-T-2 (QAC) with
60–70% purity of a methyl, tallow, bis-2-hydroxyethyl, quaternary ammonium, the organo-modifier of
Cloisite® 30B, was obtained from Air Products and Chemicals Inc. (Butler, IN, USA). Tetrahydrofuran
(THF) was obtained from Pharmco-AAPER (North East, CA, USA). The composition per liter of the R2
broth (R2B) used was 0.5 g yeast extract, 0.5 g proteose peptone #3, 0.5 g casamino acids, 0.5 g dextrose,
0.5 g soluble starch, 0.3 g sodium pyruvate, 0.3 g dipotassium phosphate, and 0.05 g magnesium
sulfate. The composition per liter of the M9 minimal medium was 12.8 g Na2HPO4·7H2O, 3 g KH2PO4,
0.5 g NaCl, 1 g NH4Cl, and 1 g of 1 mM MgSO4, 1 mM CaCl2, 3 × 10−9 M (NH4)6Mo7O24·4H2O,
4 × 10−7 M H3BO3, 3 × 10−8 M CoCl2·6H2O, 1 × 10−8 M CuSO4·5H2O, 8 × 10−8 M MnCl2·4H2O,
1 × 10−8 M ZnSO4·7H2O, 1 × 10−6 M FeSO4·7H2O. All the chemicals and reagents were commercial
products of the highest available grade.
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2.2. Processing of the PLA Bio-Nanocomposites

PLA-BNCs (PLA-OMMT, PLA-LRD, and PLA-HNT) were produced in a two-step process. First,
masterbatches were prepared in a ZSK 30 twin-screw extruder (Werner Pfleiderer, NJ, USA) and
pelletized. Second, PLA-BNC films (1 and 5 wt % nanoclay) were produced in a cast film microextruder
model RCP-0625 (Randcastle Extrusion Systems, Inc., Cedar Grove, NJ, USA). Two PLA-QAC films
(0.4 and 1.5 wt % organo-modifier) were produced in a similar fashion. Three PLA films (PLA1,
PLA2, and PLA3) with different molecular weight were obtained by varying the processing conditions,
and used as control films. In all cases, the materials were dried at 60 ◦C for 8 h under vacuum
(85 kPa) prior to processing. The thickness of the films was measured using a digital micrometer
(Testing Machines Inc., New Castle, DE, USA). More details regarding the film processing are provided
in Table S1.

2.3. Characterization of the PLA Bio-Nanocomposites

To evaluate the presence and dispersion of the nanoclays in the PLA matrix, X-ray diffraction
(XRD) and transmission electron microscopy (TEM) were performed. PLA and BNC films were
embedded in paraffin blocks and microtomed in 100-nm sections for bright field imaging using
an Ultramicrotome MYX (RMC Boeckeler Instruments, Tucson, AZ, USA). TEM micrographs were
obtained using a JEOL 2200FS transmission electron microscope (JEOL USA, Inc., Peabody, MA, USA)
operating at an acceleration voltage of 200 kV. XRD analysis was conducted in a Rigaku Rotaflex
Ru-200BH X-ray diffractometer equipped with a Ni-filtered Cu Kα radiation source setting at 45 kV
and 100 mA. The interlayer spacing was calculated according to Bragg’s Law [46]. The carbon,
hydrogen and nitrogen content, as well as the amount of nanoclay present in each BNC film was
determined by elemental analysis (CHN) and are reported in Table S2. Additional methodologies, such
as differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), moisture isotherm,
electrical conductivity, and contact angle, used for characterization of the BNCs are provided in
Section S2.

2.4. Biodegradation Evaluation

The aerobic biodegradation of PLA and BNCs was evaluated through a series of experiments
(Table 1) by analysis of evolved CO2 under controlled composting conditions (at 58 ◦C), using an
in-house built direct measurement respirometer (DMR) with a CO2 non-dispersive infrared gas
analyzer (NDIR). Manure compost from the MSU Composting Facility (East Lansing, MI, USA) was
used. The compost was sieved on a 10 mm screen and preconditioned at 58 ◦C for three days prior
to use. Deionized water was incorporated to adjust the moisture content to about 50%. Saturated
vermiculite premium grade (Sun Gro Horticulture Distribution Inc., Bellevue, WA, USA) was mixed
with the compost (1:4 parts, dry wt. compost) for better aeration. Compost samples were sent to
the Soil and Plant Nutrient Laboratory at Michigan State University (East Lansing, MI, USA) for
determination of the physicochemical parameters (dry solids, volatile solids, C/N ratio, and pH) and
are reported in Table S6. Detailed information about the methods used for compost characterization
can be found elsewhere [47].

Table 1. Key for biodegradation test and labels of the samples.

Test ID Samples Tested

I Blank, Cellulose, OMMT, HNT, LRD, PLA1, PLA-OMMT5

II Blank, Cellulose, OMMT, OMMT5, QAC, QAC5, PLA1,
PLA-OMMT1, PLA-OMMT5, PLA-OMMT7.5

III Blank, Cellulose, PLA2, PLA-OMMT1, PLA-OMMT5, PLA-HNT1,
PLA-HNT5, PLA-LRD1, PLA-LRD5, PLA-QAC1.5, PLA-QAC0.4

IV Blank, Cellulose, PLA1, PLA2, PLA3, PLA-OMMT5, PLA-QAC0.4
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The bioreactors were loaded with 400 g of compost (or vermiculite) and mixed thoroughly with 8 g
of polymer sample (unless otherwise specified). Film samples were cut to 1 cm2 pieces and triplicates
of each test material were analyzed. Additionally, triplicates of blank bioreactors (with compost or
vermiculite only) were evaluated. To simulate composting conditions, the bioreactors were placed in
an environmental chamber set at a constant temperature of 58 ± 2 ◦C. Water-saturated CO2-free air
was provided to each bioreactor with a flow rate of 40 ± 2 sccm (cm3/min at standard temperature
and pressure). The bioreactors were incubated in the dark for at least 45 d or until the evolved CO2

reached a plateau. For all the biodegradation studies, the results are presented as average (n = 3) and
standard deviation.

2.5. Size Exclusion Chromatography (SEC)

The number average molecular weight (Mn), weight average molecular weight (Mw),
and polydispersity index (PDI) of PLA and BNCs before and during composting were determined by
SEC with a system from Waters Inc. (Milford, MA, USA) as previously described [47]. Shortly, 20 mg
of films were dissolved in 10 cm3 of THF and filtered with a hydrophobic polytetrafluoroethylene
(0.45 µm pore size) filter. Then, 100 µL of each sample solution were injected. A third-order polynomial
calibration curve was obtained from polystyrene (PS) standards ranging 0.5–2,480 kDa, and the
Mark–Houwink constants, K = 0.000164 dL/g and α = 0.704, for PS were used.

2.6. Microbial Attachment

Biofilm Assay: The biofilm forming ability of microorganisms on the surface of PLA and BNCs
was assessed with a biofilm assay in 24-well polystyrene plates as described elsewhere [48,49]. For this
test, sterilized PLA films and BNC films were added to the wells of a microtiter plate (24 wells).
The films were sterilized by rinsing with 70% ethanol, followed by irradiation with ultraviolet light
for 5 min prior to testing. Four replicates of each sample were tested. Each well contained 600 µL
of R2B and 200 µL of compost extract (CE), which was prepared by vigorously mixing dry compost
with deionized water (1:2 wt./vol.) on vortex for 2 min. The mix was allowed to settle for 20 min and
then the supernatant was passed through a sieve with 1 mm mesh. A sterile compost extract (SCE)
was prepared for a control by passing the CE twice through a 0.22 µm filter. The inoculated plates
were incubated for 48 h at 58 ◦C gently shaking at 100 rpm. Pseudomonas aeruginosa (PA) strain PAO1,
a biofilm producing bacterium, was used as a positive control at 23 ◦C, and uninoculated wells were
considered as a negative control. To determine the level of biofilm formed on the surface of PLA and
BNCs after incubation, the films were transferred to clean Eppendorf tubes and treated in parallel
with the microtiter plates. The broth was removed from the plates and the wells and films were gently
washed with water three times. The biofilm was stained with 800 µL of 0.5% crystal violet for 15 min
followed by washing three times with water. After the plates and films had air-dried, 800 µL of 30%
acetic acid were added, followed by incubation for 15 min. Measurements were done using an Epoch™
Microplate Spectrophotometer (BioTek Instruments, Inc., Winooski, VT, USA) at 600 nm directly on
the wells and following decantation of the films. Decanted acetic acid from films was transferred into
clean microtiter plates for absorbance measurement at 600 nm. The biofilm formation was quantified
by subtracting the average absorbance of the cognate controls from the average absorbance of the
inoculated samples.

Scanning Electron Microscopy (SEM): Similar to the biofilm test, sterilized PLA films and PLA-LRD5
films were added to an Erlenmeyer flask containing R2B (2×) and an overnight culture of the compost
extract (CE) on R2B at 58 ◦C (3:1 vol.). The samples were incubated for 48 h at 58 ◦C. The films were
removed from the flasks, gently washed with water three times, and air-dried. The samples were
mounted on aluminum stubs using high vacuum carbon tabs (SPI Supplies, West Chester, PA, USA),
and coated with osmium. SEM micrographs were obtained at various magnifications using a JEOL
6610LV (tungsten hairpin emitter) scanning electron microscope (JEOL Ltd., Tokyo, Japan) operating
at a voltage of 10 kV to observe the biofilm formation.
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2.7. Statistical Analysis

All statistical analyses were performed using Minitab18 software (Minitab Inc., State College, PA,
USA) by analysis of variance (one way ANOVA), and Tukey test with a p-value threshold of 0.05 as for
level of significance. Data are reported as mean and standard deviations.

3. Results and Discussion

3.1. Characterization of the PLA Bio-Nanocomposites

Figures 1 and 2 show the XRD spectra and TEM micrographs of the BNCs, respectively. These
methods were used to evaluate the presence and dispersion of the nanoclays in the PLA matrix.
Depending on the degree of dispersion, a layered silicate nanocomposite can be either intercalated or
exfoliated. Intercalation occurs when the polymer chains penetrate into the interlayer regions of the
clay, while exfoliation is observed when the clay layers are delaminated and randomly dispersed in
the polymer matrix [3]. As observed in Figure 1a, in the case of PLA-OMMT5 film, OMMT is not fully
exfoliated but intercalated in the PLA matrix, which is represented by the shift of the peak to the left,
i.e., the increase in the interlayer distance from 1.85 nm, for the pristine OMMT, to 3.42 nm, for the
OMMT present in the film. The organic modification of the MMT through exchange of cationic ions
allows for better dispersion and exfoliation of the silicate layers into the PLA matrix [1,3,7]. However,
in the case of PLA-OMMT5 it was not enough to obtain a fully exfoliated BNC. This was confirmed
by the TEM micrograph (Figure 2a), which shows some small agglomerations. However, it seems
that the OMMT is evenly distributed in the PLA matrix. PLA-OMMT1 showed a better dispersion
of the OMMT in the polymer matrix, but in general, full exfoliation is difficult to achieve, and most
nanocomposites are a mixture of both structures, which is usually referred to as disordered morphology
or orderly exfoliated morphology [4].
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Similarly, Figure 1b,c show the XRD spectra of HNT and LRD nanocomposites, respectively. In
both cases, the profiles showed broad peaks around a 2θ angle of 16, which are representative of
amorphous PLA samples [50,51]. HNT is an alumina-silicate clay with an elongated hollow tubular
structure consisting of an external surface composed of siloxane (Si-O-Si) groups and an inner side and
edges consisting of (Al-OH) groups [16,24,52]. In the XRD spectrum of the HNT nanoclay (Figure 1b),
the presence of three main peaks at 2θ angles of 12.02, 19.99, and 24.54 can be observed, corresponding
to the basal d-spacing of 0.75, 0.45, and 0.36 nm, respectively. Similar diffraction patterns are reported
elsewhere [24,53–57]. In the case of PLA-HNT5, the presence of a peak at 2θ angle of 12.25 was
observed. The small shift to the right, from the 12.02 of the pristine HNT, indicates a reduction
in the d-spacing. This behavior has been observed by other researchers, and was attributed to the
formation of a micro-filled composite [24,54]. The disappearance of the other peaks, such in the case
of PLA-HNT5 and PLA-HNT1, has been explained as due to the interaction of the polymer chains
with the nanotubes, and also due to the preferential orientation of nanotubes during processing of the
film [19,24]. It was also observed that the intensity of the characteristic peaks depends on the level of
loading of nanoclay [53,54].

LRD particles have a disk-like shape with two external tetrahedral silica sheets that present
continuous corner-shared tetrahedral SiO4 units arranged in hexagonal rings, and a central octahedral
magnesia sheet that is composed of bivalent or trivalent cations sharing the edges coordinated to
hydroxyl groups. The excess negative charge is compensated by the presence of Na ions between the
silicate layers [25,27–29]. In the XRD spectrum of the LRD nanoclay (Figure 1c), the presence of the
characteristic LRD peak at 2θ angle of 19.8 can be observed, corresponding to the basal d-spacing of
0.45 nm. Similar diffraction patterns are reported for LRD elsewhere [25,26]. In the XRD spectra of the
PLA-LRD, no diffraction peaks were observed. This behavior has been attributed, in the literature,
to separated LRD platelets dispersed individually in the polymer matrix [25]. The nanoclay dispersion
was also confirmed by TEM.

Figure 2b,c show the TEM micrographs of HNT and LRD nanocomposites, respectively. In the
case of PLA-HNT5, Figure 2b shows the presence of big agglomerations indicating that HNT was
not evenly distributed in the PLA matrix. Similar observations have been reported in the literature
for PLA-HNT nanocomposites [20,53]. A similar distribution was also found for the PLA-LRD5 film
(Figure 2c).

Other factors influencing the nanoclay dispersion in the PLA matrix are the level of loading and
the size of the nanoparticles [26]. For example, HNT and LRD are bigger particles than MMT. While
MMT has layers with 1 nm thickness and tangential dimensions from 300 Å to a few microns [1,3,7],
HNT has inner and outer diameters of the tube ranging from 10 nm to 40 nm and 40 nm to 70 nm,
respectively, while the length ranges from 0.2 µm to 3 µm [16,24,52]. LRD usually has dimensions
around 25–30 nm in diameter and 1 nm in thickness [26,27,29].

3.2. Biodegradation Evaluation

The DMR system was used to perform four different biodegradation tests in which the CO2

evolved from each bioreactor was measured with controlled temperature, RH, and air flow rate.
For the data analysis, the average cumulative CO2 and % mineralization of each test material was
calculated and plotted as a function of time. Detailed information about the concepts and calculations
is provided elsewhere [47,58–60]. The blank bioreactors contain the solid media only (i.e., compost
or vermiculite). In all cases, cellulose powder was used as a positive reference material since it is a
well-known easily biodegradable material. The cumulative CO2 and % mineralization curves obtained
from the different biodegradation tests for the evaluation of PLA and PLA-BNCs, as well as the
different nanoclays and surfactant, are presented in Figures 3–11.

To evaluate the effect of the nanoclays on the compost microbial population, the three different
nanoclays were tested in the powder form as received. Figure 3 shows the CO2 evolved from the
bioreactors containing the three different nanoclays. A significant difference between the CO2 evolved



Polymers 2018, 10, 202 8 of 21

from cellulose and the one from the nanoclays was observed. During the first 40 days of the test,
OMMT and LRD bioreactors produced a significantly higher amount of CO2 than the blank indicating
that there was no inhibition. On the contrary, the HNT bioreactors produced equal or less CO2 than
the blank, especially after 35 days, indicating some kind of inhibition in which HNT may limit the
availability and/or the distribution of carbon and other nutrients for basic microorganism functions.Polymers 2018, 10(2), 201 8 of 21 
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Figure 4 shows the CO2 and % mineralization of the pristine PLA film and PLA-OMMT5.
The typical PLA biodegradation behavior with the presence of a lag time of around 25 days was
observed [47,61]. The lag time observed in the biodegradation of PLA has been explained by the
low diffusion rate of the byproducts formed during the hydrolytic degradation and present inside
the sample [62]. Cellulose reached a maximum mineralization of 65.7% after 34 days while PLA and
PLA-OMMT5 reached 53.2 and 59.6% after 87 days, respectively. The decrease in the mineralization
curve of cellulose indicates that these bioreactors were no longer producing more CO2 than the blank
bioreactors. This behavior may be explained by a rapid and large increase of the microbial population
at the beginning of the test when there are plenty of resources easily available for microbial assimilation.
Then, a decrease in the mineralization curve is observed when these resources are depleted and/or
limited [47]. Even though by the end of the test, the mineralization of PLA and PLA-OMMT5 was not
significantly different, it was clearly observed that the lag phase of the pristine PLA was longer than
the PLA-OMMT5. The mineralization of PLA-OMMT5 was significantly higher before day 60. Among
the different explanations for this accelerated biodegradation due to OMMT found in the literature is
the relatively high hydrophilicity of the nanoclay, which improves the diffusion of water into the PLA
polymeric matrix and in turn promotes hydrolytic degradation [33,37,38,44,62]. Another reason is that
the presence of terminal hydroxyl groups in the silicate layers and in some organo-modifiers promotes
the hydrolytic degradation of PLA [10,44,63]. However, the molecular weight of the PLA-OMMT5
films and the thickness can also play a crucial role and influence the observed results [47].

To evaluate the effect of clay loading on the biodegradation of PLA, three films with different
loadings of OMMT (1, 5, and 7.5 wt %) were tested. Figure 5 shows the CO2 evolution and %
mineralization of PLA and PLA-OMMT films. Cellulose reached a maximum mineralization of
61.7% after 45 days of testing. The biodegradation behavior of the pristine PLA and PLA-OMMT1
was similar, again with a typical lag time at the beginning of the biodegradation test. The negative
mineralization values observed in Figure 5b are generated as an artifact when the blank bioreactors
produce more CO2 than the sample material bioreactors. This effect might be caused because of the
physical barrier offered by the polymer film at this early stage of the test, contrary to the PLA-OMMT5
and PLA-OMMT7.5 in which their biodegradation phase started much earlier. The observed shorter
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lag time of PLA-OMMT5 is in agreement with the previous test results, but in this case the average
mineralization was significantly higher than the PLA control. It seems that PLA-OMMT7.5 has the
highest average mineralization and the fastest biodegradation rate in which the lag time was only
around five days. However, mineralization values above 100% indicate the presence of a priming effect,
in which the additional carbon converted to CO2, is not coming from the sample material but from the
over-degradation of the indigenous organic carbon present in the compost [47,64]. Again, the initial
molecular weight of the films should influence the observed results. It is important to mention that
during the processing of the films, with different nanoclay loading, the resulting molecular weight was
affected even though, in this case, the same processing conditions were maintained, with the higher
clay loading corresponding to the lower molecular weight. Furthermore, Roy et al. analyzed the
water-soluble degradation products by electrospray ionization-mass spectrometry (ESIMS), and their
results indicated a catalytic effect of MMT in hydrolysis of PLA since shorter lactic acid oligomers were
formed in the case of PLA/MMT composites [41]. Some researchers have attributed a plasticizing effect
to the degradation byproducts (i.e., lactic acid oligomers and monomers), represented by a decrease
in the Tg of PLA and BNCs. In this context, faster biodegradation of the PLA and BNC could also be
induced by the increased segmental mobility of backbone chains and the expanded amorphous regions
of the polymeric matrix [44,62,65]. Another factor influencing the biodegradation rate of the BNCs is
the crystallinity of the material. The presence of nanoclays could affect the degree of crystallization of
PLA (Table S3), with the amorphous parts preferentially biodegrading [47].
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The effect of the amount/concentration of clay and surfactant on the compost microbial populations
was evaluated and the results are shown in Figure 6. In this case, OMMT refers to 8 g of the tested sample
material, while OMMT5 refers to the theoretical amount of nanoclay contained in 8 g of PLA-OMMT5
film. Similarly, QAC refers to 8 g of the tested sample material and QAC5 to the theoretical amount of
surfactant contained in 8 g of PLA-OMMT5 film. Regardless of the concentration of either OMMT or
QAC, the CO2 evolution was always significantly lower than the blank, indicating that there was clear
inhibition of the microbial activity when these materials were present by themselves.
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Figure 6. CO2 evolution of OMMT nanoclay and QAC surfactant (Test II in compost).

Figure 7 shows the results of a different biodegradation test in which the PLA-OMMT and the
PLA-QAC films were evaluated. Cellulose reached a mineralization of 85.5% after 38 days of testing,
while the PLA control reached 74.2% after 69 days. As in the previous test, there was no significant
difference between the pristine PLA and the PLA-OMMT1 films (Figure 7b). However, PLA-OMMT5
had significantly higher mineralization and a shorter lag time than the PLA control. A priming effect
was observed with mineralization values over 100%. The PLA films containing the surfactant (QAC)
also showed reduced lag time and a significantly higher amount of evolved CO2 than the PLA control,
and in both cases a priming effect was observed (Figure 7d). This may be due to the lower initial
molecular weight of these films. In our previous work [47], it was demonstrated that the PLA film with
the lowest Mn presented a priming effect when tested in compost, but it was not observed in inoculated
vermiculite, having mineralization values closer to the other two tested PLA films with higher Mn.
PLA-OMMT5 and PLA-QAC0.4 were also tested in inoculated and uninoculated vermiculite, and the
results are later shown in Figure 11. Similarly, the priming effect was not observed in this case.

Figure 8 shows that the mineralization of PLA-HNT films was not significantly different from the
PLA control by the end of the test (90 days). However, it can be clearly observed that with both levels
of loading the lag time was reduced and the mineralization was significantly different before day 45.
A higher variability and also a priming effect were observed in the biodegradation of PLA-HNT1 film.
PLA-HNT films reached their maximum mineralization after 50 days of testing with an average of 86.9
and 74.6% for PLA-HNT1 and PLA-HNT5, respectively.
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Figure 8. (a) CO2 evolution and (b) % Mineralization of PLA-HNT films (Test III in compost).

As observed in Figure 9, PLA-LRD5 showed significantly higher mineralization than the pristine
PLA and the PLA-LRD1 films. In this case, the lag time was not reduced but the PLA-LRD5 showed a
priming effect. PLA-LRD films reached their maximum mineralization by the end of the test with an
average of 82.5 and 112.5% for PLA-LRD1 and PLA-LRD5, respectively.



Polymers 2018, 10, 202 12 of 21

Polymers 2018, 10(2), 201 11 of 21 

 

Figure 8 shows that the mineralization of PLA-HNT films was not significantly different from 

the PLA control by the end of the test (90 days). However, it can be clearly observed that with both 

levels of loading the lag time was reduced and the mineralization was significantly different before 

day 45. A higher variability and also a priming effect were observed in the biodegradation of 

PLA-HNT1 film. PLA-HNT films reached their maximum mineralization after 50 days of testing 

with an average of 86.9 and 74.6% for PLA-HNT1 and PLA-HNT5, respectively. 

 

Figure 8. (a) CO2 evolution and (b) % Mineralization of PLA-HNT films (Test III in compost). 

As observed in Figure 9, PLA-LRD5 showed significantly higher mineralization than the 

pristine PLA and the PLA-LRD1 films. In this case, the lag time was not reduced but the PLA-LRD5 

showed a priming effect. PLA-LRD films reached their maximum mineralization by the end of the 

test with an average of 82.5 and 112.5% for PLA-LRD1 and PLA-LRD5, respectively. 

 

Figure 9. (a) CO2 evolution and (b) % Mineralization of PLA-LRD films (Test III in compost). 

To avoid the priming effect observed in the previous tests, a specific new biodegradation test 

was performed in three different solid environments (compost, inoculated vermiculite, vermiculite) 

as described elsewhere [47]. When tested in compost (Figure 10), there was no significant difference 

in the mineralization of these materials by the end of the test (132 days). However, it seems that the 

mineralization of PLA-OMMT5 was significantly higher than the PLA during the first 45 days of 

testing. Similarly to the previous tests, PLA-OMMT5 showed a reduced lag time and a priming effect 

could be occurring due to the low molecular weight of both films. The maximum average 

mineralization for PLA and PLA-OMMT5 was 110.4 and 100.2%, respectively. 

Figure 9. (a) CO2 evolution and (b) % Mineralization of PLA-LRD films (Test III in compost).

To avoid the priming effect observed in the previous tests, a specific new biodegradation test
was performed in three different solid environments (compost, inoculated vermiculite, vermiculite)
as described elsewhere [47]. When tested in compost (Figure 10), there was no significant difference
in the mineralization of these materials by the end of the test (132 days). However, it seems that
the mineralization of PLA-OMMT5 was significantly higher than the PLA during the first 45 days
of testing. Similarly to the previous tests, PLA-OMMT5 showed a reduced lag time and a priming
effect could be occurring due to the low molecular weight of both films. The maximum average
mineralization for PLA and PLA-OMMT5 was 110.4 and 100.2%, respectively.
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Figure 10. (a) CO2 evolution and (b) % Mineralization of PLA and PLA-OMMT5 films (Test IV in compost).

The biodegradation test with inoculated vermiculite should avoid the priming effect as previously
demonstrated [47,64,66]. Figure 11 shows that there was no significant difference in the mineralization
of the tested materials at the end of the test (132 days). However, both PLA-OMMT5 and PLA-QAC0.4
showed significantly higher mineralization than the PLA control before 70 days of testing, and a much
shorter lag time. The PLA control reached 77.7% mineralization after 132 days while PLA-OMMT5
reached the same mineralization after 83 days of testing and a maximum average mineralization of
83.3%. PLA-QAC reached a mineralization of 77.3%. It is important to mention that longer testing
times were expected in this case since the biodegradation in inoculated vermiculite occurs at a slower
rate than in compost. Even though the initial molecular weight of the films has a strong effect on
their mineralization and priming effect, it seems that the addition of OMMT also accelerated the
initial degradation of the samples. As previously mentioned, this behavior may be explained by the
improved diffusion of water into PLA due to the high hydrophilicity of the nanoclay, which in turn
promotes hydrolytic degradation [33,37,38,44,62].
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Figure 11. (a) CO2 evolution and (b) % Mineralization of PLA, PLA-OMMT5, and PLA-QAC0.4 (Test IV
in inoculated vermiculite (dashed lines) and uninoculated vermiculite (dotted lines)).

Figure 11 also shows the results when testing with uninoculated vermiculate. As expected, there
was no significant evolution of CO2 in the abiotic degradation test, and there was no significant
difference in the mineralization values. For the biodegradation test III, film samples were taken at
different periods of time in order to track the changes in the molecular weight and the results are
explained in Section 3.3.

3.3. Molecular Weight

Figure 12 shows the initial molecular weight distribution (MWD) of the PLA film and BNCs.
As previously mentioned, the addition of nanoclay resulted on a reduction of the Mn during
processing. This reduction in Mn was more pronounced in the case of PLA-OMMT5, PLA-QAC1.5,
and PLA-QAC0.4. More detailed information about the initial Mn, Mw, and PDI, of PLA and BNCs
films is provided in Table S7.

Polymers 2018, 10(2), 201 13 of 21 

 

Figure 12 shows the initial molecular weight distribution (MWD) of the PLA film and BNCs. As 

previously mentioned, the addition of nanoclay resulted on a reduction of the Mn during processing. 

This reduction in Mn was more pronounced in the case of PLA-OMMT5, PLA-QAC1.5, and 

PLA-QAC0.4. More detailed information about the initial Mn, Mw, and PDI, of PLA and BNCs films 

is provided in Table S7. 

 

Figure 12. Initial molecular weight of PLA and BNCs. 

Figure 13 shows the decrease of molecular weight of the PLA control film as a function of time 

during the biodegradation test III, represented by the shift of the peak to the left. This behavior was 

previously reported in the literature during the hydrolytic degradation of PLA, and was attributed 

to the chain scission preferentially occurring in the bulk of the polymer matrix rather than the 

surface [67]. The broadening of the peaks over time indicates an increase in the PDI due to the 

fragmentation of the PLA chains. The change in the MWD from monomodal to multimodal after day 

14 has also been previously observed during hydrolytic degradation of PLA and was attributed to 

the formation of crystalline residues due to the rearrangement of the new shorter polymer chains 

into a more stable configuration (i.e., crystalline structures) [51,67]. The formation of more defined 

and higher peaks, as observed at days 42 and 56, has been attributed to the predominant 

degradation of the amorphous regions [68]. During the biodegradation tests a whitening effect in 

PLA and BNC was observed. It has been reported that this effect indicates increased crystallinity and 

opacity due to the beginning of the hydrolytic degradation phase of the biodegradation process 

[44,45,62]. The whitening effect occurs because a change in the refraction index of the polymer is 

induced by the absorbed water and/or the byproducts, e.g., carboxylic end-groups that are able to 

catalyze ester hydrolysis [45,62]. 

Figure 12. Initial molecular weight of PLA and BNCs.



Polymers 2018, 10, 202 14 of 21

Figure 13 shows the decrease of molecular weight of the PLA control film as a function of time
during the biodegradation test III, represented by the shift of the peak to the left. This behavior was
previously reported in the literature during the hydrolytic degradation of PLA, and was attributed to
the chain scission preferentially occurring in the bulk of the polymer matrix rather than the surface [67].
The broadening of the peaks over time indicates an increase in the PDI due to the fragmentation of
the PLA chains. The change in the MWD from monomodal to multimodal after day 14 has also been
previously observed during hydrolytic degradation of PLA and was attributed to the formation of
crystalline residues due to the rearrangement of the new shorter polymer chains into a more stable
configuration (i.e., crystalline structures) [51,67]. The formation of more defined and higher peaks,
as observed at days 42 and 56, has been attributed to the predominant degradation of the amorphous
regions [68]. During the biodegradation tests a whitening effect in PLA and BNC was observed. It has
been reported that this effect indicates increased crystallinity and opacity due to the beginning of the
hydrolytic degradation phase of the biodegradation process [44,45,62]. The whitening effect occurs
because a change in the refraction index of the polymer is induced by the absorbed water and/or the
byproducts, e.g., carboxylic end-groups that are able to catalyze ester hydrolysis [45,62].Polymers 2018, 10(2), 201 14 of 21 
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Figure 14 shows the changes in the MWD of the BNCs as function of time until day 28 since it
was not possible to collect samples for SEC analysis after that period of time (except for PLA control as
shown in Figure 13). Similarly to the PLA control, the BNCs showed multimodal peaks after day 14,
although more evidently after day 21. In general, this behavior was less pronounced for PLA-OMMT1,
PLA-LRD1, and PLA-LRD5, and it may be attributed to a slower formation of crystalline residuals.
From Figure 14, it can be observed that the reduction of molecular weight was slower for PLA-OMMT1
and PLA-LRD1, in comparison with the pristine PLA. Similarly, the MWD of PLA-OMMT5 and
PLA-QAC15 have a similar trend with an evident multimodal peak at day 21, while the reduction of
molecular weight of PLA-HNT5 and PLA-LRD5 films seems to be slower than PLA control.

Deconvolution of the peaks was performed due to the multimodal MWD observed in the previous
results, followed by kinetics analysis (Section S4). The Mn reduction rate (k) constant was calculated
for PLA and the BNCs, fitting of a first order reaction of the form Mn/Mn0 = exp(−kt), where Mn0
is the initial Mn, k is the rate constant, and t is the time. The results (Figure S6 and Table S8) show
that the BNCs, especially PLA-LRD films, have a lower Mn reduction rate than the PLA control
(k = 0.1008 ± 0.0037) until day 28. Ray and Okamoto analyzed the molecular weight of PLA and PLA
nanocomposites and found that the reduction was almost the same for all the samples [10]. In contrast,
Paul et al. found that the Mn of PLA decreased ~40% with respect to its initial value while for the
PLA nanocomposites Mn decreased 70–80% [38]. In this case, even though the Mn reduction rate of
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the BNC was the same or lower than the PLA control, a higher evolution of CO2 from the bioreactors
supplemented with the BNC was generally observed during the biodegradation tests. Therefore, it is
also relevant to understand the role of the microorganisms and how they are affected by the presence
of these nanoclays. For example, Annamalai et al. suggested that the clay nanoparticles improve the
absorption of UV light and promote polymer photo-oxidation due to the catalytic effect of metal ion
impurities. That increased oxidation at the surface of the nanocomposites could favor the adhesion,
accumulation and growth of the microorganisms [69].
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films (Test III in compost).

3.4. Microbial Attachment

Biofilm assays were performed to evaluate the ability of the microorganisms present in
the compost to attach to the surface of PLA film and BNCs (i.e., PLA-OMMT5, PLA-QAC0.4,
PLA-HNT5, and PLA-LRD5). Even though biofilm formation does not necessarily mean that the
material is biodegraded by the attached populations [70], it is an important aspect of microbial
performance and survival [71]. When biofilm-forming microorganisms release exopolymeric
substances (EPS) (e.g., carbohydrates, nucleic acids, and proteins) such resources become available
for other microorganisms, including secreted enzymes that degrade PLA and derivatives. Secreting
extracellular digestive enzymes after forming a biofilm would localize the effect of extracellular
digestion and increase the benefit to biofilm-forming strains. Biofilm production is a common trait
among microorganisms living in soil, which are usually exposed to low moisture conditions. Biofilms
can contribute to water retention in the soil matrix, prevent microorganisms from being washed out,
and confer tolerance to other environmental stressors [71].

An initial test of the biofilm assay is shown in the Supplementary Materials (Section S5). Figure 15
and Tables S11 and S12 show the results of the biofilm test. A positive control was performed using
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Pseudomonas aeruginosa (PA) strain PAO1, a high biofilm forming strain, at 23 ◦C [72,73]. Looking at
the control with PA at 23 ◦C (Figure 15a), it was observed that the positive control wells (PA + R2B)
had an absorbance (600 nm) of 1.226–1.332, with uninoculated control wells ranging from 0.060 to
0.065, which is in agreement with the values reported by Satti et al. [49]. The wells containing PLA,
PLA-QAC0.4, PLA-HNT5, and PLA-LRD5 were approximately the same as the control lacking any
film (R2B only). However, the wells containing PLA-OMMT5 showed significantly more biofilm
formation (average 2.042), suggesting that the OMMT had an indirect stimulation on biofilm formation
by PA. For the biofilm formed on the surface of the films by PA at 23 ◦C, PLA ranged from 0.501 to
0.752, which is also in agreement with the values previously observed [49]. In this case, the values
of PLA-OMMT5 and PLA-HNT5 were significantly different from PLA-QAC0.4. PLA-HNT5 had
one of the highest average values with 1.254. Looking at the total biofilm formation, PLA-OMMT5
and PLA-QAC0.4 were significantly different from pristine PLA and the rest of the BNCs with the
highest (2.917) and lowest (1.107) values, respectively. The total average biofilm values (wells + film)
for PA at 23 ◦C in descending order are as follows PLA-OMMT5 > PLA-HNT5 > PLA > PLA-LRD5 >
PLA-QAC0.4.Polymers 2018, 10(2), 201 17 of 21 
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Figure 15. Absorbance (600 nm) of (a) PA at 23 ◦C, and (b) CE at 58 ◦C for second biofilm test. Columns
with the same letter within a group (i.e., wells, films, or total) are not significantly different at p ≤ 0.05
(Tukey test).

Regarding the biofilm estimates with CE at 58 ◦C (Figure 15b), the sterile controls (SCE) have
values that are between 0.101 and 0.124, which are slightly greater than what was seen with low
nutrient media at 23 ◦C. This is probably due to significant amounts of humic material in the CE.
The control wells (CE only) have values of 0.381–0.588. These values are less than the ones for PA
at 23 ◦C, which is expected since PA is a well-known biofilm former and because microbial growth
and survival is generally more challenging at 58 ◦C and CE contains a diverse collection of microbial
populations, many of which do not form biofilm under these conditions. The wells supplemented
with PLA and BNCs ranged from 0.122–0.603 with no statistically significant difference among them.
Biofilm formation was observed on the surface of PLA and BNCs with CE at 58 ◦C. PLA-LRD5 has
significantly higher value (0.519) than the rest of the BNCs. The lowest average values were observed
for PLA-QAC0.4 and PLA with 0.113 and 0.090, respectively. In this case, the total biofilm was also not
significantly different among the sample materials.

In general, the PLA-LRD5 biofilm was the largest among the different samples, indicating
that population in CE have a preference for PLA-LRD5 at 58 ◦C. In contrast, a pure culture,
Pseudomonas aeruginosa, clearly preferred PLA-OMMT5 at 23 ◦C. Overall the biofilms at 58 ◦C were
smaller than the biofilm at 23 ◦C. At both temperatures, PLA-QAC0.4 was the film producing the
lowest average amount of biofilm, which may be attributed to inhibition due to the surfactant. This is
supported by the biodegradation test where the surfactant was tested alone. Further investigation
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is recommended to understand which specific microbial strains present in the compost bind to and
preferentially degrade PLA and the BNCs.

Due to the significant differences between pristine PLA and PLA-LRD5 found in the biofilm
formed on the surface of the films during the test at 58 ◦C with CE, several SEM micrographs were
taken from samples coated with osmium. Figure 16 shows the difference in microbial attachment
between pristine PLA and PLA-LRD5 at a magnification of 1000×. It can be clearly observed that the
surface of PLA-LRD5 is much more heavily populated by microorganisms, in agreement with the
biofilm test results (Figure 15b).
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4. Conclusions

The effect of three different nanoclays, OMMT, HNT, and LRD, as well as the OMMT
organo-modifier (QAC) on the biodegradation of PLA was evaluated with an in-house built DMR
system following the analysis of evolved CO2 approach. The results obtained from four different
biodegradation tests along with the study of microbial attachment on the surface of PLA and its
BNCs show that the biodegradation phase of the films containing nanoclay started earlier than that for
pristine PLA. This behavior was confirmed by the results obtained from different tests for PLA-OMMT5,
even when tested in inoculated vermiculite. The tests performed in vermiculite allowed untangling the
observed priming effect even though longer testing times were required. The effect of the nanoclays
on the initial molecular weight during processing played a crucial role in the biodegradation studies,
also since a lower Mn0 (≤60 kDa) seems to be correlated to the priming effect in compost. Further
investigation is recommended using PLA and BNCs with the same initial molecular weight and
thickness, a task not easy to achieve in lab settings. When the different nanoclays and surfactant were
tested alone, it was observed that HNT, OMMT, and QAC showed some inhibition regardless of the
amount introduced in the bioreactors. PLA-LRD5 showed a priming effect with mineralization values
exceeding 100%. This behavior may be explained by the lower initial molecular weight and by the
results observed during the microbial attachment tests, in which PLA-LRD5 showed the greatest biofilm
formation on the surface as confirmed by the SEM micrographs. PLA-QAC0.4 had the lowest biofilm
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formation, which may be attributed to the inhibitory effect also found during the CO2 evolution
test when QAC was tested alone. Under the experimental conditions used to investigate biofilm
formation, it was noted that significant biofilm was established in only 48 h; however, the timing
may be different in composting conditions. Further investigation is required on the specific microbial
strains that are capable of biodegrading PLA and its BNCs and how they can affect the biodegradation
rate. Disposable products like packaging would greatly benefit from the biodegradable features of
PLA since it would allow its disposal along with other organic wastes in composting facilities.

Supplementary Materials: Information about material processing and characterization, physicochemical
characteristics of the compost, molecular weight determination, and biofilm test formation are available online at
www.mdpi.com/2073-4360/10/2/202/s1.

Acknowledgments: Edgar Castro-Aguirre thanks the Mexican National Council for Science and Technology
(CONACYT) and the Mexican Secretariat of Public Education (SEP) for providing financial support through a
fellowship, and the Center for Advanced Microscopy at Michigan State University for assistance with the TEM
and SEM analyses. The authors also thank the undergraduate and graduate students and visiting scholars that
helped during the four different tests reported in this manuscript, the School of Packaging (SoP), and the Center
for Packaging Innovation and Sustainability (CPIS) for partially funding this project. Rafael Auras acknowledges
the partial support of the USDA and the MI AgBioResearch, Hatch.

Author Contributions: Edgar Castro-Aguirre, Rafael Auras, Susan Selke, Maria Rubino, and Terence Marsh
conceived and designed the experiments; Edgar Castro-Aguirre performed the experiments and initially analyzed
the data; Edgar Castro-Aguirre drafted the manuscript; all the authors contributed in the writing process and
approved the final version of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kumar, A.P.; Depan, D.; Tomer, N.S.; Singh, R.P. Nanoscale particles for polymer degradation and
stabilization—Trends and future perspectives. Prog. Polym. Sci. 2009, 34, 479–515. [CrossRef]

2. Lagaron, J.M. Nanotechnology for bioplastics: Opportunities, challenges and strategies. Trends Food
Sci. Technol. 2011, 22, 611–617. [CrossRef]

3. Azeredo, H.M.C. De Nanocomposites for food packaging applications. Food Res. Int. 2009, 42, 1240–1253.
[CrossRef]

4. Raquez, J.-M.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci.
2013, 38, 1504–1542. [CrossRef]

5. Kijchavengkul, T.; Auras, R. Compostability of polymers. Polym. Int. 2008, 57, 793–804. [CrossRef]
6. De Abreu, D.A.P.; Losada, P.P.; Angulo, I.; Cruz, J.M. Development of new polyolefin films with nanoclays

for application in food packaging. Eur. Polym. J. 2007, 43, 2229–2243. [CrossRef]
7. Reddy, M.M.; Vivekanandhan, S.; Misra, M.; Bhatia, S.K.; Mohanty, A.K. Biobased plastics and

bionanocomposites: Current status and future opportunities. Prog. Polym. Sci. 2013, 38, 1653–1689. [CrossRef]
8. Ray, S.S.; Maiti, P.; Okamoto, M.; Yamada, K.; Ueda, K. New Polylactide/Layered Silicate Nanocomposites.

1. Preparation, Characterization, and Properties. Macromolecules 2002, 35, 3104–3110.
9. Ray, S.S.; Yamada, K.; Okamoto, M.; Ueda, K. New polylactide-layered silicate nanocomposites. 2. Concurrent

improvements of material properties, biodegradability and melt rheology. Polymer (Guildf) 2003, 44, 857–866.
10. Ray, S.S.; Yamada, K.; Okamoto, M.; Ogami, A.; Ueda, K. New polylactide/layered silicate nanocomposites,

4. Structure, properties and biodegradability. Compos. Interfaces 2003, 10, 435–450. [CrossRef]
11. Bourbigot, S.; Fontaine, G.; Duquesne, S.; Delobel, R. PLA nanocomposites: Quantification of clay

nanodispersion and reaction to fire. Int. J. Nanotechnol. 2008, 5, 683–692. [CrossRef]
12. Ray, S.S.; Yamada, K.; Okamoto, M.; Fujimoto, Y.; Ogami, A.; Ueda, K. New polylactide/layered silicate

nanocomposites. 5. Designing of materials with desired properties. Polymer (Guildf) 2003, 44, 6633–6646.
13. Picard, E.; Espuche, E.; Fulchiron, R. Effect of an organo-modified montmorillonite on PLA crystallization

and gas barrier properties. Appl. Clay Sci. 2011, 53, 58–65. [CrossRef]
14. Re, G.L.; Benali, S.; Habibi, Y.; Raquez, J.; Dubois, P. Stereocomplexed PLA nanocomposites: From in situ

polymerization to materials properties. Eur. Polym. J. 2014, 54, 138–150. [CrossRef]

www.mdpi.com/2073-4360/10/2/202/s1
http://dx.doi.org/10.1016/j.progpolymsci.2009.01.002
http://dx.doi.org/10.1016/j.tifs.2011.01.007
http://dx.doi.org/10.1016/j.foodres.2009.03.019
http://dx.doi.org/10.1016/j.progpolymsci.2013.05.014
http://dx.doi.org/10.1002/pi.2420
http://dx.doi.org/10.1016/j.eurpolymj.2007.01.021
http://dx.doi.org/10.1016/j.progpolymsci.2013.05.006
http://dx.doi.org/10.1163/156855403771953687
http://dx.doi.org/10.1504/IJNT.2008.018690
http://dx.doi.org/10.1016/j.clay.2011.04.023
http://dx.doi.org/10.1016/j.eurpolymj.2014.03.004


Polymers 2018, 10, 202 19 of 21

15. Ligot, S.; Benali, S.; Ramy-Ratiarison, R.; Murariu, M.; Snyders, R.; Dubois, P. Mechanical, Optical and
Barrier Properties of PLA-layered silicate nanocomposites coated with Organic Plasma Polymer Thin Films.
Mater. Sci. Eng. Adv. Res. 2015, 1, 1–11.

16. Chen, Y.; Geever, L.M.; Killion, J.A.; Lyons, J.G.; Higginbotham, C.L.; Devine, D.M. Halloysite Nanotube
Reinforced Polylactic Acid Composite. Polym. Compos. 2015. [CrossRef]

17. Kim, Y.H.; Kwon, S.H.; Choi, H.J.; Choi, K.; Kao, N.; Bhattacharya, S.N.; Gupta, R.K. Thermal, Mechanical,
and Rheological Characterization of Polylactic Acid/Halloysite Nanotube Nanocomposites. J. Macromol.
Sci. Part B 2016, 55, 680–692. [CrossRef]

18. Kausar, A. Review on Polymer/Halloysite Nanotube Nanocomposite. Polym. Plast. Technol. Eng. 2017.
[CrossRef]

19. Liu, M.; Jia, Z.; Jia, D.; Zhou, C. Recent advance in research on halloysite nanotubes-polymer nanocomposite.
Prog. Polym. Sci. 2014, 39, 1498–1525. [CrossRef]

20. Murariu, M.; Dechief, A.-L.; Paint, Y.; Peeterbroeck, S.; Bonnaud, L.; Dubois, P. Polylactide (PLA)—Halloysite
Nanocomposites: Production, Morphology and Key-Properties. J. Polym. Environ. 2012, 20, 932–943. [CrossRef]

21. Prashantha, K.; Lecouvet, B.; Sclavons, M.; Lacrampe, M.F.; Krawczak, P. Poly(lactic acid)/Halloysite
Nanotubes Nanocomposites: Structure, Thermal, and Mechanical Properties as a Function of Halloysite
Treatment. J. Appl. Polym. Sci. 2013, 128, 1895–1903. [CrossRef]

22. Wu, W.; Cao, X.; Zhang, Y.; He, G. Polylactide/Halloysite Nanotube Nanocomposites: Thermal, Mechanical
Properties, and Foam Processing. J. Appl. Polym. Sci. 2013, 130, 443–452. [CrossRef]

23. Russo, P.; Cammarano, S.; Bilotti, E.; Peijs, T.; Cerruti, P.; Acierno, D. Physical Properties of Poly Lactic
Acid/Clay Nanocomposite Films: Effect of Filler Content and Annealing Treatment. J. Appl. Polym. Sci.
2014, 131. [CrossRef]

24. Esma, C.; Erpek, Y.; Ozkoc, G.; Yilmazer, U. Effects of Halloysite Nanotubes on the Performance of Plasticized
Poly (lactic acid)-Based Composites. Polym. Compos. 2015. [CrossRef]

25. Aouada, F.A.; Mattoso, L.H.C.; Longo, E. A simple procedure for the preparation of lapo- nite and
thermoplastic starch nanocomposites: Structural, mechanical, and thermal characterizations. J. Thermoplast.
Compos. Mater. 2011. [CrossRef]

26. Tang, X.; Alavi, S. Structure and Physical Properties of Starch/Poly Vinyl Alcohol/Laponite® RD
Nanocomposite Films. J. Agric. Food Chem. 2012, 60, 1954–1962. [CrossRef] [PubMed]

27. Loyens, W.; Jannasch, P.; Maurer, F.H.J. Poly(ethylene oxide)/Laponite® nanocomposites via melt-compounding:
Effect of clay modification and matrix molar mass. Polymer (Guildf) 2005, 46, 915–928. [CrossRef]

28. Utracki, L.A.; Sepehr, M.; Boccaleri, E. Synthetic, layered nanoparticles for polymeric nanocomposites
(PNCs). Polym. Adv. Technol. 2007, 18, 1–37. [CrossRef]

29. Perotti, G.F.; Tronto, J.; Bizeto, M.A.; Izumi, C.M.S.; Temperini, M.L.A.; Lugao, A.B.; Parra, D.F.;
Constantino, V.R.L. Biopolymer-Clay Nanocomposites: Cassava Starch and Synthetic Clay Cast Films.
J. Brazilian Chem. 2014, 25, 320–330. [CrossRef]

30. Wu, C.-J.; Gaharwar, A.K.; Schexnailder, P.J.; Schmidt, G. Development of Biomedical Polymer-Silicate
Nanocomposites: A Materials Science Perspective. Materials (Basel) 2010, 3, 2986–3005. [CrossRef]

31. Zhou, G.X.; Yuan, M.W.; Jiang, L.; Yuan, M.L.; Li, H.L. The Preparation and Property Research on
Laponite®-Poly (L-Lactide) Composite Film. Adv. Mater. Res. 2013, 750, 1919–1923. [CrossRef]

32. Li, H.L.; Zhou, G.X.; Shan, Y.K.; Yuan, M.L. The Mechanical Properties and Hydrophilicity of Poly
(L-Lactide)/Laponite® Composite Film. Adv. Mater. Res. 2013, 706, 340–343. [CrossRef]
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