
polymers

Article

Synthesis, Characterization, and Antifogging
Application of Polymer/Al2O3 Nanocomposite
Hydrogels with High Strength and
Self-Healing Capacity

Bo Xu , Yuwei Liu, Jiugang Yuan, Ping Wang and Qiang Wang *

Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University,
Wuxi 214122, China; boxu@jiangnan.edu.cn (B.X.); 18861822651@163.com (Y.L.);
jiugangyuan@jiangnan.edu.cn (J.Y.); wxwping@163.com (P.W.)
* Correspondence: qiang_wang@163.com; Tel.: +86-510-8591-2005

Received: 31 October 2018; Accepted: 7 December 2018; Published: 8 December 2018
����������
�������

Abstract: Hydrogels with outstanding mechanical performance, self-healing capacity, and special
functionality are highly desirable for their practical applications. However, it remains a great challenge
to achieve such hydrogels by a facile approach. Here, we report a new type of nanocomposite
hydrogels by in situ copolymerization of acrylic acid (AA) and 2-acrylamido-2-methylpropane
sulfonic acid (AMPS) using alumina nanoparticles (Al2O3 NPs) as the cross-linkers. The obtained
hydrogels are highly stretchable and compressible, which could sustain large-scale extension (>1700%)
or compression (90%) without failure, and exhibit tensile and compressive strength up to 660 kPa and
8.3 MPa, respectively. Furthermore, this kind of hydrogel also display considerable self-healing
capacity due to their noncovalent cross-linking mechanism, as well as the hydrogen-bonding
interactions between polymer chains. More interestingly, it was found that the resultant gels possess
a long-lasting antifogging property that could prevent the formation of fog on the glass plate above
hot water for at least 90 min. It is expected that this novel type of hydrogel would show great promise
for various applications, including soft robots, artificial muscles, and optical devices.
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1. Introduction

Polymer hydrogels have attracted considerable research interest as advanced biomaterials because
of their unique combination of solidlike appearance, high hydrophilicity, excellent biocompatibility,
and tunable mechanical properties, as well as their responsiveness to environmental stimuli [1–5].
Therefore, hydrogels have been extensively explored for applications including biomedicine [6,7], tissue
engineering [8,9], drug delivery [10,11], biosensing [12,13], and wound dressing [14–16]. However,
the intrinsic mechanical weakness of conventional chemically cross-linked hydrogels caused by their
random distribution of cross-linking points or/and the lack of an energy-dissipation mechanism
severely restricted their vast applications in load-bearing systems such as soft machines [17,18],
bioactuators [19], and artificial tissue [20,21]. To conquer this limitation, numerous synthetic strategies
have been attempted to improve the mechanical properties of hydrogels, and a series of tough and
robust hydrogels have been realized [22]. For instance, Ito et al. reported a topological hydrogel (TP gel)
with “figure-of-eight” cross-links. When the gel is stretched, the cross-linking points could slide along
the polymer chains, which evenly distribute the external loads within the polymer matrix [23,24]. Gong
et al. prepared a type of double-network hydrogels (DN gels) with two interpenetrated cross-linking
networks with different cross-linking densities [25,26]. Upon loading, the densely cross-linked network
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factures to dissipate energy, while the loosely cross-linked one maintains the structural integrity of
hydrogels, endowing the DN gels with extraordinary toughness and strength. Haraguchi et al.
fabricated a kind of nanocomposite hydrogels (NC gels) using clay nanosheets as multifunctional
cross-linking agents [27,28]. It was considered that the uniformly distributed clay nanosheets and their
noncovalent interactions (e.g., hydrogen bonding and electrostatic attraction) with polymer chains
were responsible for the excellent mechanical properties of the NC gels. The development of these
novel hydrogels with unique structures and different energy-dissipation mechanisms greatly enlarged
the application range of hydrogel materials.

Self-healing capacity refers to a material’s ability to automatically repair damage and recover
to its original structure and properties [29,30]. Because self-healing could significantly prolong the
lifetime and improve the safe usage of materials, hydrogels with self-healing ability have gained
increasing attention in recent years, and various self-healing hydrogels have been successively
reported [31–33]. However, despite of their great potential in various applications, most of the
currently reported self-healing hydrogels either suffer from weak mechanical properties or need
sophisticated polymer design. Therefore, the fabrication of self-healing hydrogels combined with
outstanding mechanical performance by a facile approach has been the research focus of material
sciences. Generally, the driving forces of the self-healing of hydrogels can be divided into dynamic
covalent bonds (e.g., Schiff base linkages, dynamic borate bond, and disulfide bond) and noncovalent
physical interactions (e.g., hydrogen bond, co-ordination bond, and hydrophobic interaction) [31].
Among the above-mentioned high-strength hydrogels, NC gels employ noncovalent interactions to
cross-link the polymer chains. As a result, these noncovalent interactions could also endow NC gels
with a self-healing ability in addition to excellent mechanical properties. This hypothesis has already
been successfully verified by several groups, and a series of high-strength and self-healing NC gels have
been achieved using different nanomaterials, including clay nanosheets [34], graphene oxide (GO) [35],
TiO2 [36], and Zr(OH)4 nanoparticles [37]. In our previous reports, we developed a new type of NC
gels using alumina nanoparticles (Al2O3 NPs) as cross-linkers [38,39]. The hydrogels were prepared by
copolymerization of acrylic acid (AA) and the other polymeric monomer (e.g., N,N-dimethylacrylamide
or N-vinyl-2-pyrrolidinone) in the colloid solutions of Al2O3 NPs. It was considered that the
cross-linkage of this kind of hydrogels is contributed to the chelation interactions between Al2O3 NPs
and carboxyl groups on the polymer chains [40]. The resultant hydrogels not only exhibit outstanding
mechanical properties, but also have a highly transparent appearance and are swelling-resistant, which
make them highly prospective in various applications. Since chelation interactions were similar to
those noncovalent interactions that exist in other NC gels, it was hoped that this kind of hydrogel
would also have a self-healing capacity, similar to their counterparts cross-linked by above-mentioned
inorganic nanomaterials. Nevertheless, only negligible self-healing ability was observed, even when
the hydrogels were placed in high temperature (~80 ◦C) or when the healing time was prolonged
(~10 days). Furthermore, in our previous reports, we mainly focused on the formation mechanism and
the effect of different precursor compositions on the properties of the resultant hydrogels; potential
applications based on the special properties of this new kind of NC gels have not been investigated yet.

In this article, in order to endow alumina cross-linked NC gels with self-healing capacity and
explore their potential applications, a new kind of hydrogel, consisting of copolymer of AA and
2-acrylamido-2-methyl propane sulfonic acid (AMPS) and Al2O3 NPs, was synthesized. The obtained
hydrogels not only exhibited outstanding and comprehensive mechanical properties, but also displayed
considerable self-healing capacity due to the choice of AMPS as the comonomer. Furthermore, we
demonstrate that this kind of hydrogel could be utilized as long-lasting antifogging material due to
its water-absorbing capacity and high transparency at both dry and swollen states. The self-healing
mechanism and the effect of the Al2O3 content on the mechanical, swelling, and self-healing properties
of the obtained hydrogels were also investigated.
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2. Experimental

2.1. Materials

AA (>99%) and AMPS (99%) were purchased from Aladdin Co., Shanghai, China.
The 2-hydroxy-4′-(2hydroxyethoxy)-2-methyl-propiophenone (Irgacure 2959) and
N,N′-methylenebisacrylamide (BIS) were provided by Energy Chemical Co., Shanghai, China.
Alumina nanoparticles (Al2O3 NPs) with a particle size of 10–20 nm in the form of transparent colloid
solution with the concentration of 10% (w/w in water) were obtained from Jing Rui New Materials Co.,
Hangzhou, China. All reagents were used as received without further purification. Deionized (DI)
water was used for all the experiments.

2.2. Hydrogel Synthesis

The poly (AA-co-AMPS)/Al2O3-nanocomposite hydrogels (hereafter termed PAS gels) were
synthesized according to the method earlier reported by us [39]. Briefly, different amounts of raw
Al2O3 colloid solutions and extra DI water were added into 20 mL glass bottles to obtain Al2O3

dispersions with 10 g water and different concentration (2%, 4%, 6%, 8%, and 10%) of Al2O3 NPs.
Then, AA (0.21 g) and AMPS (5.59 g) with a monomer ratio of 1:9 and total monomer concentration of
3 mol/L, as well as 20 mg Irgacure 2959, were added in the above solutions, followed by magnetic
stirring for 30 min under a nitrogen atmosphere to result in transparent and homogeneous precursor
solutions. Finally, the precursor solutions were injected into different glass molds after being degassed
by vacuum, and then exposed to UV (365 nm, 60 mW/cm2) irradiation for 30 min to obtain PAS
gels. Prior to the further measurements and characterizations, the prepared PAS gels were taken
out from the molds and thoroughly washed with running water to remove any residue monomers
and impurities on the surface. The obtained hydrogels were denoted as PAS-x gels, in which the x%
represents the Al2O3 concentration in the initial Al2O3 dispersions. Furthermore, the hydrogels formed
by the neat copolymer of AA and AMPS, as well as the hydrogel cross-linked by organic cross-linker
BIS, were prepared for comparison.

2.3. Characterizations

The Fourier transform infrared (FT-IR) spectra were obtained using an IRAffinity-1S
(Shimadzu Co., Kyoto, Japan) infrared spectrometer with an attenuated total reflectance (ATR)
accessory. The UV−Vis transmission spectra were recorded using a UV-1800 (Shimadzu Co., Kyoto,
Japan) spectrophotometer using the DI water as the reference. The scanning electron microscopy (SEM)
was performed on a Quanta 250 (FEI CO., Ltd., Hillsboro, OR, USA) field emission scanning electron
microscope at an acceleration voltage of 20 kV. The atomic force microscopy (AFM) image was taken on
a Prima (NT-MDT Co., Moscow, Russia) instrument in tapping mode under an ambient environment.

2.4. Mechanical Tests

The mechanical properties of PAS gels were tested on an AGS-J (Shimadzu Co., Kyoto, Japan)
electronic universal testing machine. Sheetlike hydrogel samples with a size of 10 mm × 50 mm
× 2 mm were used for the tensile tests. Samples were clamped between two clamps with a gauge
length of 10 mm and stretched at the crosshead speed of 100 mm/min until fracture. Fracture
stress, elastic modulus, and elongation at break were calculated according to our previous report [39].
The loading–unloading test was carried out using the same instrument at the same tensile speed
described above. The samples were firstly stretched to preset strains (400%, 600%, 800%, 1000%, and
1200%), and then unloaded at the same speed to the original gauge length (10 mm) to obtain the
loading–unloading profiles. Total energy and dissipated energy were calculated from the area below
the loading curves and the area between the loading–unloading profiles, respectively. The dissipation
ratio is determined by the dissipated energy divided by the total energy. For the compressive tests,
the cylinder-like samples with a diameter of 10 mm and height of 10 mm were compressed to 90% of
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their original heights at the crosshead speed of 1 mm/min, and compressive strength and compressive
modulus were calculated based on the original cross-sectional area of the samples and the slopes
between the strain of 10%–20% on the stress–stain curves. To avoid water loss during the tests, a thin
layer of silicon oil was coated on the gel specimens. Three measurements were conducted on each
hydrogel and the average values were used for discussion.

2.5. Swelling Measurements

The swelling measurements of PAS gels were conducted in DI water at 25 ◦C. The as-prepared
hydrogel samples with a size of 10 mm × 10 mm × 2 mm were firstly dried in an oven at 90 ◦C, and
then immersed in DI water until swelling equilibrium. After a certain time interval, samples were
taken out and weighed after removing the water from the surface. The time-dependent swelling ratios
(SR) and equilibrium swelling ratios (ESR) of the PAS gels were calculated as follows:

SR =
Wt−Wd

Wd
ESR =

Ws−Wd
Wd

(1)

In which Wd, Wt, and Ws are the weights of samples at a dry state, a certain time point, and the
swelling equilibrium state, respectively. Three measurements were conducted on each hydrogel and
the average values were used for discussion.

2.6. Self-Healing Experiments

Two rodlike (Φ 5.5 × 60 mm) hydrogel samples with the same composition but different colors
were cut into two blocks by a razor blade, and two freshly cut surfaces from different samples were
immediately brought into contact. Then, samples were stored in sealed glass bottles to avoid water
evaporation and placed at room temperature for different durations (1–24 h). After a preset time, tensile
tests were conducted on the healed hydrogels to evaluate their self-healing capacity. The self-healing
efficiency of PAS gels is defined by the ratio between the fracture strain of the healed hydrogels
and that of the original uncut samples with the same composition, which can be calculated by the
following equation:

Self-healing efficiency =
St
So
× 100% (2)

In which St and So are the fracture strain of healed samples and that of the original uncut
hydrogels, respectively. Three measurements were conducted on each hydrogel, and the average
values were used for discussion.

2.7. Antifogging Evaluation

The antifogging evaluation of the PAS gels were conducted on the glass matrix. The hydrogel
precursor with the composition of PAS-10 was carefully injected between two glass plates separated
by a 1.0 mm thickness rubber spacer. After UV (365 nm, 60 mW/cm2) irradiation for 30 min, one of
the glass plates was removed and the hydrogel film-coated glass was obtained. The coated glass was
placed at room temperature for 24 h and then used for characterizations and antifogging evaluation.

3. Results and Discussion

3.1. Formation and Cross-Linking Mechanism of PAS Gels

The PAS gels were synthesized by facile UV-initiated in situ free radical polymerization as
illustrated in Figure 1a. Homogeneous precursor solutions were firstly obtained by mixing all the
components, including the Al2O3 colloid solution, water, monomers, and photoinitiator, under
a nitrogen atmosphere. Upon UV irradiation, the photoinitiator breaks down to generate free
radicals, which initiate the copolymerization of AA and AMPS. Simultaneously, the formed polymer
chains interact with the Al2O3 NPs to form cross-linked three-dimensional (3D) network structures.
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The resultant hydrogels were highly transparent (Figure 1b), and displayed interconnected porous
microstructures (Figures 1c and S1) similar to NC gels cross-linked by other nanomaterials [37,41–43].
To investigate the interactions contributing to the formation of PAS gels, FT-IR spectroscopy was
conducted on the Al2O3 NPs, neat copolymer of AA and AMPS, and the PAS gels. As shown in
Figure 2, the absorption peak at 3441 cm−1 in the spectrum of the Al2O3 NPs and the band centered
at 1714 cm−1 in the spectrum of the neat copolymer disappeared in the spectrum of the PAS gels.
According to the previous reports [39,40], this is because of the formation of chelation reactions
between –COOH groups on polymer chains and Al2O3 NPs. Furthermore, since the Al2O3 NPs in
the colloid solution are positively charged, the electrostatic interactions between the Al2O3 NPs and
–COO− groups may be beneficial to the formation of chelation reactions within PAS gels. In addition,
it can also be seen that the characteristic peak of –OH and S=O groups on polymer chains shifted to
3289 and 1028 cm−1, respectively, in the spectrum of the neat copolymers, which are lower to their
normal positions (~3400 cm−1 for the –OH groups and 1038 cm−1 for the S=O groups). This implies
the existence of hydrogen bonds between polymer chains as illustrated in Figure 1a. This conclusion
has been verified by the fact that the neat copolymer of AA and AMPS could form solidlike materials
(without Al2O3 NPs) with an appearance similar to the PAS gels. However, the formed materials would
be dissolved within two days when immersed in water (Figure S2), indicating that the hydrogen bonds
are not strong enough to form stable cross-linkage within polymer networks. In contrast, after Al2O3

NPs were introduced, the obtained hydrogels were highly stable, which could keep their structural
integrity even after being placed in water for 30 days. Based on the above analysis, it is reasonable to
conclude that the chelation reactions between –COOH groups on polymer chains and Al2O3 NPs were
responsible for the cross-linking structures of PAS gels, and the hydrogen bonds between polymer
chains may also contribute to their network structures.
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Figure 1. (a) Preparation and cross-linking mechanism of poly (AA-co-AMPS)/Al2O3-nanocomposite
hydrogels (PAS gels); (b) digital picture of as-prepared PAS gels; (c) typical scanning electron
microscopy (SEM) image of PAS-6 gel.
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Figure 2. Fourier transform infrared (FT-IR) spectra of Al2O3 NPs, neat copolymer of acrylic acid (AA)
and 2-acrylamido-2-methylpropane sulfonic acid (AMPS), and PAS-10 gel.

3.2. Mechanical and Swelling Properties of PAS Gels

Based on the chelation reactions between Al2O3 NPs and the polymer matrix, the PAS gels
exhibited excellent mechanical properties. As depicted in Figure 3a, the PAS gels could be stretched to
five times their original length by hand using two tweezers, revealing outstanding extensibility and
damage tolerance. Furthermore, the PAS gels were able to keep intact under large-scale compression
(90% of their original heights), and recover to their original dimensions with negligible residue strain
upon unloading within 10 min, showing good toughness and self-recoverability. In contrast, the
hydrogel cross-linked by BIS is brittle and fragile, which could be easily fractured by small external
force (Figure S3a). Although the hydrogel formed by the neat copolymer of AA and AMPS reveals
excellent toughness (Figure S3b), it would quickly dissolve in water (Figure S2), making it useless
in practical applications. These results indicate that Al2O3 NPs play a vital role in the mechanical
properties of PAS gels. To systematically study the mechanical properties of PAS gels, tensile and
compressive tests were conducted. Because PAS gels share the same cross-linking mechanism as
that described in our previous report [39], it was found that the effect of AA to AMPS ratios on the
properties of PAS gels were also similar to that previously reported. That is, increasing the AA ratio
would lead to an increase in the cross-linking density of PAS gels. Thus, elongation at the break as well
as swelling ratio consequently decrease, while the elastic modulus of PAS gels increases. Therefore, in
this study, we focused on how the amount of Al2O3 NPs influences the properties of PAS gels. Figure 3c
shows the tensile stress–strain curves of PAS gels with different Al2O3 content, and elongation at
break, tensile strength, and elastic modulus are listed in Table 1. It can be seen that PAS gels could be
stretched nearly 20-fold their original length before fracture, with tensile strength ranging from 240 to
660 kPa, depending on their Al2O3 content. Furthermore, it was found that both the elastic moduli
and tensile strength of the PAS gels increased as Al2O3 content increased, while the elongations at
break were almost unchanged. This result is quite similar to classical NC gels cross-linked by clay
nanosheets [44,45], confirming that the Al2O3 NPs act as inorganic cross-linking agents in PAS gels.
Figure 3c displays the compressive stress–strain curves of PAS gels. It reveals that all PAS gels were
able to withstand 90% compression without breaking, showing compressive strength up to 8.30 MPa.
The detailed data of the compressive tests are also summarized in Table 1. Similar to the tensile tests,
the elastic moduli and compressive strength also increased as Al2O3 content increased. Based on the
above results, it is worth noting that the mechanical properties of PAS gels could be readily tuned
by altering the Al2O3 content in the initial precursor solutions. Although the highest tensile and
compressive strength of PAS gels in the current study were only 660 kPa and 8.30 MPa respectively,
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PAS gels with higher mechanical strength could be obtained by further increasing the Al2O3 content
within the polymer matrix.
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Table 1. Mechanical properties of PAS gels.

Al2O3 Content Tensile
Strength/kP

Elongation at
Break/%

Tensile
Modulus/kPa

Compressive
Strength/MPa

Compressive
Modulus/kPa

2% 243.5 ± 12.3 1916.3 ± 105.5 4.6 ± 0.21 2.29 ± 0.11 20.4 ± 1.03
4% 352.3 ± 15.8 1848.5 ± 103.7 6.7 ± 0.35 3.30 ± 0.15 36.6 ± 1.98
6% 417.9 ± 24.3 1904.5 ± 104.7 8.6 ± 0.41 4.31 ± 0.18 65.3 ± 3.30
8% 572.5 ± 27.9 1793.8 ± 90.6 14.1 ± 0.78 6.27 ± 0.32 78.5 ± 3.62

10% 659.3 ± 30.6 1784.9 ± 92.5 20.1 ± 1.02 8.30 ± 0.42 110.1 ± 5.51

To further assess the toughness of PAS gels, the cyclic tensile loading–unloading tests were
performed on the PAS-10 gel. As depicted in Figure 4a, pronounced hysteresis loops were observed for
all the tests, indicating that the PAS gels could effectively dissipate applied energy [41,46]. This result
also verifies the non-covalent cross-linking structures of PAS gels. It has been discussed above that
there exists hydrogen bonds and chelation reactions within PAS gels. Upon loading, part of the
hydrogen bonds and chelation reactions acted as sacrificial bonds that broke to dissipate energy, while
the rest of them maintained the macroscopic integrity of PAS gels. During the unloading process,
the broken hydrogen bonds and chelation reactions reformed to regain the configuration of PAS gels.
However, unloading time was too short to allow all the broken bonds to completely reform, leading
to the large hysteresis loops. The quantified data calculated from the loading–unloading profiles are
shown in Figure 4b. It can be seen that, with the increase in strain, more energy could be dissipated
and higher energy-dissipation ratios were observed. For example, when the loading strain was 400%,
the total energy and dissipated energy were 0.16 and 0.06 MJ/m3, respectively, and the dissipation
ratio was calculated to be 37.5%. As strain increased from 600% to 1200%, the dissipation ratio also
changed from 39.3% to 56.1%. This phenomenon further proves the excellent energy-dissipation ability
of PAS gels, which contributes to their outstanding mechanical performance.
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The water-absorbing capacity of hydrogels is an important factor for their practical applications.
Therefore, the swelling ratios of PAS gels were measured in DI water at 25 ◦C. Figure 5 shows
the time-dependent swelling ratios of PAS gels. It reveals that the PAS gels could reach swelling
equilibrium from dry state within 48 h, and show ESR ranging from 8.5 to 39.5, indicating fast
and excellent water-absorbing capacity. In addition, both the swelling rate and ESR monotonously
decreased as Al2O3 content increased, which also proves that Al2O3 NPs act as cross-linking agents
within PAS gels. Here, it should be noted that both the dried and swollen hydrogels displayed
transparent appearances as their as-prepared counterparts, endowing the PAS gels with potential
applications in optical devices.
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3.3. Self-Healing Ability of PAS Gels

On the basis of the noncovalent cross-linking mechanism, as well as the existence of strong
hydrogen bonds within polymer chains, PAS gels also revealed remarkable self-healing capacity
similar to other NC gels [34,35,37]. As shown in Figure 6a, two pieces of hydrogel samples were
put together immediately after being cut. Upon being sealed and stored in a glass bottle for 24 h,
the surfaces of the two samples were merged together, and the healed sample could be stretched to a
certain strain without fractures, which confirms the self-healing ability of PAS gels. To quantitatively
evaluate the self-healing capacity of PAS gels, tensile tests were performed on the original and healed
PAS-2 gel. The stress–strain curves and self-healing efficiency based on fracture strains are displayed
in Figure 6b,c, respectively. It was found that the self-healing performance of PAS-2 gel could be
significantly enhanced by prolonging the healing time. When the healing time was 1 h, the healed
sample displayed elongation at break and tensile strength with 490.6% and 34.8 kPa, respectively.
Self-healing efficiency based on the fracture stain of original PAS-2 gel was only 25.9%. As healing
time increased, the fracture stress and strain were both significantly enhanced. After healing for 24 h,
self-healing efficiency reached 88.2%, indicating excellent self-healing capacity. It is widely accepted
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that the self-healing property of NC gels is attributed to the diffusion of polymer chains across the
hydrogel interface followed by the reformation of noncovalent interactions at the interface [31,34].
As for the PAS gels, when the two surfaces were closely contacted, the poly(AA-co-AMPS) chains at
the two surfaces diffused into each other and interacted with the Al2O3 NPs and other polymer chains
via chelation reactions or hydrogen bonds, respectively. Consequently, new cross-links are formed at
the interface, leading to the adherence of the cut surfaces. Prolonging healing time would allow more
polymer chains to diffuse across the interface and form more interactions, thus resulting in higher
self-healing efficiency. Here, it should be noted that the self-healing efficiency of the hydrogels cannot
achieve 100% even after much longer healing time due to the irreversible fracture of the polymer chains.
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efficiency of PAS gels with different Al2O3 content after healing for 24 h.

In addition to healing time, it was found that the self-healing efficiency of PAS gels is also
influenced by the Al2O3 content within hydrogels, as shown in Figure S4 and Figure 6d. The PAS-2
gel showed self-healing efficiency of nearly 90% after healing for 24 h. However, as the content of
Al2O3 increased to 4%, self-healing efficiency sharply decreased to 50.6% after the same healing time.
Further increasing the Al2O3 content leads to the self-healing efficiency drop to 20.8% (PAS-6 gel),
15.6% (PAS-8 gel), and 11.3% (PAS-10 gel). This is because that the increase of Al2O3 content leads to an
increase of cross-linking density of the PAS gels, which causes a decrease in the length of the polymer
chains between the neighboring cross-linking points. Compared with longer polymer chains, shorter
chains were more difficult to diffuse across the interface [34]. As a result, the self-healing efficiency of
PAS gels significantly decreased.

3.4. Antifogging Application of PAS Gels

In previous reports, NC gels were investigated for various applications, such as tissue
engineering [47], water treatment [36], strain sensors [48], and 3D printing [49] due to their unique
physiochemical properties. Herein, based on the water-absorbing ability and the highly transparent
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appearances of PAS gels at both dry and swollen states, we attempted to explore the applications of
PAS gels as potential antifogging materials. For this purpose, the PAS-10 gel film was directly prepared
on glass plates with the method described in Section 2.7. Figure 7a displays the digital photograph of
a hydrogel-coated glass plate in front of a green plant. It can be seen that both of the uncoated and
coated areas were highly transparent, indicating that the coating of the PAS-10 gel on the glass matrix
would not affect glass transparency. In fact, the PAS-10 gel film displayed higher transparency than
that of the used glass plate, as shown in Figure 7b, which means that the transparence of the coated
glass is determined by the glass matrix instead of the hydrogel film. In addition, our experimental
results also revealed that the thickness and the Al2O3 content of the PAS gels would not influence the
transparency of the hydrogel-coated glass.
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In order to characterize the morphology of the PAS gel coating on glass plate, SEM and AFM were
performed, and the typical images are shown in Figure 8. Figure 8a displays the SEM images of the
cross-section of PAS-10 gel coating under different magnification. The thickness of the as-prepared
PAS-10 gel coating was around 1.0 mm, determined by the used mold. After being placed at room
temperature for 24 h, the gel coating lost most of the water within the hydrogels, and thickness was
reduced to around 450 µm. Interestingly, it was found that the dried gel coating revealed a well-ordered
porous structure, although the pore size was much smaller that of the as-prepared PAS gels after freeze
drying. This phenomenon implies that the 3D network structure of hydrogel was not totally destroyed
during the drying process. In addition, the existence of this porous structure may be beneficial to its
fast water absorbing ability. Apart from the cross-section, we also observed the surface morphology
of the gel coating. Both of the SEM and AFM images shown in Figure 8c,d verified the excellent
smoothness of the surface of the gel coating, which could prevent the scattering of the light and endow
the gel-coated glass plate with high transparency.

To illustrate the antifogging performance of the PAS gels, the hydrogel-coated glass was placed
above 95 ◦C hot water and the antifogging property of hydrogels was recorded with a digital camera as
shown in Figure 9. Before measurement, the partially coated glass plate was placed on top of an empty
beaker. It can be seen that both the coated and uncoated areas were highly transparent, and the logo
of Jiangnan University under the beaker can be clearly viewed. When the beaker was filled with hot
water, the uncoated area immediately (within 10 s) became blurred due to the formation of fog on
the surface. In contrast, the coated area still stayed highly transparent due to the fast absorption of
the vapor into the hydrogel coating, preventing the formation of small water droplets on the surface.
As testing time went on, some small water droplets formed on the uncoated area, starting to merge
into big drops, while the coated area was still transparent even after testing for 90 min, displaying
a long-lasting antifog property. Furthermore, it is worthy to note that the PAS gel film was firmly
stuck on the glass plate throughout the whole testing process, and no buckling or detachment of
hydrogel film was observed. The reasons for this phenomenon may be explained as follows. Firstly,
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the hydrogel film was prepared directly on the glass plate from the hydrogel precursor. The aqueous
precursor could diffuse to any defective parts on the glass plate, forming strong hydrogen bonding
and Van der Waals force with the glass plate after polymerization. Therefore, it could still firmly
stick on the glass plate even as the hydrogel film was filled with some water. Secondly, as shown
in the Figure 8b, the dried hydrogel film coated on the glass still possessed a porous structure that
could accommodate a large number of water molecules without forming buckling. Although some
polymer-related antifogging materials have been documented in the literature [50–53], to the best of
our knowledge, this is the first report on the utilization of NC gels for antifogging applications. Based
on the excellent antifogging property and facile preparation of PAS gels, it is expected that this novel
hydrogel could be utilized as antifogging material on car windshields, goggles, and various optical
devices to ensure the transparency of their surfaces in humid environments.
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4. Conclusions

In summary, we synthesized a polymer/Al2O3 nanocomposite hydrogel with excellent mechanical
properties, outstanding self-healing capacity, and a long-lasting antifogging property. The hydrogels
were prepared via facile in situ free radical polymerization of AA and AMPS using Al2O3 NPs as
cross-linker agents. It was revealed that the noncovalent chelation reactions between Al2O3 NPs and
the polymer matrix, as well as the hydrogen bonds between polymer chains, contribute to the high
mechanical strength and self-healing capacity. Interestingly, the hydrogels displayed long-lasting
antifogging property when coated on a glass matrix due to their water-absorbing ability as well as
their high transparency at both dry and swollen states. We believe that this new type of nanocomposite
hydrogel would find applications in various hydrogel-based devices, including soft robots, artificial
muscles, and optical devices.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/12/1362/
s1. Figure S1. SEM images of PAS gels with different Al2O3 content. Figure S2. Illustration of the dissolution
of neat poly(AA-co-AMPS) gels without Al2O3 NPs. Figure S3. Illustration of mechanical properties of BIS
cross-linked hydrogel and neat poly(AA-co-AMPS) hydrogel. Figure S4. Stress–strain curves of original and
healed PAS gels.
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