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Abstract: Aromatic polymers such as poly(ether sulfone), poly(ether ketone), and polyimide
have been widely used in industry due to their thermal, mechanical, and chemical stabilities.
Although their application to catalysis has been limited, the introduction of a hyperbranched
architecture to such aromatic polymers is effective in developing catalytic materials that combine the
advantages of homogenous and heterogeneous catalysts. This review article overviews the recent
progress on the design and synthesis of hyperbranched aromatic polymers. Several acid catalyzed
reactions and the aerobic oxidation of alcohols have been demonstrated using hyperbranched
aromatic polymers as catalysts. The advantage of hyperbranched polymers against linear polymers
is also discussed.

Keywords: hyperbranched polymer; aromatic polymer; solid acid catalyst; partial oxidation;
AB2 monomer; A2 + B3 polymerization; heterogeneous catalyst; polycondensation

1. Introduction

Aromatic polymers such as poly(ether sulfone), poly(ether ketone), and polyimide are well-known
for their thermal, chemical, and mechanical stabilities. Although they are widely used as
high performance polymers in industry, their application to catalysis has been quite limited,
most likely because such aromatic polymers are considered inert and hence unsuitable for catalysis.
The development of catalytically active aromatic polymers will largely expand the applicability of
organic and polymeric materials in catalysis.

To develop catalytically active aromatic polymers, a hyperbranched architecture is of interest.
Hyperbranched polymers have a dendritic structure with a large number of end-groups [1–3].
The synthesis of a hyperbranched polymer is easier than that of dendrimers as hyperbranched
polymers can be synthesized in a one-step process from ABx-type monomers [4] where x is two
or more. They can be also synthesized via A2 + B3 polymerizations [5]. As illustrated in Figure 1,
hyperbranched architecture is suitable to develop catalytically active aromatic polymers, since a large
number of catalytically active sites can be introduced by converting the end-groups into catalytically
active functional groups. In addition, there are several reasons, given their less-entangled main chains,
to assume that hyperbranched polymers would be suitable for use in catalysis as their catalytically
active end-groups would be well-exposed and accessible to the reactants of catalytic reactions. A large
free volume of hyperbranched polymers would contribute to the mass transport of the reactants
and products. Additionally, hyperbranched polymers are well-soluble in many solvents. Typically,
soluble homogenous catalysts exhibit a higher catalytic activity than that of heterogeneous catalysts,
whereas the separation of the catalysts from the products is easier with heterogeneous catalysts.
The good solubility of hyperbranched polymers would guarantee good catalytic activity, moreover,
they can be used as heterogeneous catalysts after immobilization onto insoluble supports such as carbon
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materials. In other words, hyperbranched polymers can combine the advantages of homogenous and
heterogeneous catalysts of high catalytic activity and ease of separation.
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This review article focused on the recent progress in the development of hyperbranched
aromatic polymers for use in catalysis. Poly(ether sulfone), poly(ether ketone), and polyimides
with hyperbranched architectures have been synthesized, and some of them have been demonstrated
as catalyst materials for various reactions such as esterification, hydrolysis of cellulose, and partial
oxidation of alcohols.

2. Hyperbranched Poly(Ether Sulfone) for Catalysis

Many chemical reactions are catalyzed in acid; therefore, acid-catalyzed chemical reactions are
very important in producing various chemicals. With regard to green chemistry, it is quite important to
replace liquid acid catalysts such as HF and H2SO4 with solid acid catalysts [6]. Ion-exchanging
polymers such as Amberlyst® are typical solid acid catalysts; however, they are usable only at
ambient operating temperatures typically below 120 ◦C because of the low thermal stability of
the aliphatic main chains [7]. If ion-exchanging polymers with a higher thermal stability could
be developed, the applicability of polymer-based solid acid catalysts would be largely expanded;
aromatic hyperbranched poly(ether sulfone) could be a promising material.

The use of aromatic hyperbranched polymers in catalysis began from a sulfonated aromatic
polymer. Van de Vyver et al. prepared sulfonated hyperbranched poly(arylene oxindole)s via the
A2 + B3 polycondensation of isatin and 1,3,5-tri-(4-phenoxybenzoyl)-benzene, and demonstrated
the hydrolysis of cellulose in a homogenous catalytic reaction [8]. More recently, as illustrated in
Figure 1 and mentioned below [9,10], our research group demonstrated the use of hyperbranched
poly(ether sulfone) as an acid catalyst.

2.1. Synthesis of HBSPES and HBSPES/CB

Hyperbranched poly(ether sulfone) was synthesized from an AB2 monomer, 4,4’-(m-phenylene-
dioxy)-bis-(benzenesulfonyl chloride), as illustrated in Scheme 1. This synthesis approach was designed
for the development of a proton-exchange membrane [11–13], and our research group applied it to
acid-catalyzed reactions [9,10]. Hyperbranched sulfonated poly(ether sulfone) (HBSPES) is itself
soluble in many solvents, and therefore, will work as a homogenous catalyst. Conventional linear
sulfonated poly(ether sulfone) (LSPES) was also prepared to compare the nature of the polymers as
acid catalyst materials. The molecular weights (Mw) of these polymers were adjusted in the range of
13–17 kDa by changing the polymerization conditions.
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We also attempted to develop heterogeneous catalysts by immobilizing HBSPES and LSPES onto
carbon black (HBSPES/CB and LSPES/CB). The polymers were dissolved in N,N-dimethylformamide
(DMF) or nitrobenzene and stirred in the presence of carbon black (Ketjen Black EC600JD, Lion Specialty
Chemicals, Tokyo, Japan), and the resulting powders were washed with DMF. The ion-exchange
capacities (IECs) of the HBSPES and LSPES were 2.1 and 2.5 mmol g−1 before the immobilization
and decreased to 0.89 and 0.50 mmol g−1, respectively. The decrease corresponded to polymer
loadings of 39 and 20 wt %, respectively. The difference in polymer loading was most likely because
hyperbranched polymers have a denser architecture than their linear analogues [14–16]. Figure 2
shows the transmission electron microscopy (TEM) images of pristine carbon black and HBSPES/CB.
Compared with that of untreated carbon black, the particle size of HBSPES/CB seemed slightly larger,
and HBSPES/CB seemed to have a uniform polymer layer.
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2.2. Homogenous Catalytic Reactions by HBSPES

The HBSPES and LSPES were tested as catalysts for the esterification reaction between acetic
acid and 1-butanol. Low-molecular-weight model catalysts, p-toluenesulfonic acid (PTSA) and
4-(phenoxy)benzenesulfonic acid (PBSA), were also tested, and the results are summarized in Table 1.
PTSA and PBSA showed the highest turnover frequencies (TOFs; 3.2 and 4.4 min−1, respectively),
as they work as homogenous catalysts. The TOF of the HBSPES was fairly high (2.7 min−1) whereas
that of the LSPES was much lower (0.56 min−1). The effects of molecular weight on the catalytic
activity of the HBSPES and LSPES for the esterification were further studied, as shown in Figure 3.
At a relatively low Mw of less than 20 kDa, the LSPES seemed to exhibit a slight advantage over the
HBSPES in terms of the normalized reaction rate. However, the reaction rate over the LSPES clearly
decreased as the molecular weight increased. Furthermore, the LSPES with 79 kDa Mw was partially
insoluble in the reaction solvent. For a relatively low molecular weight, the TOFs of the LSPES and
HBSPES were quite similar. This is probably because both the LSPES and HBSPES, having such a low
molecular weight, dissolve easily in the reaction solution, making the accessibility of the reactant to
the sulfonic acid groups. However, the TOF of the LSPES clearly decreased as the molecular weight
increased, whereas that of the HBSPES remained steady. This could be due to the inter- and intra-chain
aggregation of the LSPES and suggests that the ability of the sulfonic acid groups in the LSPES to access
the reactant worsened at high molecular weights. These experimental results indicate that the HBSPES
exhibits a steady catalytic activity over a wider range of molecular weights. This is probably because
hyperbranched polymers have a good affinity for the reaction solvent given the low entanglement of
the polymer chains, which leaves the terminal functional groups well-exposed to the reactants.

Table 1. Results of catalytic esterification reaction [9].

Catalyst IEC mmol g−1 w 1 mg t 2 h Yield 3 % TOF 4 min−1

Blank - - 2.5 4 -
Ketjen black - 20 2.5 4 -

PTSA 5.3 10 0.5 26 3.2
PBSA 4.0 10 0.5 21 3.4

HBSPES 5 2.1 20 0.5 18 2.7
HBSPES/CB 0.89 20 2.5 13 0.67

LSPES 6 2.5 20 2.5 25 0.56
LSPES/CB 0.50 20 2.5 5 0.13

Amberlyst®-15 4.7 20 2.5 21 0.24
1 Amount of the catalyst. 2 Reaction period. 3 Esterification of 1-butanol (0.02 mol) and acetic acid (0.02 mol) at
65 ◦C. 4 Calculated from the IEC and the esterification yield. 5 Mw: 91 kDa. 6 Mw: 18 kDa.
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Figure 3. Normalized reaction rates and apparent turnover frequencies of homogeneous catalytic 

reactions for the esterification of 1-butanol (32 mmol) and acetic acid (1.8 mmol) at 65 °C for 0.5 h 

with various molecular weights of LSPES and HBSPES [10]. 

Figure 3. Normalized reaction rates and apparent turnover frequencies of homogeneous catalytic
reactions for the esterification of 1-butanol (32 mmol) and acetic acid (1.8 mmol) at 65 ◦C for 0.5 h with
various molecular weights of LSPES and HBSPES [10].
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2.3. Heterogeneus Catalytic Reactions by HBSPES

HBSPES/CB and LSPES/CB were tested for a heterogeneous catalytic reaction for the esterification
of 1-butanol and acetic acid. The results of these catalysts and the commercial Amberlyst®-15
(Sigma-Aldrich, Tokyo, Japan) are compared in Table 1. The TOF of HBSPES/CB was lower than that of
the HBSPES, but still better than that of Amberlyst®-15 and LSPES/CB. The effects of molecular weight
on the catalytic activity of HBSPES/CB and LSPES/CB for the esterification were further studied,
as shown in Figure 4. For all of the tested molecular weights, the TOFs of HBSPES/CB were much better
than those of LSPES/CB. These results probably reflect the nature of the hyperbranched polymers,
which can be immobilized with a higher polymer loading due to their compact architecture, and can
afford a higher catalytic activity of the end-groups due to their good affinity for the reaction solution.
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Figure 4. Normalized reaction rates and apparent turnover frequencies of homogeneous catalytic
reactions for the esterification of 1-butanol (32 mmol) and acetic acid (1.8 mmol) at 65 ◦C for 0.5 h [10].

The recyclability of HBSPES/CB was tested by filtering the reaction mixture and reusing the
catalyst powder, and the results are shown in Figure 5 [9]. Although the collection yield of HBSPES/CB
was not 100%, over 90% HBSPES/CB was successfully collected, even after five runs. Moreover, the
catalytic activity of HBSPES/CB appeared to be fairly stable, so it can be concluded that the stability of
HBSPES/CB is quite promising.
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fifth run), and the relative amounts of catalyst against the first run. Conditions were identical to those
in Table 1, but the catalyst amount was 60 mg and the reaction period was 2.5 h [9].
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2.4. Catalytic Reactions Benefitting from High Thermal Stability

As the aromatic main chains of HBSPESs have a high thermal stability, a higher operating
temperature can be expected when compared with that for Amberlyst®-15. In this context,
the Friedel–Crafts alkylation of anisole with benzyl alcohol was studied using HBSPES/CB,
as illustrated in Scheme 2, and the results are summarized in Figure 6. HBSPES/CB showed a
reliable catalytic activity for this reaction. Furthermore, the catalyst was successfully collected after
the reaction and used subsequently for an additional four runs, although the performance slightly
degraded as the run number increased. Amberlyst®-15 also exhibited catalytic activity under the same
conditions, but the reaction mixture became turbid immediately at the early stage of the reaction,
and it was impossible to collect the catalyst. Amberlyst®-15 probably decomposed in these reaction
conditions and worked as a homogenous catalyst. These experimental results clearly suggest that the
stability of the HBSPES/CB catalyst is superior to that of the typical ion-exchange resin under such
high temperatures.
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Figure 6. The results of Friedel–Crafts alkylation over (a) HBSPES/CB and (b) Amberlyst®-15.
Conditions: anisole 18.5 mmol, benzyl alcohol 1.25 mmol, catalyst 75 mg, 130 ◦C, 20 h. Inset: the
reaction mixture after the first run with Amberlyst®-15 [9].

2.5. Perspective for HBSPES

As mentioned above, HBSPES has been demonstrated as homogenous and heterogeneous
catalysts, and the advantage against linear polymers has also been experimentally evidenced.
Since sulfonic acid groups can catalyze many catalytic reactions, more various chemical reactions can
be performed. The next challenge for HBSPES in catalysts could be the density of active sites, especially
in the heterogeneous form. The immunization of HBSPES onto a carbon surface is actually useful,
but even higher polymer loadings would be ideal to have a higher ion exchange capacity. The design
of the monomers and polymers could also be further improved to increase the number of sulfonic
acid groups.
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3. Hyperbranched Poly(Ether Ketone) for Catalysis

Although HBSPESs work well as acid catalysts for several reactions, the end-groups of HBSPESs
are not easy to convert into other functional groups. If aromatic hyperbranched polymers with
reactive end-groups that can be modified with various functional units could be developed, the use of
hyperbranched aromatic polymers would be further expanded to various catalytic reactions. In this
context, we focused on the development of hyperbranched poly(ether ketone) (HBPEK).

3.1. Synthesis of HBPEK

Although there are several examples for the synthesis of HBPEK [17–21], those for reactive
end-groups such as carboxylic acid are quite limited. Shu and Leu reported the synthesis of
HBPEK with carboxylic acid end-groups through the polycondensation of an AB2 monomer,
5-phenoxyisophthalic acid [18]. As the two B units were present on the same benzene ring, the activity
of the B units was limited by steric hindrance, resulting in a relatively low molecular weight of Mw of
<15 kDa.

In this context, our research group proposed AB2 monomers with more reactive B units. Scheme 3a
shows the synthesis route of HBPEK with carboxylic acid end-groups [22]. In this AB2 monomer,
4,4’-(m-phenylenedioxy)-bis-(benzenecarboxylic acid), the B units are expected to exhibit a high
reactivity due to the high flexibility derived from the ether bonds and less steric hindrance. Indeed,
the polycondensation of this AB2 monomer in phosphorous pentoxide–methanesulfonic acid (PPMA)
resulted in a fairly high Mw of up to 159 kDa, accompanied by reasonable IECs of 2.2–2.8 mmol
g−1. The carboxylic acid groups can work as weakly acidic catalysts or can be modified with various
functional groups using end-capping reactions to form amide or ester bonds.
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(b) phthalic acid end-groups [23].

Aiming for a higher IEC and more reactive end-groups, another AB2 monomer,
1,3-bis-(3,4-dicarboxyphenoxy)benzene dianhydride, as shown in Scheme 3b, was also proposed
by our research group [23]. This monomer can be polymerized without any byproducts and will leave
phthalic acid end-groups, which can afford a high IEC. This polycondensation chemistry has been
used in a very limited number of A2 + B3 samples [24,25], but this was the first example that applied it
to the synthesis of HBPEK by the self-polycondensation method employing the Friedel–Crafts reaction
for the synthesis of HBPEK. The polycondensation of this monomer in the presence of AlCl3 resulted in
fairly high Mw of up to 224 kDa, accompanied by quite high IECs of 6.4–7.4 mmol g−1. These phthalic
acid end-groups are quite promising as catalytically active sites for the hydrolysis of cellulose [26].
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3.2. Immobilization of HBPEK onto Supports

To use HBPEK as a heterogeneous catalyst, the immobilization of HBPEK onto supports such as
carbon black [27], polyimide (PI) nanoparticles [27], and graphene [28] has been demonstrated by our
research group. Figure 7 shows the field-emission scanning electron microscopy (FE-SEM) images
of carbon black and PI nanoparticles before and after the immobilization of HBPEK. We synthesized
the PI nanoparticles via precipitation polymerization [29–32]. HBPEK was treated with these
aromatic supports in the presence of PPMA by using the same condensation chemistry as that of the
aforementioned polymerization of HBPEK. The carbon black–treated HBPEK (HBPEK/CB) showed
a relatively smooth surface, whereas the surface of the pristine CB seemed quite rough due to its
microporous structure. The HBPEK treated with PI nanoparticles (HBPEK/PI) also showed a clearly
different surface from that of pristine PI. The immobilization of HBPEK was also confirmed from the
difference in the IEC and the results of the elemental analysis [27].
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3.3. Catalytic Reactions with HBPEK

3.3.1. Hydrolysis of Cellulose

The production of renewable chemicals and fuel from biomass has attracted a great deal of
attention with regard to a green and sustainable society, and the catalytic conversion of cellulose to
glucose is a very important reaction [33,34]. Conventionally, this reaction has been demonstrated using
mineral acids [35], but a more environmentally friendly process should be established. Kobayashi et al.
demonstrated that several carbon materials with weakly acidic functional groups such as carboxylic
acids were promising catalysts for this purpose [26,36]. Such oxygen-containing functional groups
are typically introduced by the oxidation of carbon surfaces, but it is generally difficult to precisely
control the chemical structures and densities of such functional groups by the surface modification of
carbon materials.

In this context, as a more well-defined weakly acidic material, the investigation of HBPEK for
the catalytic conversion of cellulose to glucose is of interest because HBPEK has numerous carboxylic
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acid terminals on its aromatic rings. As illustrated in Scheme 4, HBPEK was tested for the hydrolysis
of cellulose and certainly exhibited catalytic activity. After treating 324 mg cellulose in the presence
of 50 mg HBPEK and 40 mL water, at 230 ◦C, the conversion of cellulose was 53%, yielding 22%
oligomers and 16% glucose [22]. This result suggests that the carboxylic acid groups of HBPEK certainly
functioned as weakly acidic sites; however, this catalytic process needs to be further optimized.
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3.3.2. Partial Oxidation of Alcohols

The oxidation of primary alcohols to aldehydes is important in terms of the synthesis of
chemicals and intermediates. The aerobic oxidation of organic compounds is especially of interest
because the reaction consumes oxygen as the oxidizing agent and produces only water as the
byproduct. For this purpose, a nitroxyl radical with low toxicity and reversible redox behavior,
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), has been studied [37]. Furthermore, our research group
presented a nitric acid–assisted carbon-catalyzed oxidation system (NACOS) using carbon-based
materials as metal-free catalysts [38] and demonstrated that TEMPO enhanced this oxidation
system [39]. Although TEMPO has typically been demonstrated as a homogenous catalyst,
the immobilization of TEMPO onto solid supports such as polystyrene [40], silica [41], and iron
oxide [42] has also been reported. These materials are quite promising for establishing heterogeneous
reaction systems, which will be more cost-effective and environmentally friendly compared to
homogeneous systems.

In this context, HBPEK could be promising for the immobilization of such catalytically active
groups via the modification of the carboxylic acid terminals. Scheme 5a shows the procedures to
immobilize the TEMPO units by forming amide bonds. HBPEK was loaded onto carbon black or
PI nanoparticles, and the resulting HBPEK/CB and HBPEK/PI were treated with amino-TEMPO,
yielding 1.39 and 0.96 mmol g−1 of TEMPO loadings, respectively.

These catalysts were tested for the aerobic oxidation of benzyl alcohol in the NACOS, as shown
in Scheme 5b, and the results are summarized in Table 2 [27]. The turnover number (TON) of
the TEMPO unit was calculated from the yield of benzaldehyde. A control test without the
catalyst gave a low yield. Commercial TEMPO, which was a homogeneous system, showed the
highest activity, with a TON of 60. The catalytic activity of TEMPO/HBPEK, which was also a
homogenous system, was slightly lower, most likely due to the lower mobility of the TEMPO
terminal units on HBPEK. Two synthesized heterogeneous catalysts, TEMPO/HBPEK/CB and
TEMPO/HBPEK/PI, exhibited a reliable catalytic activity. The performance of TEMPO/HBPEK/CB
was slightly better than that of TEMPO/HBPEK/PI, perhaps due to the synergy between TEMPO and
CB [39]. Both TEMPO/HBPEK/CB and TEMPO/HBPEK/PI were easy to separate from the reaction
solution, and over 90 wt% of the catalysts were successfully collected by filtration.

Another derivative, HBPEK immobilized onto graphene has been demonstrated for a slightly
more difficult oxidation reaction, the aerobic oxidation of 2-adamantanol [28]. The oxidation
of 2-adamantanol in 1,4-dioxane at 60 ◦C for 12 h yielded in 18.3% of 2-adamantanone,
which corresponded to a TON of 5, accompanied by a good recyclability of the catalyst.
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of the NACOS, over TEMPO-based catalysts.

Table 2. Results of aerobic oxidation of benzyl alcohol to benzaldehyde 1 [27,43].

Catalyst TEMPO Loading mmol g−1 w 2 mg Yield % Selectivity % TON

Blank - - 1 50 -
TEMPO 6.4 12.5 48 98 60

TEMPO/HBPEK 2.0 40 37 98 46
TEMPO/HBPEK/CB 1.3 62 23 86 27
TEMPO/HBPEK/PI 1.0 80 18 >99 22

TEMPO/HBPI 1.2 20 11 >99 51
1 Benzyl alcohol (10 mmol) was treated in the presence of nitric acid (0.2 mmol) and the TEMPO-based catalyst at
90 ◦C for 2 h with an oxygen balloon. 2 The amount of the catalyst.

3.3.3. Perspective for HBPEK

Although quite limited kinds of catalytic reactions have been demonstrated, HBPEK can be
applied to a wider range of catalytic reactions by introducing various catalytic centers. In particular,
the phthalic acid unit is quite reactive and suitable for the post-functionalization. Further studies will
be done to expand the applicability of HBPEK.

4. Hyperbranched Polyimide (HBPI) for Catalysis

Among the high-performance aromatic polymers, PI can be regarded as the most thermally
stable polymer. Therefore, the use of HBPI in catalysis is worth exploring. HBPI can be synthesized
by the self-condensation of an AB2 monomer [43–45] or copolymerization of an A2 monomer and
a B3 monomer [46–48]. Such A2 + B3 polymerizations typically result in cross-linked network
polymers [49,50]; however, careful reaction control (monomer ratio, monomer feeding speed, etc.)
yields hyperbranched polymers [46], and the remaining terminals can be modified using an
end-capping reaction [48].

In this study, an A2 + B3 polymerization of pyromellitic dianhydride (PMDA) and
1,3,5-tris(4-aminophenyl)benzene (TAPB) was selected, and the phthalic acid unit was modified
with amino-TEMPO to develop a catalytically active PI (TEMPO/HBPI) [48], as shown in Scheme 6.
This synthesis procedure yielded HBPI modified with 1.2 mmol g−1 of TEMPO units. Table 2 shows
the results of the aerobic oxidation of benzyl alcohol using this TEMPO/HBPI, in comparison with
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the catalytic activity of HBPEK-based catalysts. TEMPO/HBPI exhibited a reliable catalytic activity,
with a TON of 51, which was higher than those with HBPEK-based catalysts. Interestingly, this HBPI
could be easily collected by filtration; therefore, it could be used as a heterogeneous catalyst without
immobilizing the polymer onto carbon black. This is probably because this hyperbranched polymer is
partially cross-linked since it was obtained from an A2 + B3 polymerization. Since the phthalic acid
end-groups have a high reactivity, various other catalytically active sites could be investigated in the
near future.
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Compared to HBSPES and HBPEK, the affinity of the polyimide backbone chains to typical solvent
systems tends to be poor, which will be the main problem for HBPI in catalysis. However, if the high
thermal stability of polyimide could be wisely utilized, more challenging catalytic reactions might be
possible, benefitting from higher reaction temperatures.

5. Conclusions and Future Prospects

Various hyperbranched aromatic polymers, HBSPES, HBPEK, and HBPI, have been designed
for use in catalysis. One clear advantage of the application of these hyperbranched polymers is
the high reactivity of the end-groups, which are well-exposed due to the low entanglement of the
main chains. These polymers can be used as heterogeneous catalysts; moreover, a good catalytic
activity comparable to that of homogeneous catalysts can be expected since hyperbranched polymers
have a good affinity for many solvents. In other words, hyperbranched polymers can combine
the advantages of homogenous and heterogeneous catalysts: high catalytic activity and ease of
separation. We demonstrated several model catalytic reactions in this article, but other challenging
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catalytic reactions will be investigated by introducing various catalytically active sites. In addition,
electro-catalytic processes using hyperbranched polymers could be our next area of interest, as the
syntheses of several π-conjugated hyperbranched polymers have been recently demonstrated [51–54].
Further studies would be able to develop more attractive and exciting catalytic systems, which we
believe will contribute to a sustainable future by green chemistry.
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