

Supplementary

α,ω-Epoxide, Oxetane and Dithiocarbonate Telechelic Copolyolefins: Access by Ring-Opening Metathesis/Cross-Metathesis Polymerization (ROMP/CM) of Cycloolefins in the Presence of Functional Symmetric Chain-Transfer Agents

Elise Vanbiervliet,^a Stéphane Fouquay,^b Guillaume Michaud,^c Frédéric Simon,^c Jean-François Carpentier (ORCID: 0000-0002-9160-7662),^{a,1} and Sophie M. Guillaume (ORCID: 0000-0003-2917-8657)^{a,*}

- ^{*a*} Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, F-35000 Rennes, France
- ^b BOSTIK S.A., 253, Avenue du Président Wilson, F-93211 La Plaine Saint-Denis, France
- ^c BOSTIK, ZAC du Bois de Plaisance, 101, Rue du Champ Cailloux, F-60280 Venette, France
- * Corresponding authors: <u>jean-francois.carpentier@univ-rennes1.fr</u>; <u>sophie.guillaume@univ-rennes1.fr</u>

Table, Schemes and Figures captions

Table S1. NMR and FTIR spectroscopic characteristics of the α, ω -diepoxide telechelic P(NB-*co*-CDT) prepolymers and the resulting α, ω -bis(dithiocarbonate) P(NB-*co*-CDT) analogues.

Figure S1. ORTEP representation of the molecular solid-state structure of CTA **2**. Ellipsoids drawn at the 50% probability level. H atoms are omitted for clarity.

Figure S2. ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 25 °C) of CTA **2**; (*: residual solvents δ (ppm) 3.31 H₂O, 1.25, 4.20 ethanol).

Figure S3. ¹³C{¹H} NMR spectrum (100 MHz, DMSO-*d*₆, 25 °C) of CTA **2**; (*: residual solvents δ (ppm) 13.9; 61.1 diethylether; 18.6, 56.1 ethanol).

Figure S4. ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 25 °C) of CTA **3**; (*: residual solvent δ (ppm) 3.31 H₂O).

Figure S5. ¹³C{1H} NMR spectrum (100 MHz, DMSO-*d*₆, 25 °C) of CTA **3**.

Figure S6. ¹H NMR spectrum (500 MHz, CDCl₃, 25 °C) of the copolymer sample prepared by ROMP/CM of COE/NB (50:50) in the presence of **G2**/CTA **1** in CH₂Cl₂ (Table 2, entry 1). (*: residual solvents: δ (ppm) 1.59 H₂O, 0.07 grease).

Figure S7. ¹³C NMR spectrum (125 MHz, CDCl₃, 25 °C) of the copolymer sample prepared by ROMP/CM of COE/NB (50:50) in the presence of **G2**/CTA **1** (Table 2, entry 1). (*: residual solvents: δ (ppm) 1.2 grease).

Figure S8. ¹H NMR spectrum (500 MHz, CDCl₃, 25 °C) of the copolymer sample prepared by ROMP/CM of NB/CDT (50:50) in the presence of **HG2**/CTA **1** in CH₂Cl₂ (Table 3, entry 3). (*: residual solvents: δ (ppm) 1.53 H₂O, 0.07 grease).

Figure S9. ¹H NMR spectrum (500 MHz, CDCl₃, 25 °C) of the copolymer sample prepared by ROMP/CM of NB/CDT (50:50) in the presence of **HG2**/CTA **1** in THF (Table 3, entry 4), a) after dialysis in THF, and b) before dialysis in THF (*: residual solvents: δ (ppm) 1.53 H₂O, 0.07 grease).

Figure S10. ¹³C NMR spectrum (125 MHz, CDCl₃, 25 °C) of the copolymer sample prepared by ROMP/CM of NB/CDT (50:50) in the presence of **HG2**/CTA **1** in THF (Table 3, entry 4) (δ (ppm) 0.07 grease).

Figure S11. 2D COSY ¹H–¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of the copolymer sample prepared by ROMP/CM of NB/CDT (50:50) in the presence of **G2**/CTA **3** (Table 3, entry 8).

Figure S11. 2D COSY ¹H–¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of the copolymer sample prepared by ROMP/CM of NB/CDT (50:50) in the presence of **G2**/CTA **3** (Table 3, entry 6).

Figure S12. FTIR spectrum of the α, ω -bis(dithiocarbonate) P(NB-*co*-CDT) copolymer sample prepared by dithiocarbonatation of the α, ω -diepoxide telechelic P(NB-*co*-CDT) prepolymer (Table 4, entry 1).

Figure S13. ¹H NMR spectrum (500 MHz, CDCl₃, 25 °C) of the CNF copolymer isolated from the α, ω -bis(dithiocarbonate) P(NB-*co*-CDT) crude copolymers. (*: δ (ppm) 0.07 residual grease) (Table 4, entry 1).

Table S1. NMR and FTIR spectroscopic characteristics of the α,ω -diepoxide telechelic P(NB-*co*-CDT) prepolymers and the resulting α,ω -bis(dithiocarbonate) P(NB-*co*-CDT) analogues.

¹ H NMR	(δppm)	2.67; 2.86; 3.24; 3.98; 4. 45 (A61)	3.59; 4.49; 5.37
(400 MHz,	Assignments	a ; a ; b ; c ; c	a'; c'; b'
23 °C, CDCl ₃)	Integrations	1 1 1 1 1	2 2 - ^b
		Figure S9	Figure 5
$^{13}C{^{1}H} NMR$	(\delta ppm)	38.2 ; 49.6 ; 64.9 ; 166.6	210.9 ; 166.0 ; 87.7 ; 53.6 ; 31.0
(100 MHz, 23 °C, CDCl ₃)	Assignments	a ; b ; c ; d	g'; d'; b' ; c'; a'
		Figure S10	Figure 6
FTIR	$(\sigma \ cm^{-1})$		1190 (uc=s) ; 1519 (uc=o)
		-	Figure S13

Figure S1. ORTEP representation of the molecular solid-state structure of CTA **2**. Ellipsoids drawn at the 50% probability level. H atoms are omitted for clarity.

Figure S2. ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 25 °C) of CTA **2**; (*: residual solvents δ (ppm) 3.31 H₂O, 1.25, 4.20 ethanol).

Figure S3. ¹³C{¹H} NMR spectrum (100 MHz, DMSO-*d*₆, 25 °C) of CTA **2**; (*: residual solvents δ (ppm) 13.9; 61.1 diethylether; 18.6, 56.1 ethanol).

i,4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 f1 (ppm)

Figure S4. ¹H NMR spectrum (400 MHz, DMSO- d_6 , 25 °C) of CTA 3; (*: residual solvent δ (ppm) 3.31 H₂O).

Figure S5. ¹³C{¹H} NMR spectrum (100 MHz, DMSO-d₆, 25 °C) of CTA 3.

Figure S6. ¹H NMR spectrum (500 MHz, CDCl₃, 25 °C) of a copolymer sample prepared by ROMP/CM of COE/NB (50:50) in the presence of **G2**/CTA **1** in CH₂Cl₂ (Table 2, entry 1). (*: residual solvents: δ (ppm) 1.59 H₂O, 0.07 grease).

Figure S7. ¹³C NMR spectrum (125 MHz, CDCl₃, 25 °C) of a copolymer sample prepared by ROMP/CM of COE/NB (50:50) in the presence of **G2**/CTA **1** (Table 2, entry 1). (*: residual solvents: δ (ppm) 1.2 grease).

Figure S8. ¹H NMR spectrum (500 MHz, CDCl₃, 25 °C) of a copolymer sample prepared by ROMP/CM of NB/CDT (50:50 mol/mol) in the presence of **HG2**/CTA **1** in CH₂Cl₂ (Table 3, entry 3). (*: residual solvents: δ (ppm) 1.53 H₂O, 0.07 grease).

Figure S9. ¹H NMR spectrum (500 MHz, CDCl₃, 25 °C) of a copolymer sample prepared by ROMP/CM of NB/CDT (50:50 mol/mol) in the presence of **HG2**/CTA **1** in THF (Table 3, entry 4), a) after dialysis in THF, and b) before dialysis in THF (*: residual solvents: δ (ppm) 1.53 H₂O, 0.07 grease).

Figure S10. ¹³C NMR spectrum (125 MHz, CDCl₃, 25 °C) of a copolymer sample prepared by ROMP/CM of NB/CDT (50:50 mol/mol) in the presence of **HG2**/CTA **1** in THF (Table 3, entry 4) (δ (ppm) 0.07 grease).

Figure S11. 2D COSY ¹H–¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of a copolymer sample prepared by ROMP/CM of NB/CDT (50:50 mol/mol) in the presence of **G2**/CTA **3** (Table 3, entry 8).

Figure S12. FTIR spectrum of an α , ω -bis(dithiocarbonate) P(NB-*co*-CDT) copolymer sample prepared by dithiocarbonatation of an α , ω -diepoxide telechelic P(NB-*co*-CDT) prepolymer (Table 4, entry 1).

Figure S13. ¹H NMR spectrum (500 MHz, CDCl₃, 25 °C) of a CNF copolymer isolated from an α, ω bis(dithiocarbonate) P(NB-*co*-CDT) crude copolymers. (*: δ (ppm) 0.07 residual grease) (Table 4, entry 1).

e authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).