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Abstract: We found in our previous study that layered double hydroxides (LDHs) which undergo
aqueous miscible organic solvent treatment (AMOST) can tune the hydrophobicity surface of LDHs
to be hydrophobic, and then the solvent mixing method can be used to prepare polymer/LDH
nanocomposites. However, flame retardant property is not very high if LDHs are only used.
In this present work, ammonium polyphosphate (APP) intercalated LDHs and zinc borate (ZB)
was incorporated into a polypropylene (PP) matrix using the solvent mixing method. The structures,
morphologies, and performance of the composites were characterized carefully. The peak heat
release rate (PHRR) reduction of PP containing 10 and 20 wt % APP-LDH reached 27% and 55%,
respectively, which increased up to 63% compared with PP/CO3-LDH. After incorporating 2 wt %
ZB in the PP/APP-LDH system, the flame retardant property was further improved. Polypropylene
composites with 20 wt % APP-LDH and 2 wt % ZB showed a 58% PHRR reduction. In addition,
thermogravimetric analyzer (TGA) results indicated that the addition of APP-LDH and ZB improved
the temperature at 50% weight loss (T50%) and the char formation of the materials significantly.

Keywords: flame retardancy; thermal stability; polypropylene; APP-LDH; zinc borate

1. Introduction

Polypropylenes (PPs) are involved in a wide range of applications, such as the automotive, home
appliance, and construction industries, etc., due to their ease of processing, excellent mechanical,
electrical, chemical resistance, and non-toxicity [1]. However, most polymer materials, including PPs,
are mainly composed of C, H, and O elements, which are easy to burn and generate smoke and toxic,
and harmful gases during their combustion, which is a serious threat to both human bodies and the
environment. The increased use of these polymer materials has resulted in a growing awareness of
flammability problems. Therefore, the development of suitable flame retardant additives for PPs to
delay the production and spreading of flames has attracted much attention [2].

Among the variety of flame retardants, layered double hydroxides (LDHs) have been regarded as
effective flame retardants as well as electrocatalysts [3], CO2 adsorbents [4], and supercapacitors [5],
due to their unique layered structures [6–9]. Besides, LDHs can improve the thermal stability of
polymers as well; a small amount of LDHs can increased the thermostability significantly. However,
similar to general inorganic flame retardants, one of the severe problems of LDHs is that their high
loading, generally 40~60 wt % can achieve a good degree of flame retardancy when only LDHs are
used [10,11], which usually results in poor mechanical and thermal properties of the materials. Hence,
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in order to overcome this problem, LDHs together with other synergistic flame retardant additives
is recommended, such as magnesium hydroxide [12], phosphorus-containing compounds [13,14],
carbon-based materials [15], borate-containing materials [16], Ni(OH)2 [17], or intumescent flame
retardants [18], and so on. Among these, ammonium polyphosphate (APP) shows excellent flame
retardant performance because of its lower loadings and cost, as well as good processability [2].
In addition, APP is halogen free, so it will not generate harmful gases during its use, which makes
environmentally friendly compared with halogen-containing additives [19]. Some researchers have
investigated the synergistic effect between LDH and APP; all composites can reach a UL-94 V-0 rating
when incorporating APP in polymer/LDH systems [20–23]. However, in these studies, APP and LDHs
particles were just physically mixed together, and we wondered if APP intercalated LDH (APP-LDHs)
could further improve the flame retardant performance of polymers. Therefore, APP-LDHs were
synthesized first and the flame retardant and thermal stability behaviors of PP/APP-LDH composites
were investigated carefully in this study.

In addition, it is reported that zinc borates (ZBs) combined with LDH can function as a synergistic
additive promoting formation of a char residue, as well as acting as a protective layer on the surface of
polymers [24,25]. Zinc borates with different chemical formulas are usually used as flame retardant
additives [26,27]. In our previous study [28], we demonstrated that a good dispersion of a flame
retardant additive in the polymer matrix is also important. However, the ZB particles cannot
always be dispersed well in polymers. In this contribution, we report the synthesis of one kind
of Zn3B10O18·14H2O morphology—a combination of rods and particles by solution method—and turn
its surface hydrophobic so that it can be uniformly dispersed in the polymer matrix.

In this work, we take advantage of the layered structure of LDHs and the superior flame retardant
performance of APP, synthesizing APP intercalated LDHs and investigate both the fire resistance and
thermal stability of APP-LDH. On the basis of this, the synergistic effect of LDHs and zinc borate is
considered as well.

2. Materials and Methods

2.1. Materials

Materials were procured as follows: polypropylene (average molecular weight ca. 300,000,
The Dow Chemical Company, Midland, MI, USA), Mg(NO3)2·6H2O (AR, Sinopharm Chemical Reagent
Co., Ltd., Shanghai, China), Al(NO3)3·9H2O (AR, Sinopharm Chemical Reagent Co., Ltd., Shanghai,
China), APP (Adamas-beta Company, Basel, Switzerland), Na2B4O7·10H2O (AR, Sinopharm Chemical
Reagent Co., Ltd., Shanghai, China), ZnSO4·7H2O (AR, Sinopharm Chemical Reagent Co., Ltd.,
Shanghai, China), H3BO3 (AR, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China), acetone
(AR, Beijing Chemical Works, Beijing, China), sodium hydroxide (AR, Sinopharm Chemical Reagent
Co., Ltd., Shanghai, China), xylene (AR, Beijing Chemical Works, Beijing, China), and hexane (AR,
Sinopharm Chemical Reagent Co., Ltd., Shanghai, China).

2.2. Synthesis of Aqueous Miscible Organic (AMO)-LDH

Mg3Al-APP LDH was synthesized using a traditional hydrothermal approach. A solution
containing 9.60 g Mg(NO3)2·6H2O and 4.70 g Al(NO3)3·9H2O in 50 mL deionized water and NaOH
(4 M) was added into an APP solution (25 g APP in 50 mL deionized water), the pH of the system
was ~10. The obtained mixture slurry was sealed in an autoclave and reacted at 100 ◦C for 24
h. After the reaction, the slurry was centrifuged and washed with water until its pH was neutral
condition. Then it was treated with acetone to tune the LDH surface from hydrophilic to hydrophobic.
For the PP/APP-LDH nanocomposites, the resultant AMO-LDH was directly used without drying.
Mg3Al-CO3 LDH was synthesized similarly.
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2.3. Synthesis of Zinc Borate

Zinc Borate with uniform morphology was prepared at 90 ◦C using Na2B4O7·10H2O,
ZnSO4·7H2O and H3BO3 as raw materials. In detail, the mixture of 19.07 g of Na2B4O7·10H2O,
6.18 g of H3BO3, and 50 mL of deionized water was stirred at 70 ◦C. Then 14.38 g of ZnSO4·7H2O was
added into the mixture solution and further stirred for 8 h at 90 ◦C. The obtained white precipitates
were similarly treated with LDH.

2.4. Preparation of PP/APP-LDH and PP/APP-LDH/ZB Nanocomposites

The solvent mixing method was used to synthesize PP/APP-LDH nanocomposites. In detail,
a certain amount of PP and APP-LDH (total amount 5 g, the LDH loading in PP was 10 and
20 wt %, respectively) was added into 100 mL xylene. Refluxing at ~140 ◦C for at least 2 h to
obtain dissolved PP solution with highly dispersion of LDH particles. Then the hot solution was
poured into 100 mL hexane. After being filtered and dried, the PP/APP-LDH nanocomposites were
obtained. Polypropylene/APP-LDH/ZB nanocomposites were prepared in the same way.

2.5. Characterization of Samples

X-ray diffraction (XRD) results were performed on a Shimadzu XRD–7000S instrument (Cu Kα

radiation, the accelerating voltage 40 kV, current 30 mA (λ = 1.542 Å), 2θ degree from 2◦ to 70◦, scanning
rate 5◦ min−1, Kyoto, Japan). Fourier Transform Infrared Spectroscopy (FT-IR) spectra were recorded
on a Bruker VERTEX 70 FT-IR spectrophotometer (400–4000 cm−1, 100 scans with a resolution of
4 cm−1, Munich, Germany). Scanning electron microscopy-energy dispersive spectrometer (SEM-EDS)
analyses were recorded on a Hitachi SU–8010 machine (accelerating voltage of 5.0 kV, Tokyo, Japan).
27Al NMR analysis was performed on a Bruker Advance 500 spectrometer (Munich, Germany) at
a resonance frequency of 130.44 MHz with a 4 mm triple-resonance magic angle spinning (MAS)
probe; the sample spinning rate was 10 kHz. Differential scanning calorimetry (DSC) analyses were
performed using a Shimadzu TA-60WS instrument (Kyoto, Japan), heating rate was 10 ◦C·min−1,
nitrogen flow rate was ca. 50 mL·min−1.

2.6. Thermal Stability and Flammability Properties

The thermal stabilities were evaluated using a TGA Q50 machine (TA Instruments, New Castle,
DE, USA), the heating rate was 10 ◦C·min−1, and the air flow rate was 20 mL min−1. Experiments
were undertaken from 20 to 600 ◦C. The flammability performance was investigated using a microscale
combustion calorimeter (MCC-2, Govmark, Farmingdale, NY, USA), with sample mass of 5 mg and
heating rate of 1 ◦C s−1, and nitrogen flowing of 80 cm3 min−1. Experiments were undertaken from
room temperature to 700 ◦C.

3. Results

3.1. Characterization of LDHs and Zinc Borate

Figure 1a presents the XRD patterns of APP, Mg3Al-CO3 LDH, and Mg3Al-APP LDH. Mg3Al-CO3

LDH exhibited the typical reflections of LDHs; the sharp basal reflection (00l) harmonics at relatively
low 2θ angles indicated a well-crystallized structure of LDH. The characteristic Bragg reflection of
(003) was observed at 11.36◦, corresponding to a 0.78 nm interlayer spacing. For APP-LDH, the (003)
diffraction peak moved to a lower angle (2θ = 9.34◦), with an interlayer distance of 0.93 nm, which
can be attributed to the intercalation of the relatively larger molecule of APP in the LDH interlayers.
Nevertheless, Bragg reflections with low intensity were observed in Mg3Al-APP LDH. This is perhaps
because the APP-LDH become more amorphous, and thus there is insufficient coherence along the
platelet stacking axis (c-axis) to observe any high intensity (00l) Bragg reflection [29].
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In order to have a better understanding of the LDH structure, 27Al solid state NMR analysis was
performed, as shown in Figure 1c. The NMR spectra of LDH nanoparticles exhibited a single resonance
near 9.4 ppm, which can be assigned to octahedrally coordinated Al [30]. The result confirmed that the
LDH structure was formed by metals coordinated to six hydroxyl groups with octahedral geometry.
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of water molecules, and the bending vibration around 1643 cm−1 was also due to the interlayer of 
H2O. The adsorption peak at 562 cm−1 belongs to MO, OMO, and MOM lattice vibrations (M 
represents Mg and Al). The band at 1365 cm−1 is attributed to the interlayer of CO32−. Besides, the 
bands at 1141, 907, and 1440 cm−1 are attributed to the vibrations of P–O and N–H group, 
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The spectra results suggest a successful intercalation of APP molecules into the interlayers of LDH 
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Figure 1. (a) X-ray diffraction (XRD) patterns of APP, Mg3Al-CO3 LDH, and Mg3Al-APP LDH;
(b) FT–IR spectrum of APP, Mg3Al-CO3 LDH, and Mg3Al-APP LDH; and (c) 27Al solid NMR spectra
of LDH.

Fourier transform infrared spectroscopy spectra of APP, Mg3Al-CO3 LDH, and Mg3Al-APP LDH
are displayed in Figure 1b. A broad band around 3400–3500 cm−1 was due to the OH stretching of
water molecules, and the bending vibration around 1643 cm−1 was also due to the interlayer of H2O.
The adsorption peak at 562 cm−1 belongs to MO, OMO, and MOM lattice vibrations (M represents
Mg and Al). The band at 1365 cm−1 is attributed to the interlayer of CO32−. Besides, the bands
at 1141, 907, and 1440 cm−1 are attributed to the vibrations of P–O and N–H group, respectively,
demonstrating the presence of phosphate in the obtained APP-LDH nanoparticles [29]. The spectra
results suggest a successful intercalation of APP molecules into the interlayers of LDH and that they
were not decomposed.

Figure 2 presents the SEM-EDS images of Mg3Al-CO3 LDH and Mg3Al-APP LDH. Both LDHs
have formed plate-like nanoparticles with plate-like shapes with a diameter around 100~300 nm,
according to the SEM images, and normal distribution of particles, which is consistent with previous
studies [9,31]. However, the particle diameters of APP intercalated with LDH were a little larger
than the carbonate intercalated with LDH. The EDS mapping indicates the presence of P elements
in the Mg3Al-APP LDH, whereas almost no P elements were found in the Mg3Al-CO3 LDH, further
confirming that APP molecule existed in the LDH interlayers. The EDS results are in agreement with
both XRD and FT-IR results.
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Figure 2. SEM images of Mg3Al-CO3 and Mg3Al-APP LDH and corresponding EDS mapping
of phosphorus.

Figure 3a represents the XRD patterns of the ZB. The XRD results were consistent with the pure
phase of Zn3B10O18·14H2O (File No. 32-1461), indicating that the ZB was synthesized successfully.
The FT-IR spectra of ZB exhibited some bands and can be assigned as follows (Figure 3c,d) [32–34].
The band at 3300–3400 cm−1 is the O–H stretching while the adsorption peaks at 2655 cm−1 is because
of hydrogen band. The band at 1644 cm−1 can be attributed to the H–O–H from crystalline water.
The characteristic bands at 1351 and 923 cm−1 are the asymmetric and symmetric stretching of B(3)–O
(means three coordinate boron). The peak at 1213 cm−1 represent the bending of B–O–H. The peaks
at 1113 cm−1, 833 cm−1, and 759 cm−1 are the stretching of B(4)–O (means four coordinate boron).
The band at 639 cm−1, 519 cm−1, and 578 cm−1 are derived from B(3)–O. The peak at 455 cm−1 is due
to the B(4)–O bending. Fourier transform infrared spectroscopy results further confirmed the successful
synthesis of ZB. As seen in Figure 3b, the morphologies of the materials are combination of rods (about
1–3 × 10 µm) and particles (diameter less than 1 µm).
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Figure 3. (a) XRD patterns, (b) SEM images, (c) FT-IR spectrum, and (d) enlarged FT-IR spectrum of
zinc borate.
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3.2. Characterization of PP/APP-LDH and PP/APP-LDH/ZB Nanocomposites

Figure 4 presents the XRD results of pure PP and PP nanocomposites containing LDH and ZB.
Pure PP has a semi-crystalline structure with several main reflections at 14–23◦. For both PP/10
APP-LDH and PP/20 APP-LDH nanocomposites, a reflection at 2θ = 9.3◦ can be found in Figure 4a,
which correspond to the (003) reflection of APP-LDH. This results indicate that the dispersed LDH
retains a layer structure after solvent mixing with PP. The (003) peak also increased with the increasing
of LDH addition amount. However, when the PP/LDH nanocomposites were prepared with 2–6 wt %
ZB (Figure 4b), only the typical peaks of PP and LDH can be seen, suggesting that the ZB was dispersed
in the PP matrix amorphously.
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Scanning electron micrographs of the samples are shown in Figure 5. Pure PP shows a spherical
morphology with a very smooth surface (Figure 5a). After adding 10–20 wt % LDH, the PP/LDH
nanocomposites became rough, especially with 20 wt % LDH, there were imperfections in the spherical
structure (Figure 5c). However, nearly no LDH nanoparticles can be seen on PP surface, indicating that
the LDH nanoparticles can be excellently dispersed in PP matrix by acetone modification. The PP/2%
ZB nanocomposites were very similar with PP in terms of their morphologies and sizes. When
combining 10% LDHs with 2% ZB together, both LDH particles and ZB can rarely be observed on
the surface of the spherical-like PP; however, the spherical structure was destroyed when the LDH
increased to 20%, this was due to the high loading of LDH.
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3.3. Thermal and Flammable Properties of PP-Based Nanocomposites

In order to obtain a composite with perfect properties, it was necessary to understand the thermal
decomposition [35,36]. The typical thermogravimetric analyzer (TGA) curves of APP-LDH and
PP/LDH nanocomposites are presented in Figure 6. The relative thermal stability of the samples was
usually evaluated by the temperature at 10% weight loss (T10%), the temperature at 50% weight loss
(T50%), and the char residual percentage at 600 ◦C, as listed in Table 1. In contrast to pure PP, the T10%

of PP/10% APP-LDH nanocomposites increased by 30 ◦C; however, the PP nanocomposites with
20% APP-LDH exhibited a reduction in T10%, which was probably attributed to the decomposition of
the LDH particles, as shown in Figure 6a. Besides, when the loading of LDH increased, the addition
of APP-LDH promoted and catalyzed the degradation of PP to a small extent in the initial stage,
thus the T10% decreased. The char layer catalyzed by APP-LDH slowed down the heat release rate
upon the ignition of PP, and thus protected the inside polymer matrix from being degraded by the
flame. As to the T50%, both PP nanocomposites increased no matter with 10% or 20% LDH loading.
However, the T50% of PP/10% APP-LDH increased by 52 ◦C, while it only increased 7 ◦C for PP/20%
APP-LDH (Figure 6b). This result indicated that addition of LDH particles could enhance the thermal
stability of polymers significantly, but it would decrease with a high loading. Therefore, it is necessary
to reduce the additives loading in polymers under the premise of highly efficient flame retardant
performance. In addition, only 0.7 wt % char residue was obtained for pure PP. The addition of LDHs
also improved the char yield to 7.0 and 24.1 wt % from 0.7 wt % for PP/10% APP-LDH and PP/20%
APP-LDH, respectively.
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calorimeter (MCC) analyses of pure PP and PP/APP-LDH nanocomposites.
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Table 1. Summary of TGA results for PP, PP/APP-LDH, and PP/APP-LDH/ZB nanocomposites a.

Samples T10% (oC) ∆T10% (◦C) T50% (◦C) ∆T50% (◦C) Char(E)
b

(wt %)
Char(T)

b

(wt %)

PP 280 NA 331 NA 0.7 -
PP/10% APP-LDH 310 30 383 52 7.0 6.8
PP/20% APP-LDH 257 −23 336 7 24.1 15.6

PP/10% APP LDH-2% ZB 308 28 367 36 12.0 9.6
PP/10% APP LDH-4% ZB 288 8 367 36 15.4 11.1
PP/10% APP LDH-6% ZB 281 1 362 31 17.6 12.6
PP/20% APP LDH-2% ZB 255 −25 341 10 26.3 17.1
PP/20% APP LDH-4% ZB 267 −13 358 27 28.3 18.5
PP/20% APP LDH-6% ZB 259 −21 360 29 27.4 20.0

a T10% = temperature at 10% mass loss, T50% = temperature at 50% mass loss; ∆T = difference between pure PP and
the nanocomposites. b Char(E) = experimental char yield; Char(T) = theoretical char yield.

To confirm the function of the char forming, the theoretical char residue of PP/APP-LDH was
calculated by linear combination, as shown in Table 1 [37]. The experimental and theoretical char
yield for PP/20% APP-LDH nanocomposites are 24.1 and 15.6 wt %, respectively. It is obvious that
the calculated char yield was much lower than the measured one, which further suggested that the
addition of APP-LDH enhanced the char formation.

Figure 6d displays the MCC results of PP and PP/APP-LDH nanocomposites. It can be observed
that PP burned rapidly after ignition, for which the peak heat release rate (PHRR) value was
1585 kWm−2. As expected, incorporating 10 or 20 wt % APP-LDH into PP significantly decreased the
PHRR value to 1154 and 707 kWm−2, respectively, for the which reduction was 27% and 55%. Besides,
both the total heat release (THR) and heat release capacity (HRC) values decreased significantly
(Table 2).

Table 2. Summary of microscale combustion calorimeter (MCC) results for PP, PP/APP-LDH,
and PP/APP-LDH/ZB nanocomposites a.

Samples PHRR (Wg−1) Reduction (%) THR
(kJg−1)

Tmax
(◦C)

HRC
(Jg−1K−1)

PP 1585 NA 47.6 479 1163
PP/10% CO3-LDH 1422 10 43 481.8 1071
PP/20% CO3-LDH 1099 31 37.7 484.5 822
PP/10% APP LDH 1154 27 42.5 468 1097
PP/20% APP LDH 707 55 34.0 455 661

PP/10% APP LDH-2% ZB 918 42 40.3 460 869
PP/10% APP LDH-4% ZB 1047 34 40.0 463 990
PP/10% APP LDH-6% ZB 1167 26 37.3 459 880
PP/20% APP LDH-2% ZB 668 58 34.5 451 636
PP/20% APP LDH-4% ZB 790 50 35.0 458 750
PP/20% APP LDH-6% ZB 830 48 29.7 452 619
a PHRR = peak heat release rate; THR = total heat release; Tmax = temperature at maximum pyrolysis rate;
HRC = heat release capacity.

4. Discussion

In order to further increase the flame retardant properties of PP polymers, at the same time,
to not affect the thermal stability of the composites caused by the high additives loading, ZB was
added to PP/LDH systems and the thermal stability and flame retardant performance was studied
systematically. Thermogravimetric analyzer (TGA) analyses for PP and PP/LDH/ZB composites
are shown in Figure 7 and the corresponding results are listed in Table 1. After incorporation of
ZB to PP/LDH systems, The T50% increased significantly when compared to pure PP, especially for
PP/LDH/ZB composites with 10 wt % LDH. The increased value was slightly lower than PP/LDH
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composites without ZB (52 ◦C), but the value of T50% increased by at least 30 ◦C no matter with 2, 4,
or 6 wt % ZB together. When the LDH loading increased to 20 wt % LDH, the T0.5 of PP/LDH/ZB
composites increased 10, 27, and 29 ◦C, respectively. Differential scanning calorimetry (DSC) analysis
of pure PP and PP/LDH/ZB composites was studied as well. As shown in Figure S1, for pure PP,
there is only one endothermic peak located at around 175 ◦C, corresponding to the melting points
of PP polymer. After addition of LDH/ZB, another endothermic peak at around 225~233 ◦C can be
observed, which can be attributed to the existence of LDH. The first degradation of ZB was around
170 ◦C according to TGA and DTG results, which was close to pure PP and the melting point of ZB was
very high, laying above the upper temperature of the DSC experiment, so there were no more peaks
for PP/LDH/ZB composites. In addition, the experimental char yield of PP/LDH/ZB composites
was much higher than the theoretical one, indicating the LDH/ZB additives promoted the formation
of char during combustion. Moreover, it is worth emphasizing that after adding ZB to PP/LDH
system, the experimental char yield also increased, suggesting the addition of ZB further accelerated
the char residue.
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(c) DTG curves of pure PP and PP/APP-LDH/ZB nanocomposites, and (d) 50% weight loss temperature
of all the samples.

For the flammability properties, pure PP burnt easily with a high PHRR value of 1585 W g−1,
after incorporation of 10 wt % and 20 wt % APP-LDH, and the PHRR value decreased by 27% and 55%,
respectively (Table 2), which was much higher than carbonate intercalated LDH. However, on the basis
of this, the addition of ZB further increased the flame retardant factor of PP. Figure 8 represents the
HRR curves of PP composites and the corresponding results are listed in Table 2 as well. When adding
2 wt % ZB, the PHRR value of PP/LDH/ZB composites with 10 wt % LDH loading was 918 Wg−1,
which was reduced by 42% compared to pure PP, which decreased by 20% compared to the PP/LDH
composites. However, when loading more ZB, such as 4 or 6 wt %, the PHRR was slightly lower
than 2 wt % loading. Therefore, it can be concluded that only 2 wt % ZB could result in better flame
retardant performance, and excessive ZB may decrease the flame retardancy. Similar results were
obtained for the PP/LDH/ZB composites with 20 wt % LDH. The mechanism for ZB to improve the
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flame retardancy of polymer can be attributed to the glassy layer formed by it which can protect the
inner polymer materials from further burning [38].
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In order to study the char residue morphologies of PP/LDH and PP/LDH/ZB composites,
SEM-EDS analyses of the residue char is showed in Figure 9. During combustion, APP in the LDH
interlayers will work as a vigorous dehydrating agent, which can react with PP and decompose to form
carbides, phosphorus oxides or phosphoric acid covering the surface of the composites (Figure 9a,c).
On the one hand, it can prevent the inner PP from further thermal degradation as well as stop
the combustibles produced by the degradation contacting to the surface of PP. On the other hand,
the formed layer can block the contact of outside flammable gases such as oxygen with polymers,
delaying the thermal decomposition and burning rate of the materials.

Polymers 2018, 10, x FOR PEER REVIEW  10 of 14 

 

retardancy. Similar results were obtained for the PP/LDH/ZB composites with 20 wt % LDH. The 
mechanism for ZB to improve the flame retardancy of polymer can be attributed to the glassy layer 
formed by it which can protect the inner polymer materials from further burning [38]. 

 
Figure 8. (a) HRR curves and (b) PHRR reduction of PP and PP/APP-LDH/ZB nanocomposites 
prepared. 

In order to study the char residue morphologies of PP/LDH and PP/LDH/ZB composites, 
SEM-EDS analyses of the residue char is showed in Figure 9. During combustion, APP in the LDH 
interlayers will work as a vigorous dehydrating agent, which can react with PP and decompose to 
form carbides, phosphorus oxides or phosphoric acid covering the surface of the composites (Figure 
9a,c). On the one hand, it can prevent the inner PP from further thermal degradation as well as stop 
the combustibles produced by the degradation contacting to the surface of PP. On the other hand, 
the formed layer can block the contact of outside flammable gases such as oxygen with polymers, 
delaying the thermal decomposition and burning rate of the materials. 

 
Figure 9. SEM-EDS images of (a,c) PP/20 w t% APP-LDHs and (b,d) PP/20 wt % APP-LDHs/2 wt % 
ZB composites char residue after combustion. 

After incorporation of ZB to PP/APP-LDH composites, the carbon layer formed by thermal 
decomposition of APP can react with the glassy substance formed by ZB decomposition, which 
covers the surface of PP composites, making the char layer puffy and compact (Figure 9b). This is 

Figure 9. SEM-EDS images of (a,c) PP/20 w t% APP-LDHs and (b,d) PP/20 wt % APP-LDHs/2 wt %
ZB composites char residue after combustion.

After incorporation of ZB to PP/APP-LDH composites, the carbon layer formed by thermal
decomposition of APP can react with the glassy substance formed by ZB decomposition, which
covers the surface of PP composites, making the char layer puffy and compact (Figure 9b). This is
because ZB belongs to a low-melting vitreous humour, which will form a viscous substance when
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heated, and further seals the carbon layer formed by burning, blocking the heat exchange behavior
between the material and the outside, thereby slowing the burning rate of the material. Moreover,
the thermal stability of the carbon layer will be enhanced due to the presence of a zinc-containing
compound, and thus reduce the decomposition rate of the materials greatly. From EDS analyses, except
phosphorus, boron also can be observed in PP/APP-LDH/ZB composites, suggesting the existence
of ZB. However, because of the very low loading of ZB (2 wt %), zinc did not exist in the sample.
In a word, it is believed that ZB combined with LDH can function as a synergistic additive to promote
the formation of char residue to protect the polymers.

Since inorganic nanofillers can affect the mechanical properties, especially when the additives
loading is high, the tensile strength (TS) and elongation at break (EB) was studied, and the results are
shown in Figure 10. The TS and EB of pure PP was 34.8 MPa and 33.1%, respectively. After adding
LDH nanofillers, both TS and EB decreased significantly. However, the mechanical properties of
PP/LDH/ZB nanocomposites have not decreased very much while the flame retardant performance
improved as expected. Therefore, the addition of ZB is better in flame retardancy as well as in
maintaining the mechanical properties of PP/LDH nanocomposites.
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5. Conclusions

In this contribution, the PP/APP-LDH and PP/APP-LDH/ZB nanocomposites were synthesized
by solvent mixing method successfully. Both APP-LDH and ZB dispersed well within the PP matrix
after aqueous miscible organic solvent treatment (AMOST). Microscale combustion calorimeter (MCC)
and TGA results displayed that the APP-LDH had an outstanding flame retardant and thermal stability
property for PP. With 10 and 20 wt % addition, the PHRR reduction reached to 27% and 55%, and the
T50% increased by 52 ◦C and 7 ◦C, respectively. We also found that addition of a very small amount
of ZB can enhance the flame retardancy and thermal stability further. This is because ZB can form
a viscous substance and make the carbon layer more sealed. Therefore, it is a significant attempt to
improve the flame retardant and thermal stability properties of PP by using halogen free additives.
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