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Abstract: Edge dislocations are linear defects that locally break the positional order of the layers in
smectic A liquid crystals. As in usual solids, these defects play a central role for explaining the plastic
properties of the smectic A phase. This work focuses on the dynamical properties of dislocations in
bulk samples prepared between two glass plates and in free-standing films. The emphasis will be put
on the measurement of the mobility of edge dislocations in liquid crystals either pure or doped with
nanoparticles. The experimental results will be compared to the existing models.
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1. Introduction

Toplogical defects are ubiquitous in all ordered systems such as crystals [1–3] or liquid
crystals [4–6]. They can be punctual, linear or planar and they locally break the translational and/or
rotational symmetries of the phase. In this review, I focus on dislocation dynamics in smectic A phases
both in pure form and doped with nanoparticles. I recall that the smectic A phase (SmA) is a lamellar
phase in which the rod-like molecules gather in fluid layers stacked on top of each other (Figure 1a).
In this phase, the molecules are perpendicular to the layers on the average. This phase often transforms
upon heating to a nematic phase (Figure 1b) in which only the orientational order of the molecules
is conserved [7–10]. The 8CB molecule (4-n-octylcyanobiphenyl) shown in Figure 1c is a classical
example of a rod-like molecule yielding a SmA and a nematic phase. All the experiments described in
this paper have been performed with this liquid crystal (LC).
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Figure 1. (a) structure of the smectic A phase; (b) structure of the nematic phase; (c) 8CB molecule
exhibiting a smectic A phase between 21 and 33.3 ◦C and a nematic phase above 33.3 ◦C.

As in solids, the dislocations in SmA are characterized by their Burgers vector~b [1–3]. As the layers
are fluids, the only pertinent component of vector~b is perpendicular to the layers [4–6]. In addition,
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b must be a multiple of the layer spacing a0. There are two main types of dislocations in smectic A
LC: the edge dislocations for which~b is perpendicular to the dislocation line (Figure 2a) and the screw
dislocations for which~b is parallel to the line (Figure 2b). Although the two types of dislocations are
important in plasticity, I will mainly focus on edge dislocations in this paper, with special emphasize
on the measurement of their mobility, in particular when the LC is doped with nanoparticles.

(a) (b)

b

b

Figure 2. (a) edge dislocation; (b) screw dislocation.

The plan of the paper is as follows. In Section 1, I recall the main theoretical models developed
to calculate the mobility of edge dislocations when the LC is pure (intrinsic mobility) or doped with
nanoparticles. In the latter case, I show that clouds of nanoparticles, akin to Cottrell clouds in metallic
alloys [1,2,11], form near the core of the dislocations and change their mobility. In Section 2, I present
the experiments. I show first that the intrinsic mobility of an edge dislocation can be measured in a
free-standing film. I then describe a creep experiment with homeotropic samples and I explain how to
measure the intrinsic mobility of the edge dislocations when they cross screw dislocations. I show then
that the mobility of the edge dislocations decrease when they drag clouds of nanoparticles, which leads
to a strong hardening of the phase. In all cases, I will pay a special attention to the critical behavior of
the mobility near the second-order smectic A-to-nematic phase transition.

2. Theoretical Models

I consider an edge dislocation in a smectic A monodomain. If the layers are compressed or dilated,
the dislocation experiences a Peach and Koehler force of amplitude [1–3,9,10,12]

FPK = σb. (1)

Under the action of this force, the dislocation climbs parallel to the layers with velocity v (Figure 3)
and experiences a friction force of expression

Fv = − bv
m0

, (2)

where b/m0 is a friction coefficient. In practice, the inertia of the dislocations can always be neglected so
that FPK + Fv = 0. This yields v = m0σ, where m0 is defined as the intrinsic mobility of the dislocation.

σ

−σ

FPKFv

Figure 3. Peach and Koehler force and viscous force acting on an edge dislocation when the layers are
dilated (σ > 0).
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2.1. Intrinsic Mobility

Two models have been proposed to calculate the mobility of an edge dislocation in a pure LC.
In the metallurgical model of Kléman and Williams [12], directly applicable to elementary edge

dislocations (b = a0), the mean distance l between jogs along the dislocation is of molecular size. In this
case, the mobility is proportional to the self-diffusion coefficient D⊥ normal to the layers and reads,
with analogy to solids:

m0 ≈
D⊥vmol

kBTl
, (3)

where vmol is a molecular volume.
This model does not apply to dislocations of large Burgers vectors which are frequent in smectic

A LC. This is due to the fact that, in smectics, the energy of an edge dislocation is proportional
to b instead of b2 as in solids [5,7,8,12–18]. For these dislocations, a hydrodynamic model is more
appropriate [7,9,14,19,20]. Solving the hydrodynamic equations [7,9,10,21] yields:

m0 = A
λ

a0

√
λp

η2
, (4)

where A is a numerical coefficient close to 1, λ =
√

K/B is the so-called penetration length by denoting
by K (B) the bend (compression) modulus of the layers, λp is the permeation coefficient and η2 is
the shear viscosity parallel to the layers [7,9,21,22]. An important result of this calculation is that the
mobility is independent from the Burgers vector of the dislocation. This model also predicts a critical
behavior for the mobility near the transition temperature TNA when the transition is second-order. It is
the case in pure 8CB [23,24] where λ diverges as δT−α with α ≈ 0.13 [9] and λp diverges as δT−1 [25].
Because a0 and η2 do not change significantly at the transition, the hydrodynamic theory predicts that
m must diverge as δT−0.5−α, i.e., as δT−0.63 in 8CB.

2.2. Mobility in the Presence of a Cottrell Cloud

It is possible to dope a smectic A LC with gold nanoparticles of diameter φ comparable with the
layer spacing a0. If the particles are correctly functionalized [26], they do not aggregate and disperse
homogeneously in the smectic A phase. At the same time, they interact elastically with the edge
dislocations by forming Cottrell clouds visible under the optical microscope (see the next section) [27].

As in solids [11], the volume concentration of nanoparticles around the core of the dislocation is
given by a Bolzmann distribution [28]

c(x, z) = c0 exp
(
−W(x, z)

kBT

)
, (5)

where c0 is the concentration at infinity (equal to the average concentration in the limit of an infinite
sample). In this calculation, the dislocation is located at x = z = 0 and is parallel to the y-axis,
and W(x, z) is the interaction energy between the dislocation and a nanoparticle located at point
(x, z). The interactions between the nanoparticles are neglected. By considering that the nanoparticle
behaves as a small dislocation loop of surface δS and Burgers vector ζ, Lejček calculated the interaction
energy [29]:

W(x, z) = δV
Bbx

8
√

πλ

exp
(
− x2

4λ|z|

)
|z|3/2

 , (6)

where δV = δS ζ is a volume change characterizing the nanoparticle.
These formulas show that the nanoparticles accumulate inside a Cottrell cloud, the limits of which

are defined from the condition W
kBT = 1 (or, equivalently, c/c0 = e). By analogy, an anti-cloud forms in

which the concentration is smaller than c0. This anti-cloud is defined from the condition W
kBT = −1
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(or, equivalently, c/c0 = 1/e). The cloud and the anti-cloud are schematically shown in Figure 4.
They are composed of four elongated lobes delimited by the points of coordinates (±xmax,±z1) and
(±x1,±zmax). It can be checked that xmax ≈ 1.81

√
˜δV
√

λb, z1 ≈ 0.55 ˜δVb, x1 ≈ 1.31
√

˜δV
√

λb and
zmax ≈ 0.86 ˜δVb where ˜δV = δV

8
√

πkBT/B – of the order of unity in experiments—is the dimensionless
volume change [28]. This shape is very different from the cylindrical shape of the cloud and anti-cloud
found in solids. This is due to the fact the elastic stress does not propagate along the layers because of
their fluidity, making the smectic A phase elastically very anisotropic.

x
b

Cottrell
cloud

Cottrell
cloud

z

(xmax , z1)

(x1 , zmax)

Figure 4. Cottrell cloud (red solid line) and anti-cloud (blue dashed line) around an edge dislocation in
a smectic A LC (from Ref. [28]).

The next question is to determine how the cloud changes the mobility of the dislocation when it
climbs parallel to the layers. The answer is given by solving the diffusion equation for the concentration
of nanoparticles in the reference frame (x, y, z) of the moving dislocation and by then calculating the
drag force on the dislocation.

The diffusion equation in the stationary regime is obtained by writing that div~j = 0 where~j is the
diffusion flux of nanoparticles. In a smectic A LC, this flux writes in the form:

~j = − c
kBT

D̃ ~∇W − D̃~∇c− c~v, (7)

with

D̃ =

[
D‖ 0
0 D⊥

]
, (8)

where D‖ (D⊥) is the diffusion coefficient of the nanoparticles parallel (perpendicular) to the layers.
Note that the first term in Equation (7) is the drift term due to the interaction force between the
nanoparticles and the dislocation (Einstein relation), the second term is the usual anisotropic diffusion
flux and the last term is the diffusion flux due to the motion of the dislocation. Writing div~j = 0 gives

D‖
∂

∂x

(
c

∂U
∂x

+
∂c
∂x

)
+ D⊥

∂

∂z

(
c

∂U
∂z

+
∂c
∂z

)
= 0, (9)

where U(x, z) = W(x,z)
kBT + vx

D‖
. This equation must be solved with the boundary condition c = c0

at infinity. As for the drag force ~Fdrag exerted by the nanoparticles on the dislocation, it is given,
by definition, by



Crystals 2019, 9, 400 5 of 20

~Fdrag =
∫∫

c~∇Wdxdz, (10)

where the integral is taken over the whole space. By using the fact that c is the solution of the diffusion
equation, and by setting c̄ ≡ c/c0, x̄ ≡ x/λ, z̄ ≡ z/λ, it can be shown that [28]

~Fdrag = − kBTc0λ2

D‖
ξ~v, (11)

where ξ is the dimensionless drag coefficient

ξ =
∫∫

(c̄− 1)dx̄dz̄. (12)

Equations (9), (11) and (12) are the basic equations of the problem.
In practice, the diffusion equation can only be solved analytically when D⊥ → 0. In this 1D limit,

the concentration field reads at velocity v 6= 0:
c =

vc0

D‖
exp

(
− W

kBT
− vx

D‖

) ∫ x

−∞
exp

(
W

kBT
+

vx
D‖

)
dx under compression (v > 0),

c = − vc0

D‖
exp

(
− W

kBT
− vx

D‖

) ∫ ∞

x
exp

(
W

kBT
+

vx
D‖

)
dx under dilation (v < 0),

(13)

and the drag coefficient can be written under the form

ξ =
∫∫

(c̄− 1)2

c̄
dx̄dz̄. (14)

Note that, contrary to Equation (12), this expression is exact only in the 1D limit. This expression
seems more complicated than Equation (12). I nonetheless give it because it is much easier to calculate
numerically than Equation (12) due to a better convergence of the integral at infinity.

Finally, it is possible to show that, in the limit of small velocities (|v| � D‖/φ) [30]

ξ → ξ0 ≈ C

(∫ −b̄/2

−x̄max

∫ −b̄/2

−z̄max
(c̄eq − 1)dx̄dz̄ +

∫ −b̄/2

−x̄max

∫ z̄max

b̄/2
(c̄eq − 1)dx̄dz̄

)
, (15)

where c̄eq is the equilibrium distribution in units of c0 given in Equation (5) and C is a constant equal
to 2 when D⊥ = 0 and of the order of 1.3 when D⊥ ∼ D‖. Note that the quantity in brackets represents
the number of nanoparticles in the Cottrell cloud in units of coλ2. This formula shows that the drag
force is proportional to v and c0 in the limit of small velocities (linear regime).

In practice, the diffusion equation can be solved numerically by using a finite element method
(FEM). This problem is delicate because the potential W(x, z) is extraordinarily “peaked” close to
the core of the dislocation and diverges at the origin (Figure 5). In reality, this divergence does
not exist and must be suppressed because the core of the dislocation melts. This can be shown by
using a Landau–Ginzburg approach where the smectic ordering is described by a complex order
parameter [31,32]. One way to avoid the divergence would be to use this formalism, but this is
cumbersome. A much simpler method consists of multiplying the potential by a “core function” of
the type:

fc(r) =

[
arctan

(
r2

(3b/2)2

)]4

, (16)

where r =
√

x2 + z2. This function and the resulting potential W = W fc are plotted in Figure 5 by
taking δV = 28 nm3, B = 107 Pa, λ = 0.76 nm and b = a0 = 3 nm which are typical values for 8CB
at 30 ◦C [9].
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Figure 5. Density plot of the elastic potential. (a) raw potential. It strongly diverges inside the white
regions; (b) smoothed potential W(x, z) ≡ W(x, z) fc(r). The function fc(r) is shown in the inset.
The two circles represent the core of the dislocation. The lengths are given in units of λ and the
potentials in units of kBT (from Ref. [28], with kind permission of the European Physical Journal).

By using this new potential, the concentration field and the resulting drag force were numerically
calculated as a function of the dislocation velocity. Two typical 3D plots of the concentration field
c̄ are shown in Figure 6 when the layers are compressed and v = 0.1 mm/s. In (a), D⊥ = 0 and
in (b), D⊥ = D‖. These graphs were calculated by taking D‖ = 2× 10−12 m2/s [30] and the same
values as before for δV, B, λ and b. They show that the Cottrell cloud deforms when the dislocation
moves. In particular, the nanoparticles accumulate ahead of the dislocation, forming a bulge that is
narrow in the z-direction and elongated in the x-direction (it extends over the typical distance D‖/v).
When D⊥ = 0, this bulge is strongly pinched along the x-axis (Figure 6a). The bulge strongly flattens
and its pinch-off disappears when the nanoparticles can diffuse normal to the layers (Figure 6b).
By changing the velocity in the simulations, it can also be shown that both the size of the Cottrell cloud
and the concentration inside decrease when the velocity increases, while the number of nanoparticles
in the bulge increases and then decreases when the velocity increases, passing through a maximum
for a velocity v ≈ 0.4 mm/s. This evolution shows that the cloud erodes when the velocity increases.
More details about these simulations are given in Ref. [28]. We also refer to this paper for a discussion
of the Cottrell cloud evolution when the layers are dilated and the dislocation moves with a negative
velocity. In that case, the bulge forms on the side of the Cottrell cloud.

bulge

Cottrell cloud

anti-cloud

(a) (b)

v

Figure 6. 3D plots of the dimensionless concentration field c̄(x, z) numerically calculated with the FEM
when D⊥ = 0 (a) and D⊥ = D‖ (b). In this simulation, the layers are compressed and v = 0.1 mm/s.
In these plots, 1/e < c̄ < e, −20 < x̄ < 100 and −20 < z̄ < 20 (adapted from Ref. [28], with kind
permission of the European Physical Journal).

The drag coefficient can also be calculated as a function of velocity. The result is shown in Figure 7
where the graph has been calculated with the same values of the parameters as before. This figure
shows that the friction coefficient passes through a maximum for a negative value of the velocity.
This asymmetry between positive and negative velocities is due to the fact that the dislocation behavior
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is different under dilation and under compression. This comes from the fact that, for symmetry reasons,
it is different for the dislocation to climb in the positive and negative directions of the x-axis in the
presence of a Cottrell cloud. This graph also shows that ξ tends to zero at very large velocity. This
is due to the erosion of the Cottrell cloud. The friction coefficient also depends on the ratio D‖/D⊥,
decreasing by a factor of ∼1.5 at small velocities (|v| < 0.1 mm/s) when this ratio passes from 0 to 1.
The reader will note that the friction coefficient is not given for large negative velocities. This is not
a coincidence. Indeed, these velocities are not accessible experimentally because of an undulation
instability of the layers under dilation normal to the layers [33,34].

0 0.4 0.8 1.2 1.6 2.0
v (mm/s)

5000

7000

1000

3000

9000 D// = D
D// = 0

Figure 7. Dimensionless drag coefficient ξ predicted for an elementary edge dislocation in 8CB at
30 ◦C as a function of velocity v (adapted from Ref. [28], with kind permission of the European
Physical Journal).

Finally, Figure 8 shows the drag coefficient as a function of the temperature difference
δT = T − TNA. The calculations were performed for an elementary edge dislocation propagating
at 20 µm/s—a typical value for velocity in the experiments with 8CB (see the next section). This
graph shows that ξ strongly decreases when the temperature increases and tends to 0 when T → TNA.
This behavior is due to the critical behavior of the elastic modulus B that vanishes at TNA.

- 12 - 10 - 8 - 6 - 4 - 2 0
0

5

10

15

20

 (x
 1

03 )

δT (°C)

Figure 8. Dimensionless drag coefficient ξ predicted for an elementary edge dislocation in 8CB as a
function of the temperature difference δT = T − TNA. The calculations were performed by taking
v = 20 µm/s and by assuming that D⊥ = 0. For D⊥ = D‖, this coefficient is typically reduced by a
factor of 1.5 (from Ref. [28], with kind permission of the European Physical Journal).

In the next section, I describe how these predictions can be tested experimentally.
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3. Experiments

Two types of samples can be used to measure the mobility of the edge dislocations:
the free-standing films in which only edge dislocations are present and the homeotropic samples
prepared between two glass plates in which both edge and screw dislocations are present. In films, the
edge dislocations are visible under reflecting microscopy and their mobility can be obtained by directly
measuring their velocity under the microscope. In homeotropic samples, the dislocations are invisible
in usual conditions and the measurement of their mobility is indirect, performed with a piezoelectric
rheometer by analyzing the viscoelastic response of the samples. I describe successively these two
types of experiments.

3.1. Mobility Measurement in Free-Standing Films

Because of their lamellar structure, it is possible to stretch a smectic A film on a frame. Although
this property was already known to Friedel at the beginning of the 20th century [35], the study of
smectic films really started in the 1970s. Since that time, a considerable number of articles have been
published on smectic films, including studies on phase transitions, confinement effects, thinning
transitions, vibrations, hydrodynamics at 2D, etc. [9,36–38]. Here, I focus on the dynamics of edge
dislocation loops in thick films (more than 10–20 layers, typically) and I show how the mobility of the
dislocations can be deduced from these experiments.

In practice, the film is often stretched over a circular hole a few mm in diameter, drilled into a
thin metallic or plastic plate. A frame of variable surface can also be used, allowing for stretching or
compressing the film with a controlled velocity. The more slowly the film is stretched, the thicker it is
at the end of the process. In general, the film thickness ranges between two and several hundred layers,
depending on the stretching velocity. The film thickness can be precisely measured by reflectivity
under a microscope. In practice, the film is related to the frame via a meniscus (Figure 9). This meniscus
acts as a reservoir of matter and fixes the hydrostatic pressure P inside the film. The pressure is always
lower than the atmospheric pressure Pa because of the curvature of the meniscus. It can be shown that
the shift of pressure ∆P = Pa − P is still given by the usual Laplace law and reads [9,39,40]:

∆P =
γ

R . (17)

In this expression, γ is the surface tension with air, and R is the radius of curvature of the
meniscus which can be precisely measured by recording the intensity profile of the interference fringes
observed in reflecting microscopy in the thin part of the meniscus (Figure 9).

filmméniscus

100 μm
meniscus

film
Dislocations

frame

(a) (b)

Figure 9. (a) typical appearance in reflecting microscopy of the meniscus formed between a
film(on the right) and the frame (on the left). From the interference fringes observed in the thin
region of the meniscus, the radius of curvature of the meniscus can be deduced; (b) model of meniscus
of radius of curvatureR filled with dislocations (adapted from Ref. [9]).

To measure the mobility of a dislocation, a loop—hole or island—must be first nucleated.
One method consists of using a deformable frame. By abruptly changing the surface area of the film,
holes or islands can be nucleated, depending on whether the film is dilated or compressed [9]. As the
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dislocations are repulsed from the free surface in smectic A [41], the holes and the islands are dislocation
loops located at mid-distance between the two free surfaces. Another more sophisticated technique
to nucleate a hole is to heat the film with a tiny heating wire placed just below it. By controlling the
duration and the power of the electric impulse, the film can be locally heated during a very short
interval of time (1–2 ms) up to its spontaneous thinning transition temperature [9,42]. Doing that, a
hole can be nucleated [39]. The film then returns in a few ms to its initial temperature fixed by the
oven in which it has been stretched. With this technique, holes—which are almost always loops of
elementary edge dislocation—can be nucleated. The experiment also reveals that their subsequent
behavior depends on their initial radius Ri, the holes growing when Ri is larger than some critical
radius Rc, whereas they collapse when Ri < Rc. The radius Rc defines the critical radius of nucleation.

This behavior can be easily understood by writing the mechanical equilibrium of the film. Indeed,
the main reason for which a smectic film is stable (rigorously speaking, metastable) is due to the fact
that the depression ∆P imposed by the meniscus can be balanced by the elastic stress σ due to the
elasticity of the layers. Indeed, equilibrating the normal stress at the flat surface of the film yields:

− Pa = −P + σ. (18)

Note that this equation is only valid in thick films (more than 10 layers, typically) in which the
disjoining pressure due to the smectic-order-induced elastic interaction between the two free surfaces
(usually larger than the van der Waals force) can be neglected [42–45]. This equation shows that the
layers are spontaneously compressed in films, so that each dislocation loop experiences a Peach and
Koehler force of magnitude |σb| = ∆P |b| which tends to make it larger when it is a hole and smaller
when it is an island. To this force, add the friction force −b v

m and the line tension force − E
R , where

E is the line energy of the dislocation, R its radius and v = dR
dt . By equilibrating these three forces,

one obtains by taking b > 0 for a hole and b < 0 for an island:

b∆P− E
R
− b

v
m

= 0. (19)

This equation describes the time evolution of a loop. It shows that a loop can be at equilibrium
(v = 0) if R = Rc = E

b∆P , which is possible for a hole (b > 0) but impossible for an island (b < 0).
This equilibrium is unstable since the hole collapses if its radius is smaller than Rc whereas it grows
if its radius is larger than Rc. In that case, the dislocation velocity tends to v = m∆P when R � Rc.
It must be noted that this calculation neglects the finite permeability of the meniscus [46,47], which
tends to slow down the dislocation. Nevertheless, it can be shown that this effect is negligible if R is
much smaller that the radius of the meniscus Rmen.

These predictions were tested experimentally and used to determine the mobility m of edge
dislocations in 8CB films. The first experiment was performed by using the heating wire technique.
In this experiment, only holes of elementary dislocations were analyzed (b = a0). It was found
that, in thick films, the dislocation velocity measured at radius Rc � R � Rmen was inversely
proportional to the radius of curvatureR of the free surface of the meniscus (Figure 10), in agreement
with the model. From the slope of this curve, the mobility m of an elementary edge dislocation was
deduced: m ≈ 4.4× 10−8 m2 s kg−1 at 28 ◦C. A similar experiment was performed more recently
with islands obtained by compressing 8CB films with a deformable frame [48]. In this experiment,
the dislocations were not elementary, but of Burgers vector b = 2a0 (double dislocations). In spite of
this difference, the authors found a very similar value for the mobility: m ≈ 4.6× 10−8 m2 s kg−1 at
27 ◦C. This observation confirms the predictions of the hydrodynamical model according to which the
mobility is independent from b.
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Figure 10. Dislocation velocity v measured in the asymptotic regime as a function of the curvature of
the meniscus 1/R (Reprinted with permission from Phys. Rev. E, 62, 3747 (2000). Copyright 2000,
American Physical Society).

3.2. Mobility Measurement by Creep Test on Homeotropic Samples

Another method to measure the mobility of an edge dislocation is to study the plastic behavior
of homeotropic samples. These samples are made by sandwiching the LC between two glass plates
treated for homeotropic anchoring with a silane or a polyimide. With these surface treatments,
the LC molecules align normal to the surfaces, resulting in smectic layers parallel to the surfaces.
In plasticity, a crucial point concerns the microstructure of the samples. In usual conditions of
observation, the dislocations are not visible under the microscope in homeotropic samples. They are
nonetheless present, if only because the two glass plates are never perfectly parallel and always make
a small angle α. Because of this wedge geometry, an array of parallel edge dislocations, separated
from each other by a distance Λ = b/α, forms to relax the dilatation of the layers due to the thickness
variation. These “geometrical” dislocations were observed for the first time by using materials that
exhibit a smectic A-to-smectic C phase transition (I recall that in the smectic C phase the molecules
are tilted with respect to the normal to the layers). By approaching the phase transition temperature,
the dislocations become visible between crossed polarizers, as they locally induce the tilted SmC
phase [49,50] (Figure 11). This observation is crucial in plasticity because it shows that the only edge
dislocations present in homeotropic samples are the geometrical dislocations. This observation was
also confirmed by using a technique based on fluorescence in a lyotropic system [51]. As a consequence,
it is enough to measure α to know the density of edge dislocations present in each sample. This is a
considerable advantage with respect to solids in which the density of dislocations is very difficult to
control and this makes the smectic A a perfect candidate to test models of plasticity.

!

"#= b/!
(a) (b)

Figure 11. Geometrical dislocations (a) and their aspect under the microscope between crossed
polarizers close to the SmA-SmC phase transition (b) (photo by S. Lagerwall, 1978).

In the following, I describe a piezoelectric rheometer that was specially designed to control
this angle and measure the plastic response of homeotropic samples. I then recall how the plastic
behavior of a homeotropic sample can be simply modeled, before explaining in which experimental
conditions this simplified model can be used to measure the intrinsic mobility of edge dislocations.
Finally, I report the results of mobility measurements performed in 8CB samples either pure or
doped with nanoparticles, and I compare them to the theoretical predictions of the previous section
before concluding.
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3.2.1. Piezoelectric Rheometer

The first microplasticity experiment was conducted by Bartolino and Durand in 1977 [52].
It allowed them to measure the compression modulus of the layers B and to detect the plastic relaxation
of the applied stress. In their experiment, the deformation was produced by a single piezoelectric
ceramic and was extremely small (less than 10−5) precluding the study of defects dynamics and of
their instabilities. In addition, their setup did not allow for precisely control angle α, which is yet
essential to know the density of dislocations and measure their mobility.

To remedy these shortcomings, a new rheometer was designed, allowing to both impose much
larger deformations thanks to three stacks of piezoelectric ceramics and fix angle α with a high accuracy
(to within 10−5 rad) thanks to three differential screws. This rheometer and its recent improvements
are described in Refs. [53,54] to which we refer for a detailed description. As for the preparation of the
samples, it is explained in Ref. [55].

From a mechanical point of view, the rheometer can be modeled by two springs of force constants
k1 and k2 in series with the sample (Figure 12). In practice, the displacement u(t) is imposed by three
stacks of piezoelectric ceramics and the displacement a(t) is measured with a linear displacement
sensor. The displacements u(t) and a(t) and their phase shift Φ are measured with a lock-in amplifier
when a sinusoidal deformation is imposed to the sample. In this case, u(t) = u0 sin(ωt) and
a(t) = a0 sin(ωt + Φ). To fix ideas, u0 ≈ 20 nm when a sinusoidal voltage V of 1 Vrms is applied to
the ceramics. The rigidity constants k1 and k2 can be measured with Newtonian isotropic liquids of
known viscosities (silicon oils for instance).

k2

k1

sample

δd(t)

a(t)

u(t)

ce
ra

m
ic

s

LV
D

T

d

Figure 12. Equivalent mechanical model of the rheometer. The linear variable differential transformer
(LVDT) is a very precise linear displacement transducer. It is used to measure a(t) when the cell is
filled with the LC and u(t) when the cell is empty.

3.2.2. Modeling the Behavior of a Homeotropic Sample

The first model of plasticity proposed to describe the behavior under compression of a
homeotropic sample was proposed by the Orsay Group on Liquid Crystals [56]. In this hydrodynamical
model, it was assumed that the layers could easily eliminate on the glass plates. It turns out that the
predictions of this model are not at all verified experimentally. The main reason is that the layers do
not eliminate on the plates as assumed in the model, certainly because of the strong anchoring of the
molecules on the glass.

For this reason, a new model was proposed, based on the Orowan relation well-known in
plasticity of solids [1,2]. In this metallurgical model, the deformation is attributed to the climb motion
of the geometrical edge dislocations, the only ones present in the samples at equilibrium. Under this
hypothesis, the motion equations read

σ = k1(u− a) = k2(a− δd), (20)

σ = B
δd
d
− B

αx
d

, (21)
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where x is the distance covered by each dislocation at time t and d the thickness of the sample. The first
equation just describes the elastic behavior of the rheometer. The second equation shows that the stress
relaxes when the dislocations climb over a distance x. Knowing that v ≡ dx/dt = mσ, the elimination
of x in the previous equations gives

ωc(u− a) = (1 + C)
da
dt
− C

du
dt

, (22)

where ωc = 2π fc = k1mα is a stress relaxation frequency and C = k1
k2

+ k1d
B . Solving the previous

equation for a sinusoidal deformation yields
a0

u0
=

√
ω2

c + C2ω2

ω2
c + (1 + C)2ω2 ,

tan(Φ) = − ωωc

ω2
c + C(1 + C)ω2 .

(23)

These equations show that measuring the ratio a0/u0 and the phase shift Φ as a function of the
frequency ω is enough to determine C and ωc and then deduce the mobility m knowing α. However,
the model applies if several conditions which I enumerate below are fulfilled.

The first condition is that the elastic stress imposed to the sample must never exceed the critical
stress of the undulation instability of the layers. This condition reads

σmax < σc, (24)

where σmax is the maximum stress sustained by the sample, given by

σmax = k1a0

√
1 +

u2
0

a2
0
− 2 cos Φ

a0

u0
(25)

and σc the critical stress for the undulation instability, of expression [9,33]

σc = 2π

√
KB
d

. (26)

If this condition is not fulfilled, the layers break and new dislocations nucleate, which makes the
sample much more ductile and unusable to determine the mobility of the edge dislocations.

The second condition is that the screw dislocations, which are always present in the samples,
do not destabilize. This is the case if σmax does not exceed the critical stress σ? above which the
screw dislocations develop an helical instability, which is equivalent of nucleating a loop of edge
dislocation [9,57–59]. This condition reads

σmax < σ?, (27)

where
σ? =

2πT
bd

(28)

by denoting by T the line tension of a screw dislocation, first calculated by Bourdon et al. [57] for
a helicoidal shape. It turns out that, in 8CB, σ? > σc, so that inequality (27) is less restrictive than
inequality (24).

These two conditions fix the maximum value of the amplitude umax
0 that can be used experimentally

to satisfy the basic assumption of the model, namely a constant density of edge dislocations.
The third condition to satisfy is more subtle, and comes from the fact that the moving edge

dislocations inevitably cross the screw dislocations present in the samples [60–65]. These crossings are
clearly visible at the smectic A-smectic C phase transition temperature because they produce transient
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cusps on the edge dislocations [66–68]. The crossings are also thermally activated with an activation
energy equal to the energy Ekink of the kink formed on each edge dislocation during the crossing.
By taking the crossings into account, it can be shown that the edge dislocations propagate with an
effective mobility lower than their intrinsic mobility, of expression [55]

meff
0 =

m0

1 + A σ
sinh(σΩa/kBT)

, (29)

where A = (2bL/π2E)eEkink/kBT . In this formula, b is the Burgers vector of the edge dislocations, L is
the mean distance between the screw dislocations and Ωa = Lba0 is an activation volume calculated
by assuming that the screw dislocations are elementary, which is likely as their energy is proportional
to the square of their Burgers vector [69–71]. The ratio meff

0 /m is plotted in Figure 13 as a function
of the applied stress. This graph shows that the mobility decreases at low stress, but is equal to the
intrinsic mobility under large stress.

meff 0
0

 / 
m

σ / σc

Figure 13. Effective mobility of an elementary edge dislocation crossing a forest of screw dislocations
as a function of the applied stress. The mobility is normalized by the intrinsic mobility and the stress
by the critical stress of the undulation instability. This curve have been plotted by taking b = 3 nm,
L = 17 µm, Ekink = 3.3 kBT and E = 3× 10−12 N [72] and σc = 400 N/m2. These values correspond to
a 100 µm-thick sample of 8CB at 32 ◦C when α = 5× 10−4 rad. (adapted from Ref. [55], with kind
permission of the European Physical Journal).

For this reason, the simplified model fails at small applied stress. By contrast, it applies under large
stress, in particular when σmax is chosen just below the onset of undulation of the layers [55]. In that
case, the fit of the experimental curves with the Equations (23) of the simplified model (Figure 14)
directly gives the intrinsic mobility of the dislocations.

Φ
 (r
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 / 
u
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Figure 14. Rheological curves and their global fit with Equation (23) for a 100 µm-thick sample of 8CB
at 32 ◦C when α = 5× 10−4 rad and u0 = 100 nm. The error bars for the ratio a0/u0 are very small, of
the order of the size of the filled circles (adapted from Ref. [55], with kind permission of the European
Physical Journal).
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All the mobility measurements presented in the next two paragraphs have been performed under
these experimental conditions by using the simplified model.

3.2.3. Dislocation Mobility in the Pure LC

The mobility of edge dislocations was systematically measured as a function of temperature in a
95 µm-thick sample with α = 5× 10−4 rad [30]. Under these experimental conditions, the dislocations
are elementary. The results shown in Figure 15 show that the mobility increases with temperature and
diverges at the transition temperature TNA. The fit with relation

m0 = a exp
(
− E

kBT

)
+ b(−δT)n, (30)

where the first and second terms represent, respectively, a thermally activated behavior far from
the transition and a critical behavior close to TNA (with δT = T − TNA < 0), gives an activation
energy of 1.4 ± 0.33 eV and a critical exponent n = −0.66± 0.074. This exponent is very close to the
theoretical exponent −0.63 given in the theoretical section. Note that three other measurements have
been reported in this graph. Two of them (crosses) were obtained from a creep experiment at constant
stress [73] , while the star corresponds to the measurements in free-standing films presented above [40].
A very good agreement is found between the different measurements.

6x10-7
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4

3

2

1

0

m
0 (

m
2  

s 
kg

-1
)

-10 -8 -6 -4 -2 0
δT (°C)

 Ref 30
 Ref 73
 Ref 40

Figure 15. Mobility of elementary edge dislocations as a function of the temperature difference
δT = T − TNA (adapted from Ref. [30]). Errors on the mobility measurements are of the order
of ±10%.

The mobility of double dislocations was also measured in 8CB [55]. These dislocations
spontaneously form in the samples when α = 10−3 rad to minimize their energy [9,74–76]. For these
dislocations, it was found m = 1.2× 10−7 m2 s kg−1 at 32◦C (δT = −1.3◦C). This value is very close
to the mobility of elementary dislocations shown in Figure 15. This measurement confirms that the
mobility is independent from the Burgers vector, in agreement with the hydrodynamical model.

3.2.4. Dislocation Mobility in the LC Doped with Nanoparticles

In these experiments, the 8CB was doped with gold nanoparticles of nominal diameter 4.7 nm.
Three concentrations were used: 0.1 wt %, 0.225 wt % and 0.65 wt %. To avoid the nanoparticles from
aggregating, they were capped with mesogenic ligands following a procedure given in Ref. [26]. Under
these conditions, the nanoparticles interact very little between them. However, they strongly interact
with dislocations by forming Cottrell clouds. The latter decorate the dislocations which become visible
under the microscope in natural light (Figure 16).
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50 μm

Figure 16. Geometrical elementary dislocations decorated by nanoparticles observed in transmission
microscopy. The sample thickness is 20 µm and the concentration of nanoparticles is 0.225 wt %
(from Ref. [30]).

To measure the mobility of elementary edge dislocations, homeotropic samples of doped 8CB
were prepared with an angle of 5× 10−4 rad. Systematic measurements showed that the higher the
concentration of nanoparticles, the harder the sample. This hardening is due to the drag force ~Fdrag that
the Cottrell cloud exerts on the dislocation. As this force is proportional to~v according to Equation (11),
it adds to the viscous force ~Fv = − b

m0
~v. As a consequence, it is as if the dislocation had a mobility m

given by

− b~v
m

= − b~v
m0
− kBTc0λ2

D‖
ξ~v, (31)

where ξ is the dimensionless drag coefficient given in Equation (12). In experiments, the velocity of
the dislocations never exceeds 50 µm/s. For this reason, the nonlinear effects due to the erosion of the
cloud are negligible and ξ is approximately constant, equal to the constant ξ0 given in Equation (15).

In experiments, m is directly measured. Because m0 is known, plotting 1
m −

1
m0

directly gives the

drag coefficient kBTc0λ2

D‖
ξ0 divided by b. This quantity is plotted in Figure 17 as a function of temperature

for the three concentrations studied. This graph shows that the drag coefficient vanishes at TNA and
strongly increases when the temperature decreases. It is also proportional to the concentration of
nanoparticles, in agreement with the theoretical model. Finally, these curves can be fitted with the
model, after remembering that D‖ = kBT/(4πη3Φh) [19], where η3 is the shear viscosity in the plane of
the layers measured by Schneider in 8CB [77] and Φh the hydrodynamical diameter of the nanoparticles
with the ligands attached to their surface, of the order of 2Φ. The best fit of the experimental data
(solid lines in Figure 17) gives δV ≈ 29 nm3. This value is close to the expected theoretical value:
δV(theo) = 27 nm3 obtained by taking δS = πΦ2/4 = 17 nm2 and ζ = Φ− a0 = 1.6 nm (by assuming
that the ligands do not deform the layers). From these data, the number of nanoparticles in the
Cottrell cloud per unit length of dislocation can also be estimated [30]. For instance, this number varies
from ∼ 0 at the transition temperature TNA to ∼ 2× 107 m−1 at δT = −10◦C for a concentration of
nanoparticles of 0.225% by weight.

8x107
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4

2

0

1/
m

-1
/m

0 (
kg

 s-
1  m

-2
)

-10 -8 -6 -4 -2 0
δT (°C)

 0.1 wt%
 0.225 wt%
 0.65 wt%

Figure 17. Shift between the reciprocal of the mobility and its value in pure 8CB as a function of temperature.
The solid lines are the best fit with the model by taking δV ∼ 27 nm3 (adapted from Ref. [30]).
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4. Conclusions and Outlooks

These studies show that smectic liquid crystals are unique materials to study dislocations
dynamics and test models of plasticity. Their main advantage over solids is that their microstructure
can be finely controlled. This is particularly the case in homeotropic samples in which the density and
the Burgers vector of the edge dislocations can be chosen just by changing the angle between the plates.
Thanks to this, the hydrodynamical model for the mobility of the edge dislocations has been validated
as well as the model of plasticity by climb of edge dislocations controlled by the crossings with screw
dislocations. Several instabilities predicted by the theory have also been observed experimentally. I am
referring here to the undulation instability of the layers and to the sequence of helical instabilities of
the screw dislocations which I mentioned a number of times in this paper. Finally, the experiments
with nanoparticles allowed to provide evidence of a strong hardening of the homeotropic samples that
was explained in terms of drag force due to the Cottrell clouds attached to the dislocations. On this
topic, I emphasize that the observed hardening could help to improve the lubrication performance of
the smectic A phase [78,79].

In the future, it would be interesting to test this point. Another theoretical prediction not
yet implemented experimentally concerns the nonlinear behavior of the drag force acting on edge
dislocations at large velocities in the presence of Cottrell clouds. Indeed, the theory predicts that
the dimensionless drag coefficient ξ must decrease by a factor of 2 when the dislocation velocity
passes from 0 to 0.3 mm/s, typically. This variation could be detected experimentally by performing
a stress relaxation experiment under compression (to avoid the undulation instability) of very thin
homeotropic samples (to avoid the helical instabilities of the screw dislocations). In these experimental
conditions, the relaxation should no longer be exponential as usually observed under small stress
conditions [9,80]. It would also be interesting to perform similar experiments with other materials
than 8CB, in particular close to the smectic A–smectic C phase transition where the pinning between
edge and screw dislocations seems more important than in 8CB for reasons that are not clear. Finally, I
mention the existence of a few measurements of the mobility of edge dislocations in lamellar lyotropic
phases. In these materials, the values found can vary from ∼10−7 m2 s kg−1 in the C12E5-H2O
system [81] or the SDS-1pentanol-H2O system [82] down to 10−17 m2 s kg−1 in a phospholipidic
lamellar phase [51]. These differences could be due to the existence or not of microscopic defects inside
the lamellae such pores or passages which favor the permeation [83–88].
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