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Abstract: The electrical resistivity and thermal conductivity behavior of Fe at core conditions
are important for understanding planetary interior thermal evolution as well as characterizing
the generation and sustainability of planetary dynamos. We discuss the electrical resistivity and
thermal conductivity of Fe, Co, and Ni at the solid–liquid melting transition using experimental
data from previous studies at 1 atm and at high pressures. With increasing pressure, the increasing
difference in the change in resistivity of these metals on melting is interpreted as due to decreasing
paramagnon-induced electronic scattering contribution to the total electronic scattering. At the
melting transition of Fe, we show that the difference in the value of the thermal conductivity on
the solid and liquid sides increases with increasing pressure. At a pure Fe inner core boundary of
Mercury and Ganymede at ~5 GPa and ~9 GPa, respectively, our analyses suggest that the thermal
conductivity of the solid inner core of small terrestrial planetary bodies should be higher than
that of the liquid outer core. We found that the thermal conductivity difference on the solid and
liquid sides of Mercury’s inner core boundary is ~2 W(mK)−1. This translates into an excess of
total adiabatic heat flow of ~0.01–0.02 TW on the inner core side, depending on the relative size of
inner and outer core. For a pure Fe Ganymede inner core, the difference in thermal conductivity is
~7 W(mK)−1, corresponding to an excess of total adiabatic heat flow of ~0.02 TW on the inner core
side of the boundary. The mismatch in conducted heat across the solid and liquid sides of the inner
core boundary in both planetary bodies appears to be insignificant in terms of generating thermal
convection in their outer cores to power an internal dynamo suggesting that chemical composition
is important.

Keywords: melting transition; Fe; electrical resistivity; thermal conductivity; high pressure; heat
flow; thermal and chemical convection

1. Introduction

The processes of magnetic field generation and sustainability in planetary bodies depend on
the composition and thermal state of their cores. Among the rocky planetary bodies with an active
dynamo, Mercury has the weakest internally generated magnetic field, with a surface field strength of
~0.3 µT or ~1% compared with the Earth’s field. Though a possible remnant crustal magnetization
has been suggested [1], a self-sustained dynamo in Mercury’s Fe core is the most plausible source
of its global magnetic field [2]. A recent study suggests that a double-diffusive convective regime
operates, where both thermal and compositional convection drive the system [3]. Earth-based radar
measurements of subtle deviations from the mean resonant spin rate of Mercury demonstrate that
Mercury’s mantle is decoupled from its liquid or partially molten core [4–7]. This supports earlier
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assertions that Mercury has a molten outer core [8,9]. Recent geodetic constraints on the interior of
Mercury from the MESSENGER spacecraft are consistent with a high degree of internal differentiation
and a solid inner core with a radius of 0.4–0.7 times the outer core radius [10]. While the role of a
solid inner core and its contribution to chemical composition convection in a liquid outer core was
recognized long ago for Mercury [9], the possibility of Mercury’s weak surface magnetic field resulting
from dynamo action in a thin shell geometry has been shown more recently [11]. For the case of
Ganymede, although remnant magnetization cannot be completely ruled out as the source of its
magnetic field, magneto-convection in its core like that in the Earth has been suggested [12]. However,
dynamo action in Ganymede differs from that of the Earth due to the presence of the strong nearby
Jovian magnetic field. Thus, the magneto-hydrodynamic equation is variant under the transformation
of B→ –B with a directional preference for the self-generated field which could lead to a non-reversing
magnetic field unlike the reversing nature of the geomagnetic field [13].

Convection in a terrestrial planetary core can arise from heat transport in excess of the conducted
heat (i.e., by thermal convection) or from exsolution and precipitation of core components (i.e., by
chemical convection) such as Fe at the inner core boundary, ICB [14], or SiO2 [15], or MgO [16]
at the core-mantle boundary as suggested for Earth. Recent studies have both challenged [17] and
supported [18] the MgO precipitation model. There is continuing debate about the relative contributions
of thermal vs. chemical convection throughout the thermal and chemical evolution of terrestrial-like
planetary cores [19–27]. In a purely thermally driven core, as expected in the early stages of core
evolution where a solid inner core and chemical convection are absent, thermal convection is the only
source of energy to power the dynamo. Thus, knowing the relative contribution of thermal conduction
and thermal convection to thermal transport in the core is essential to understanding the source of
energy of a core-generated magnetic field, inner core age, and thermal evolution of the core.

The contribution of conductive heat flow in the core requires the thermal conductivity of
core material to be known. Thermal conductivity for metals can be approximated using the
Wiedemann-Franz relation if values of electrical resistivity of Fe at high pressure (P) and temperature
(T) conditions are known. This approach is often adopted [19–21] over direct measurement of thermal
conductivity due to the enormous challenges in maintaining a well-controlled T-gradient in a small
sample at very high T and P conditions [22].

Much recent attention in attempts to determine core conductive heat flow is focused on Earth.
The electrical resistivity of the Earth’s core was estimated to be 350–450 µΩcm from analysis of low
P static and high P dynamic shock compression data [23,24], leading to calculated values of core
thermal conductivity of 30–50 W(mK)−1 that are generally consistent with the only experimental
measurements of thermal conductivity made on Fe at core P,T in the diamond anvil cell [25]. However,
theoretical [26,27] and experimental investigations [19,20] have suggested a much lower core resistivity
(and thermal conductivity values greater than 90 W(mK)−1) for the outer core because of the effect of
resistivity saturation at high T.

Theoretical investigation by Wagle and Steinle-Neumann [28] used a thermodynamic model
and the Ziman approximation to determine the resistivity of solid and liquid Fe up to core P and T
conditions. They found a decreasing resistivity change (ρliq − ρsol) on melting with increasing P. From
their experimental resistivity data on hcp Fe at high P and room T in the diamond anvil cell (DAC)
Gomi et al. [19] asserted that Fe resistivity at core conditions is close to saturation and therefore the
resistivity change on melting should be negligible. From their DAC measurements, Ohta et al. [20]
reported, ~20% change in Fe resistivity on melting from the fcc Fe phase at 51 GPa. However, lower
pressure measurements in the multi-anvil press of the T-dependent electrical resistivity of Co up
to 5 GPa [29], Ni up to 9 GPa [30], and Fe up to 12 GPa [21] demonstrated an increasing change of
resistivity on melting with increasing P. This lower pressure regime is relevant for thermal transport at
the ICB in the small planetary bodies Mercury and Ganymede.

From these multi-anvil studies, the resistivity of liquid Co and Ni along their respective
P-dependent melting boundaries remained invariant while Fe showed a decreasing trend of resistivity
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below the δ-γ-liquid triple point at ~5 GPa but then remains constant above the triple point P. Although
experimental investigation of electrical resistivity of the α, γ, ε phases of Fe at combined static high
P and T conditions have been made [20,21,31–33], its behavior through the melting transition is still
contentious, hence, a detailed discussion is needed.

Generally, for the 3d ferromagnetic metals Fe, Co, and Ni, the weak interaction of d electrons gives
rise to an ordered magnetic state characterized by different numbers of electrons with up and down
spins. Since the electronic state of a metal can be probed through the investigation of its electrical
resistivity, and since electronic state and magnetism in a metal are interwoven [34], electrical resistivity
can also provide information about the magnetic state of these metals. We discuss qualitatively our
observation of the effect of decreasing magnon-induced electron scattering with increasing P on the
T-dependent electrical resistivity of these metals at the solid–liquid transition. In addition, we discuss
the possible implications of this behavior on the thermal conductivity and heat flow at the ICB of
Mercury and Ganymede.

2. Electronic Scattering in Ferromagnetic Metals

For unfilled d band transition metals, s–d scattering dominates over normal s–s electron scattering
as T increases due to the high density of d-band states. This is generally understood in Mott’s s–d
scattering model [35]. For diamagnetic metals at 1 atm, those with filled d-bands (e.g., Cu, Ag, and Au),
the combined results from many studies show that their T-dependent resistivity in the solid state
follows a linear dependence on T [36]. Similarly, for some paramagnetic metals at 1 atm (e.g., Pt, Pd,
etc), their resistivity follows a near-linear dependence on T [37,38]. However, for the ferromagnetic
metals, resistivity follows a T2-dependence below the Curie point and T-dependence above the
Curie point [39–43]. With increasing T, the increasing phonon and spin-disorder induced scattering
(magnon-induced scattering) of the highly mobile s conduction electrons into unfilled d-band states
leads to decreased mobility of s electrons and higher resistivity. Below the Curie T, electron scattering
is caused by a combination of phonon- and magnon-induced scattering, as well as a contribution
from the asymmetry of the Fermi surface (Mott, 1964). Above the Curie T in the paramagnetic state,
paramagnon-induced scattering tends toward a constant value while the phonon-induced scattering
continues to increase with increasing T and therefore controls the T-dependent resistivity trend. Even if
only qualitatively known, the relative contribution of the different scattering mechanisms is important
for our study.

Probing band structure effects through resistivity investigation of the ferromagnetic metals under
P and T conditions may provide an understanding of the complex electron scattering mechanisms
which can occur due to topological features of the Fermi surfaces, Fermi level position, and energy
gap between the spin sub-bands (δEex). Experimental studies mapping the Fermi surfaces of Fe,
Co, and Ni have been accomplished primarily through the use of de Hass-van Alphen (dHvA)
oscillatory effects [44] along with magnetoresistance investigations that have confirmed the existence
of a complicated open orbit topology of the Fermi surfaces of these metals [45–47]. In 3d ferromagnetic
metals, magnetism is largely caused by electrons in the high density of states 3d bands at the Fermi
level. Angle-resolved photoemission studies demonstrated that the decrease in δEex above the Curie
T for Fe, Co, and Ni is due to the energy of the spin-down sub-band shifting ~2–3 times faster than
the spin-up sub-band [47–49]. Interestingly, values of δEex for Fe, Co, and Ni, and the population of
the 3d-band at ambient conditions correlate with the magnitude of the abrupt change in the electrical
resistivity on melting as shown in Figure 1. Ni has the highest number of 3d electrons (least number of
unoccupied 3d states), lowest value of δEex, and it has the greatest change in resistivity on melting
as shown in Figure 1. Fe has the least number of 3d electrons (highest number of unoccupied 3d
states), highest value of δEex, and it has the smallest change in resistivity [38] on melting. This implies
that Fe, having the highest number of unoccupied 3d states with the greatest contribution of s–d
electron scattering induced by phonons and magnons, should show a smaller change in the resistivity
on melting. The small change in the resistivity on melting can thus be explained by the extensive
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pre-melting scattering relative to the additional scattering arising from atomic structural change on
melting. Conversely, just prior to melting, Ni has the least contribution of scattering from phonon- and
magnon-induced s–d electron scattering and therefore shows a larger jump in resistivity arising from
the relatively larger scattering contribution on melting due to the effect of atomic structural change.
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Figure 1. Data of 1 atm of Fe, Co, and Ni. (a) Resistivity discontinuity [38] on melting (note the
differences in resistivity scale for Fe, Co, and Ni, whose melting T’s are 1809 K, 1768 K, and 1728 K,
respectively); (b) resistivity discontinuity on melting and number of occupied d-electron band, and;
(c) sub-band energy gap and magnetic moments [34,50].

Focusing on the magnitude of resistivity of Fe, Co, and Ni in the solid state just prior to melting,
the T-dependent resistivity of paramagnetic Fe above the Curie T is similar in trend to the T-dependent
resistivity of paramagnetic Pd as phonon-induced scattering dominates in both cases, as shown in
Figure 2. On the other hand, an x-ray magnetic circular dichroism study [51] showed that the net
magnetic moment of Fe decreases with increasing P and vanishes at ~18 GPa at ambient T while both
Ni and Co remain ferromagnetic to well over 100 GPa. The increasing population of d-band electrons
due to s–d hybridization with increasing P [52–54] will lead to termination of magnetism. It is expected
that the relative change in the positions of s and d bands in Fe, Co, and Ni with increasing P control the
rate of d-band population and loss/retention of magnetism. Theoretical investigation demonstrated
that the non-spin state of Fe is the most energetically favored electronic state at high P [51]. Through
P-induced reduction of magnetism and tendency toward spin disorder saturation above the Curie T,
these two effects combine to reduce or eliminate the contribution of paramagnon-induced electron
scattering in the T-dependent resistivity region of ferromagnetic metals at high P.
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Figure 2. T-dependent electrical resistivity of Fe at different P compared with Pd at 1 atm.

3. Results and Discussion

3.1. Electrical Resistivity and Thermal Conductivity at the Melting Transition

As shown in Figure 3, recent experimental investigations of the T-dependence of resistivity of
Co [29], Ni [30], and Fe [21] at high P demonstrate that the effect of P on resistivity is greater in the high
T region (T-dependent resistivity) above the Curie T than in the low T region (T2-dependent resistivity)
below the Curie T. This suggests that magnon-induced scattering is less sensitive to P than is scattering
caused by simple phonon scattering or phonon scattering that results in s-electrons being scattered
into d-states. This appears intuitively expected as phonon scattering or phonon-induced s–d scattering
arise from atomic vibration whereas magnon-induced scattering is operative at the electronic level.
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Figure 3. Temperature dependence of resistivity of solid and liquid Fe, Co, and Ni at 1 atm and at
various high pressures.
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The P-dependence of liquid resistivity of Co and Ni along the melting boundary appears constant
up to 5 GPa and 9 GPa, respectively, with values of resistivity on melting

(
ρliq

)
comparable to their

corresponding values at 1 atm. The resistivity of Fe on melting decreases up to 5 GPa as it melts from
the bcc phase but then resistivity on melting remains constant up to 12 GPa as it melts from the fcc
phase. With a constant value of resistivity on the melting boundary, ρliq, and a decreasing value of
solid resistivity just before melting (ρsol) with increasing P, ρliq − ρsol increases with increasing P up to
the maximum pressures investigated in these studies as shown in Figure 4. Although, these data for Fe
show an increasing ρliq − ρsol with increasing P in this low P range, theoretical calculation [28] up to
core P and T show that the ρliq − ρsol for Fe melting from the hcp phase decreases with increasing P.
Further experimental work is needed at higher P to assess the trend of ρliq − ρsol for Fe shown here
within the context of a larger pressure range.
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Figure 4. The difference in electrical resistivity value of solid and liquid Fe, Co, and Ni at the melting
transition with increasing P. The least squares fits of ρliq − ρsol vs. P for Fe, Co, and Ni are, respectively,
(11.33 ± 3.19) + 0.74 P, (12.99 ± 0.0016) + (1.35 ± 0.6) P, and (31.84 ± 0.61) + (1.21 ± 0.1) P.
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Theoretical calculations demonstrate that d-resonance scattering dominates the electrical resistivity
of unfilled d-band liquid metals [55–58]. Experimental study using a flash heating technique in the DAC
showed the electrical resistivity of Pt along its high P melting boundary is constant [59]. The constancy
in the liquid resistivity on the melting boundary may be understood based on the expectation that
increasing P brings the Fermi level closer to the d-resonance site, hence, decreasing conduction electron
mobility and increasing resistivity. However, increasing P also decreases phonon amplitudes and thus
phonon-induced scattering which decreases resistivity. The combined antagonistic effects of P on these
scattering mechanisms on melting could compensate each other in such a way that resistivity remains
constant along the melting boundary, especially in closed packed structures [29,60]. Upon loss of,
or reduction in, paramagnon-induced electron scattering at high P and T conditions, one might infer
that the T-dependence of resistivity of ferromagnetic metals Fe, Co, and Ni in the solid state could
eventually, at high enough P, mimic that of paramagnetic metals such as Pt and Pd, at 1 atm [36,37]
or perhaps Cu, Ag, Au, and Zn [61–64], where there is a constant paramagnon-induced scattering
contribution to its T-dependent resistivity.

3.2. Heat Flow at the Inner Core Boundaries of Mercury and Ganymede

The electronic thermal conductivity, ke, at planetary inner core conditions can be estimated using
the Wiedemann-Franz law

(
ke =

LT
ρ

)
where L is the Lorenz number. The total thermal conductivity

of metals is dominated by electronic thermal conductivity [65] and one can reasonably assume they
are similar in value. Mercury is thought to have a solid inner and liquid outer core with the P and T
conditions at the ICB of ~5 GPa [6] and (1800–2000) K [66], respectively. Parameter values are provided
in Table 1. For a pure Fe core in Mercury, using measured resistivity and melting T data of Fe at 5 GPa
by Silber et al. [21] and the Sommerfeld value (Lo = 2.445 × 10−8 WΩ/K2) of the Lorenz number [67],
we compute a value of ke of 39 W(mK)−1 for the solid just before melting and 37 W(mK)−1 for the
liquid side. The errors on these calculated values are mainly due to the errors on the experimentally
derived values of ρsol and ρliq which are ~5% [21] and the T at the ICB; however, we used the same value
of 1880 K to calculate both values. The difference in the calculated ke values suggest ~5% difference in
thermal conductivity across the ICB of a pure Fe core in Mercury. While the choice of Lorenz number
may also be debated, a single value of L is appropriate for calculating ke on both sides of the ICB which
are at a single set of P,T conditions. An L value different than the one used here will not change the
relative values of ke across the ICB. For Ganymede with PICB of ~9 GPa [68] and using measured Fe
resistivity and melting T data by Silber et al. [21], we calculate ke on the solid side of the ICB in a
pure Fe core to be 46 W(mK)−1 and on the liquid side to be 39 W(mK)−1, a difference of more than 7%.
For Mercury and Ganymede, this analysis suggests that their thermal conductivity on the solid side of
their ICB is likely to be higher than on the liquid side of their ICB, but only marginally when errors are
considered. This difference is likely to be higher in Ganymede with PICB of ~9 GPa compared with
Mercury with PICB of ~5 GPa.

The heat flow (Q) along the adiabatic T gradient in a liquid outer core can be expressed as:

Qcond = k
(

dT
dz

)
adiabatic

= k
αgT
Cp

(1)

where
(

dT
dz

)
adiabatic

is the adiabatic T gradient and α, g, and Cp are thermal expansion, gravitational
acceleration, and heat capacity at constant P, respectively. Heat flow transported away from the inner
core that exceeds the conducted heat flow in the liquid outer core is transported by thermal convection,
which in turn is available for driving a dynamo. Here, we concentrate on the heat transport across
the solid and the liquid sides of the ICB of Mercury and Ganymede. At the solid side of Mercury
ICB of ~5 GPa, we use a melting T for Fe at ~5 GPa of 1880 K [21] and we adopt an average value of
8.9 × 10−5 K−1 for α from the range of values (6.4–11.4) × 10−5 K−1 estimated at the top of Mercury’s
core by Secco [67], a value of 4.0 ms−2 for g [69], a value of 39 W(mK)−1 for ke, and for Cp a value of
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835 J/Kg/K which is assumed independent of P and T [70], we calculate a value of 31 mWm−2 for the
heat flow conducted down the adiabat on the solid side of Mercury ICB. To calculate the total adiabatic
heat flow on the solid side of the ICB, we use a total core radius of 2004 km [69] along with the recently
obtained estimates of inner core radius of 0.4–0.7 times the outer core radius [10]. These values yield
a total adiabatic heat flow of 0.25–0.77 TW. On the liquid side of Mercury ICB, using the calculated
ke of 37 W(mK)−1 and keeping other quantities constant, we calculate a value of 30 mWm−2 for the
conducted heat flow and a range of total adiabatic heat flow of 0.24–0.75 TW. This analysis suggests
that for a pure Fe core in Mercury, the difference in the heat conducted along the adiabat across the
ICB is small and in the range of 0.01–0.02 TW and likely too small to generate significant thermal
convection in the liquid outer core.

Table 1. Parameter values for Mercury and Ganymede used in heat flow calculations *.

Parameter Mercury Ref. Ganymede Ref.

PICB—pressure at ICB 5 GPa [6] 9 GPa [68]
TICB—temperature at ICB 1880 K [66] 2200 K [71]

Lo—Lorenz number 2.445 × 10−8 WΩ/K2 [67] 2.445 × 10−8 WΩ/K2 [67]
ke solid—electronic thermal conductivity of solid 39 W/m K 46 W/m K
ke liquid—electronic thermal conductivity of solid 37 W/m K 39 W/m K

α—thermal expansion 8.9 × 10−5 K−1 [67] 4.8 × 10−5 K−1 [72]
g—gravitational acceleration 4.0 m/s2 [69] 4.36 m/s2

CP—specific heat 835 J/kg K [70] 835 J/kg K [70]
Qcond solid—conducted heat on solid side of ICB 31 mW/m2 23 mW/m2

Qcond liquid—conducted heat on liquid side of ICB 30 mW/m2 19 mW/m2

rICB—radius of ICB 800–1400 km [10,69] 650 km [73]
total adiabatic heat flow on solid side of ICB 0.25–0.77 TW 0.12 TW
total adiabatic heat flow on liquid side of ICB 0.24–0.75 TW 0.10 TW

* Values in table without references are calculated in this study.

We calculate the heat flow on the solid side of a pure Fe core in Ganymede where PICB is taken as
~9 GPa and TICB ~2200 K [71]. We determine ke on the solid and liquid side of Ganymede’s ICB to be
46 W(mK)−1 and 39 W(mK)−1, respectively. The size of Ganymede inner core, r, is not well determined,
however, its core size has been estimated to lie between 650–900 km [73] and we assume an ICB radius
of 650 km in our calculations. We estimate gravity g(r) by 4πGρcr where, G is the gravitational constant,
ρc is core density ~8000 kg/m2 [12] to be 4.36 m/s2. From the research of Jeanloz [72], we determine αFe
at 9 GPa to be 4.8 × 10−5 K−1. The melting T of Fe at ~9 GPa is ~1990 K [21]. Using these parameters in
equation 1, we estimate the heat flow on the solid and liquid sides of Ganymede’s ICB to be 23 mW/m2

and 19 mW/m2, respectively. For an inner core radius of ~650 km, this yields a total adiabatic heat
flow of ~0.12 TW and ~0.10 TW conducted on the solid and liquid side of Ganymede ICB, respectively.
This analysis shows that the larger thermal conductivity difference on the solid and liquid sides of
Ganymede’s ICB of ~7 W(mK)−1 compared to Mercury only causes a difference of ~0.02 TW in the
heat flow conducted along its adiabat, which is similar to the value for Mercury.

4. Conclusions

The T variation of the electrical resistivity of solid and liquid Fe, Co, and Ni through the melting
transition at high P was discussed using experimentally measured data from previous studies. These
findings were examined on the basis of reduction of magnon-induced electron scattering (quadratic
dependence on T) at high P and T. The scattering of s-electrons to d-states in Fe, Co, and Ni above
their Curie T can be related to the increasing phonon-induced scattering to empty d-states (linear
dependence on T) and the diminishing relative effect of constant magnon-induced scattering. Relative
increases of resistivity on melting in these three metals are self-consistently interpreted within this
model. The ke of solid and liquid at the onset of melting was calculated using the Wiedemann-Franz law
with the Sommerfeld value of Lorenz number. These analyses suggest that the thermal conductivity of
the solid inner core of small terrestrial planetary bodies could be higher than the liquid outer core.
Analysis of the thermal conductivity difference on the solid and liquid side of a pure Fe Mercury and
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Ganymede inner core were performed. We found that the thermal conductivity difference on the solid
and liquid sides of Mercury’s ICB at ~5 GPa is ~2 W(mK)−1, which translates into a difference in total
adiabatic heat flow of ~0.01–0.02 TW, depending on the size of the inner core relative to the outer core.
For a pure Fe Ganymede inner core at ~9 GPa, the difference in thermal conductivity is ~7 W(mK)−1,
corresponding to difference in total adiabatic heat flow of ~0.02 TW across its ICB. The cores of both
planetary bodies appear to have a difference in conducted heat across their ICB that is insignificant
in terms of generating thermal convection to power an internal dynamo suggesting that chemical
composition is important.
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