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Abstract: Polymers are poor heat conductors, so the cooling of thick-walled shapes results in
temperature gradients. Here, isotactic polypropylene (iPP) is chosen as a model polymer for the
study of polymer crystallization in a temperature gradient field. The morphological Monte Carlo
algorithm is applied, combined with the radius growth model, to predict the growth of spherulites.
Through comparison of the two numerical solutions, analytical solution and experimental data,
the validity of the morphological Monte Carlo algorithm is demonstrated. In addition, the roles
of central temperature, temperature gradient for the evolution of spherulites, and the conversion
degree of the melt into spherulites are considered. The results of the study show that increases in
central temperature and temperature gradient can increase the anisotropy of spherulites. Isothermal
crystallization and crystallization in a temperature gradient field are compared, and the differences
are considered. Results show that when the central temperature is below 125 ◦C, and when the
temperature gradients are less than 15 K/mm and 27 K/mm, the differences in the conversion degree
of the melt into spherulites are less than 2% and 5%, respectively. Therefore, crystallization under
such temperature gradient conditions can be simplified as isothermal crystallization.
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1. Introduction

Polymers are currently widely used in industry and processed into a variety of products. Common
processing techniques include injection molding, extrusion molding, blow molding, and some others [1,2].
With respect to semi-crystalline polymers, the crystallization that takes place during a product’s cooling
stage is the key factor in determining the mechanical properties of that product [1,2]. Therefore, the
study of the crystallization of polymers is of great importance for the manufacturing industry.

In polymer processing, the temperature effects complicate crystallization significantly. At present,
it is believed that at a mesoscopic scale the crystalline morphology of a polymer affected only by a
uniform temperature field consists of isotropic spherulites, whereas when temperature gradients are
present, the crystalline morphology consists of anisotropic spherulites [3]. Polymers are poor heat
conductors, as cooling of thick-walled shapes results in temperature gradients. Moreover, the latent
heat generated by crystallization also causes an increase in temperature. Therefore, the temperature
varies in space during polymer processing, and the crystalline morphology that can be expected is that
of anisotropic spherulites.

In the computer simulation of polymer crystalline morphology, most work is based on isotropic
crystal morphology. Methods include the cellular automata method [4,5], the pixel coloring method [6–8],
the Monte Carlo method [9–11], the Level Set method [12,13], and the phase field method [14], etc.
Some researchers [15–17] considered the anisotropic growth of spherulites and established that both
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normal and radial growth models apply. It is noteworthy that, using these models, it is difficult to
obtain the conversion degree of the melt into spherulites, and thereforethe coupling in the energy
equation at a macroscopic scale, to carry out the multiscale simulation. Therefore, the construction of
numerical methods for simulating the growth of anisotropic spherulites and calculating the conversion
degree of the melt into spherulites in a temperature gradient field plays an important role in the
accurate study of polymer crystallization.

In this paper, isotactic polypropylene (iPP) is chosen as a model polymer for the study of polymer
crystallization in a temperature gradient field. The morphological Monte Carlo algorithm is used
in conjunction with the radius growth model to predict the growth of spherulites. A comparison of
numerical solutions, the analytical solution, and experimental data, is used to validate the morphological
Monte Carlo algorithm. In addition, the roles of central temperature, temperature gradient for the
evolution of spherulites, and the conversion degree of the melt into spherulites are considered. The
temperature gradient range is also analyzed, using simplified isothermal crystallization, when the
central temperature falls below 125 ◦C.

2. Mathematical Model and Numerical Method

2.1. Mathematical Model

In a temperature gradient, polymers tend to grow anisotropic spherulites. Figure 1 presents the
growth model. Here, we assume the temperature gradient is in the x direction and the temperature T
obeys linear distribution [18], namely, T = T0 + Λ · x, where T0 is the central temperature and Λ is the
temperature gradient. As per Figure 1, the interface between the spherulite and the melt grows normal
to itself, with the growth rate given by the local temperature. However, it is possible to attenuate the
computation burden by the radial directions instead. The relation between the normal growth rate, Gn,
and the radial growth rate, Gr, is given as follows [16,17]:

Gr = Gn

√
1 +

( r′

r

)2
(1)

with
r′ = dr/dθ (2)

where r and θ are the space variables in the r− θ coordinate system.
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The normal growth rate, Gn, satisfies the well-known Hoffman–Lauritzen equation [18,19]:

Gn = G0 exp
{
−U∗/

[
Rg(T − T∞)

]}
exp

{
−Kg/

[
T(T0

m − T)
]}

(3)

where U∗ is an energy parameter similar to an apparent activation energy of motion, Rg is the gas
constant, T∞ = Tg − 30 is considered to be the temperature at which no further molecular displacement
is possible. G0 and Kg are experimentally determined constants. For a given iPP, the parameters are as
follows [18]: U∗ = 1500 cal/mol, Rg = 8.314472 J/(mol · K), T∞ = 231.2 K, T0

m = 458.2 K. Constants
Kg and G0 depend on the regime of crystallization [18]: Kg = 1.47 × 105 K2, G0 = 0.3359 cm/s,
(T ≥ 136 ◦C); Kg = 3.3× 105 K2, G0 = 3249 cm/s, (T ≤ 136 ◦C).

Equations (1–3) provide the mathematical model for the growth of a single spherulite. In the
crystallization process, all spherulites start to grow from nuclei. The nucleation density, D, is dependent
on temperature. For iPP, the following formula is used [18]:

D = exp[111.265− 0.2544(T + 273.15)]/mm3 (4)

Piorkowska [18] proposed a probabilistic model for polymer crystallization in a gradient
temperature field. This model was based on the Avrami equation [20], namely:

α = 1− exp[−E(x0, t)] (5)

where α is the conversion degree of the melt into the spherulite. Here, E(x0, t) can be treated as the
“extended volume”, which is [18]:

E(x0, t) = 2
∫ x0+r(0,t)

x0−r(π,t)
D|x− x0|

t2
[∫ x

x0

Gn(x′)
−1dx′

]−2

− 1


1/2

dx (6)

where x0 is an arbitrarily chosen point, and t is the time from the beginning of the crystallization. Here,
|x− x0| is the absolute distance between x and x0. Note that the nucleation density D is a function of
the temperature T, and the temperature T is in turn a function of the space variable x andcare should
be taken when integrating. The nucleation density is given in Equation (4) and the unit is per mm3.

2.2. Numerical Method

The morphological Monte Carlo method [9,11] was used to capture the growth fronts of spherulites.
The algorithm is given as follows:

STEP 1: Initialization. The computational zone is divided into several equally sized cells with the
total number Ntot. Each cell is assigned the initial color value 0.

STEP 2: Nucleation. Produce each random nucleus center with a nucleation density D at the
beginning of the crystallization, t = 0. Assume that each nucleation unit occupies one cell. Assign
different colors to different nuclei in order to distinguish them.

STEP 3: Growth. For each time step [t j, t j+1], calculate the growth radius r of spherulites according
to Equations (1–3). Generate several random points, Nrand, restricted to the centers of cells. For each
random point, if it falls into the radius of one spherulite, it is considered to belong to this spherulite,
and the color is assigned to match this spherulite. If a random point falls into the growth radius of
more than one spherulite, it is assumed that the point is covered by the first spherulite to reach the
point, and the color is assigned to match this spherulite.

STEP 4: Calculate the conversion degree of the melt into spherulites. α = Ns/Ntot, with Ns being
the number of cells that areoccupied by spherulites.

STEP 5: Go to STEP 3 until t = tend.
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The computational method for the radius r of spherulites should also be presented. As seen
in Figure 1, the radius r of spherulites is a function of θ, and this explains why the morphology of
spherulites in a gradient temperature field is different from that in a uniform temperature field.

When calculating the radius r of spherulites, a different mesh is used. For each spherulite, we
introduce the θ points at which we will compute the radius r of the spherulite. These points are labeled
θ0,θ1, · · ·θM. A uniform grid is used with the step size being ∆θ = 2π/M. Therefore, we need to
calculate the radius of spherulites r0, r1, · · · rM. From Figure 1, it is obvious that:

r j+1
i = r j

i + Gr∆t (7)

where r j+1
i is the radius of spherulites ri at t = t j+1, r j

i is the radius of spherulites ri at t = t j, and
∆t = t j+1 − t j is the time-step size. The radial growth rate, Gr, is dependent on the local temperature,
and is computed by Equation (1). Then, r′ is calculated by the finite difference equation [16,17,21],
namely:

r′i ≈
{ ri+1−ri−1

2∆θ i = 1, · · ·M− 1;
r1−rM−1

2∆θ i = 0, M.
(8)

Figure 2 shows the schematic representation of two kinds of grid. The square cells are used for
Monte Carlo simulation while the unstructured grids are used for prediction ofthe shape evolution of
individual spherulites.

Crystals 2019, 9, x FOR PEER  4 of 14 

 

STEP 3: Growth. For each time step ],[ 1+jj tt , calculate the growth radiusr of spherulites 

according to Equations (1–3). Generateseveral random points, randN , restricted to the centers of 
cells. For each random point,if it falls into the radius of one spherulite, it is considered to belong to 
this spherulite, and thecolor is assigned to match this spherulite. If a random point falls into the 
growth radius of more than one spherulite, it is assumed that the point is covered by the first 
spherulite to reach the point, and the color is assigned to match this spherulite.  

STEP 4: Calculate the conversion degree of the melt into spherulites. tots NN /=α , with sN
being the number of cells that areoccupied by spherulites.  

STEP 5: Go to STEP 3until endtt = . 
The computational method for the radius r of spherulites should also be presented. As seen in 

Figure 1, the radiusr of spherulites is a function ofθ , and thisexplains why the morphology of 
spherulites in a gradient temperature field is different from that in a uniform temperature field.  

When calculating the radiusr of spherulites, a different mesh is used. For each spherulite, we 
introduce theθ  points at which we will compute the radius r of the spherulite. These points are 
labeled Mθθθ ,, 10 . A uniform grid is used with the step sizebeing M/2πθ =Δ . Therefore, we 

need to calculate the radius of spherulites Mrrr ,, 10 . From Figure 1, it is obvious that: 

tGrr r
j
i

j
i Δ+=+1  (7)

where 1+j
ir is the radius of spherulites ir at 1+= jtt , j

ir is the radius of spherulites ir  at jtt = , 

and jj ttt −=Δ +1 is the time-step size. The radial growth rate, rG , is dependent on the local 

temperature, and is computed by Equation (1). Then, r′ is calculated by the finite difference 
equation [16,17,21], namely: 










=
Δ

−

−=
Δ
−

≈′
−

−+

.,0
2

;1,1
2

11

11

Mirr

Mi
rr

r
M

ii

i

    

    

θ

θ


 (8)

Figure 2 shows the schematic representation of two kinds of grid. The square cells are used for 
Monte Carlo simulation while the unstructured grids are used for prediction ofthe shape evolution 
of individual spherulites. 

 

Figure 2.Schematic representation of square cells and unstructured grids: the square cells are used 
for Monte Carlo simulation, the unstructured grids are used for prediction the shape evolution of 
spherulites 

Figure 2. Schematic representation of square cells and unstructured grids: the square cells are used
for Monte Carlo simulation, the unstructured grids are used for prediction the shape evolution
of spherulites.

3. Results and Discussion

The iPP sample is 600 µm × 600 µm× 11 µm. As this is very thin, it can be treated as essentially
two-dimensional. In our simulation, parameters are set as follows: the total number of cells Ntot = 400
× 400, the divisional number in θ direction M = 500, the total random points Nrand = 800,000, the time
step size ∆t = 1 s and the initial radius of spherulites r0 = 0 at t = 0.

Figure 3 shows the nucleation number and growth rate of spherulites in the iPP sample over
the temperature range 105–140 ◦C. The nucleation number indicates rarity, and the growth rate of
spherulites is rather slow when the temperature rises above 130 ◦C. As the temperature decreases,
both the nucleation number and the spherulite growth rate increase. It is obvious from the Figure 3
that the nucleation number increases significantly when the temperature falls below 115 ◦C.
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3.1. Validity of the Morphological Monte CarloMethod

3.1.1. The Growth of a Single Spherulite

Figure 4 shows the growth fronts of a single spherulite with different central temperatures and
temperature gradients. Here, the ending time is tend = 12 min and the positions of spherulite growth
fronts are plotted at 1-min intervals. The growth fronts of the spherulite are in good agreement with the
numerical work of Piorkowska [18] and Liu et al. [12]. Thus, the validity of the morphological Monte
Carlo method for capturing the growth front of a single representative spherulite is demonstrated.

As can be seen from Figure 4, the spherulite exhibits anisotropy over the temperature gradient.
The growth radius of the spherulite increases on the left side with the lower local temperature, while
it is shorter on the right side where the local temperature is higher. The lower central temperature
accounts for the longer growth radius of the spherulite. Additionally, the higher temperature gradient
supports the longer growth radius of spherulite on the left side and the shorter growth radius on
the right side. This is determined by the growth rate of the spherulite expressed by Equation (3). In
addition, we can conclude from Figure 4 that the anisotropy of the spherulite can be improved by
increasing the central temperature and temperature gradient.

We now discuss the divisional number of M in θ direction. This value is important since it directly
affects the grid to calculate the spherulite size. Figure 5 presents the spherulite shapes at the conditions
of T0 = 130 ◦C, Λ = 100 K/mm predicted with different divisional number of M in θ direction. When
M is small (M = 100), the growth fronts are not smooth at larger radius of spherulite. This trend
improves with the increase of M. As shown in Figure 4d, when M = 500, the smooth growth fronts are
obtained. Generally, the larger the M, the more accurate the results are. However, the larger M leads to
the larger computational cost. Therefore, M should be chosen appropriately. In fact, when simulating
the growth of several crystals, due to the impingement, M can be appropriately small.
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3.1.2. The Growth of Several Spherulites

Figure 6 describes the crystal morphology evolution with the central temperature of T0 = 132.5 ◦C
and temperature gradient of Λ = 35 K/mm. The white region represents the iPP melt, while the
colored region represents the spherulites. Different spherulites are distinguished by different colors.
The nucleation number is larger on the left (lower local temperature) side, while on the right (higher
local temperature) side it is smaller. Due to the fast growth rate at low temperature on the left side, the
growth fronts of spherulites impinge on each other and rapidly form the curve boundary. Over time,
spherulites with free fronts grow to the right side and form the elongated shapes. These numerical
resultsare in good agreement with the experimental results of Piorkowska et al. [22] and the numerical
results of Piorkowska [18] and Liu et al. [12]. Thus, our morphological Monte Carlo method is shown
to remain effective when capturing the evolution of several spherulites.
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3.2. Effects of CentralTtemperature and Temperature Gradient

Figures 7 and 8 show the morphologyevolution of spherulites with different central temperatures
and temperature gradients. Under the isothermal condition (Λ = 0 K/mm), the growth fronts of
spherulites are isotropic and form a straight line boundary when impingement occurs, while in the
temperature gradient field, the growth fronts of spherulites are anisotropic and form a curvilinear
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boundary when impingement occurs [3]. The curvature of the boundary increases with an increase
in central temperature and temperature gradient. The impinged boundary is nearly parallel to the
temperature gradient and the growth fronts are nearly perpendicular to the temperature gradient
under conditions of higher central temperature and higher temperature gradient. Additionally, the
spherulites are elongated in these cases, and the anisotropy is pronounced. This is because on the left
(lower temperature) side, the spherulites can grow faster but soon impinge on each other, while on the
right (higher temperature) side, the spherulites grow more slowly and have enough space to grow
due to the rare nucleation number. The observed tendency is consistent with the numerical works of
Piorkowska [18].
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Figure 8. Morphology evolution with the central temperature T0 = 120 ◦C: (a) isothermal (Λ = 0 K/mm),
(b) Λ = 10 K/mm, (c) Λ = 50 K/mm.

Figures 9 and 10 show the comparison of the conversion degree of the melt into spherulites at
isotherms of 125 ◦C and 120 ◦C under different temperature gradients. Two different representative
volume element (RVE) sizes are used to calculate the conversion degree, namely, [−100 µm, 100 µm]

and [−300 µm, 300 µm]. Here, the simulation results are obtained by the fraction of crystals (see
Section 2.2, morphological Monte Carlo method, STEP 4). The analytical results are obtained by the
probabilistic model set out in Equations (5) and (6).
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It can be seen from Figures 9 and 10 that in the isothermal crystallization, the results obtained by
the morphological Monte Carlo method are in good agreement with the analytical solution. However,
with an increase in the temperature gradient, the deviations between these results gradually increase.
Under a temperature gradient of Λ = 50 K/mm, there is a significant difference between them. The
explanation for the simulation results is as follows: The higher temperature gradient leads to a lower
temperature on the left side and a higher temperature on the right side. As the lower temperature is
favorable for nucleation and the growth of spherulites, and the higher temperature is not conducive
to the formation of spherulites, there is a segmentation at α ≈ 0.5. However, in the probabilistic
model, the conversion degree is determined by the “extended volume,” calculated by all spherulites
growing unrestricted (without considering the impingement or growth outside the computational
zone). Due to the higher temperature gradient, the largerextended volume is obtained on the colder
side, and its contribution to the total extended volume will be much more significant than that of the
smaller extended volume on the hotter side. Thus, the higher the temperature gradient, the larger the
conversion degree. This is inconsistent with our Monte Carlo simulation results.

Piorkowska [18] compared the solution for the probabilistic model with the experimental data
when the central temperature was higher than 130 ◦C, and concluded that increasing the temperature
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gradient would accelerate the conversion degree of the melt into spherulites. From Figures 4 and 6,
we speculate that this is because the nucleation number on the right side is nearly 0 when the central
temperature is above 130 ◦C. Under a higher temperature gradient, the nucleation number and the
spherulites with free growth fronts increase significantly on the left side. These crystals can extend
from the left side to the right side. Although the growth rate of spherulites is smaller due to the
higher local temperature on the right side, it can also contribute to the overall crystallization kinetics.
However, when the central temperature is lower than 125 ◦C, and when there is a higher temperature
gradient, the nucleation is weaker and the growth rate of spherulites is slower on the right side, leading
to a decrease in the crystallization rate as shown in Figures 9 and 10.

Therefore, it can be concluded that the probabilistic model is not suitable to calculate the conversion
degree of the melt into spherulites in the high temperature gradient field (e.g., Λ = 50 K/mm) when
the central temperature is below 125 ◦C.

Figures 9 and 10 also show us that the lower the central temperature, the higher the conversion
degree of the melt into spherulites.

3.3. Difference Between IsothermalCcrystallization and Crystallization in a Temperature Gradient

In the multiscale simulation, there are two kinds of temperature and crystal morphology models
in a control volume: one is to treat the temperature as a uniform field (e.g., temperature on the central
vertex of the control volume) and apply the isotropic spherulites model [8,10], and the other is to assume
the temperature with a linear gradient and apply the anisotropic spherulites model [13,15]. Although
the latter is more accurate, it is both more algorithmically complex and more computationally expensive.

The coupling between meso- and macro-scale is realized by the conversion degree of the melt
into spherulites in the multiscale simulation [10,15]. Therefore, it is necessary to study whether the
crystallization in a temperature gradient can be simplified as isothermal crystallization given the
conversion degree error remains within a certain value. This work can provide useful data to support
the multiscale simulation. It should be noted that in the multiscale simulation, the temperature
in a control volume changes with time (non-isothermal). However, the non-isothermal condition
can be treated as the accumulation of multiple isothermal conditions, accounting for the continuing
significance of this work.

We define the following errors, namely:

L1 − error =
1

tend

∫ tend

0
|αΛ − αiso|dt (9)

where αΛ is the conversion degree ofthe melt into spherulites in a temperature gradient, αiso is the
conversion degree of the melt into spherulites in isothermal crystallization, and tend is the ending time.
The conversion degree at isothermals of central temperature is used. The volume used for calculation
is [−100 µm, 100 µm].

Table 1 lists the maximum temperature gradient Λmax under different central temperatures
when L1 − error is less than 2% and less than 5%. Withan increase in central temperature, the
maximum temperature gradient decreases. When the central temperature is lower than 125 ◦C, the
temperature gradient should not be higher than 15 K/mm and 27 K/mm if L1 − error is set as 2% and
5%, respectively. Therefore, crystallization in these temperature gradient conditions can be simplified
as isothermal crystallization. The effects of temperature gradients should be taken into account, under
other conditions.

Since the conversion degree of the melt into spherulites is not the only quantity to analyze by
comparing isothermal crystallization and the crystallization in a temperature gradient, we now define
the anisotropy of the spherulite. As illustrated in Figure 1, spherulites grow anisotropically from the
nucleus center. Spherulite asymmetry is defined as follows:
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S =
r0

rM/2
(10)

where r0 is the averageradius of spherulite at θ = 0 and rM/2 is the average radius of spherulite
at θ = π. Note that here the average radius of spherulite is calculated by the final morphology,
considering the impingement.

Table 1. Maximum temperature gradient under different central temperature.

T0 L1−error Λmax L1−error Λmax

125 ◦C 2.1% 15 K/mm 5.1% 27 K/mm
120 ◦C 1.6% 18 K/mm 5.0% 30 K/mm
115 ◦C 1.5% 30 K/mm 5.0% 45 K/mm
110 ◦C 1.5% 31 K/mm 5.0% 48 K/mm
105 ◦C 2.2% 40 K/mm 3.8% 50 K/mm

Table 2 lists the spherulite asymmetry error under different central temperature and different
temperature gradients. Here, SΛ is the spherulite asymmetry in temperature gradients and Siso is the
spherulite asymmetry with isothermal crystallization. It is obvious that with a decrease in central
temperature, the spherulite asymmetry error decreases.

Table 2. Spherulite asymmetryerror under different central temperature and different temperature gradients.

T0 Λ (SΛ−Siso)/Siso Λ (SΛ−Siso)/Siso

125 ◦C 15 K/mm 8.8% 27 K/mm 14.2%
120 ◦C 18 K/mm 3.5% 30 K/mm 6.6%
115 ◦C 30 K/mm 3.0% 45 K/mm 4.2%
110 ◦C 31 K/mm 2.4% 48 K/mm 3.0%
105 ◦C 40 K/mm 2.0% 50 K/mm 2.5%

4. Conclusions

In this paper, the morphological Monte Carlo method for simulating the anisotropic growth of
spherulites for iPP in a temperature gradient field is presented. The evolution of spherulites and the
development of the conversion degree of the melt into spherulites under different central temperatures
and temperature gradients are analyzed. Conclusions are drawn as follows:

(1) The morphological Monte Carlo method presented here is valid and effective. It is capable
of not only successfully capturing the growth fronts of anisotropic spherulites, but also accurately
predicting the conversion degree of the melt into spherulites.

(2) High central temperature and high temperature gradient can improve the anisotropy
of spherulites.

(3) When the central temperature is lower than 125 ◦C and the temperature gradient is high, the
probabilistic model is not suitable to predict the conversion degree of the melt into spherulites.

(4) When the temperature gradient is less than 15 K/mm and 27 K/mm, the error in conversion
degree of the melt into spherulites is controlled within 2% and 5%, respectively, which can be simplified
as isothermal crystallization.

We present a morphological Monte Carlo simulation for the anisotropic growth of spherulites for
iPP in a temperature gradient. The proposed modelling method can be easily extended to the study of
different polymers when the nucleation formula and the growth rate formula are known. The athermal
nucleation [23] model can also be applied. We hope the method and the results presented here can
give more insight about the polymer crystallization in industrial processes.
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