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Abstract: Stabilization of specific crystal polymorphs of an active pharmaceutical ingredient is
crucial for preventing uncontrollable interconversion of various crystalline forms, which affects
physicochemical properties as well as physiological activity. Co-crystallization with various excipients
is an emerging productive way of achieving such stabilization in the solid state. In this work, we
identified an opportunity for co-crystallization of antiviral drug nevirapine (NVP) with a classical XB
donor, 1,2,4,5-tetrafluoro-3,6-diiodobenzene (1,4-FIB), as well as 1,3-diiodobenzene (1,3-DIB), which
has been seldom employed as an XB donor to date. In the X-ray structures of NVP·1,4-FIB and
NVP·1,3-DIB co-crystals, different hydrogen and halogen bonding modes were detected and further
investigated via DFT calculations as well as topological analysis of the electron density distribution
within the framework of the QTAIM method at the M06/DZP-DKH level of theory. Estimated
energies of these supramolecular contacts vary from 0.6 to 5.7 kcal/mol.

Keywords: nevirapine; crystal engineering; noncovalent interactions; halogen bonding; hydrogen
bonding; DFT; QTAIM

1. Introduction

Important physicochemical properties of active pharmaceutical ingredients (APIs) such as
melting point, rate of dissolution, hygroscopicity, as well as thermal, mechanical and even chemical
properties can vary significantly depending on the particular solid form [1]. Existence of several
polymorphic states can impede the solubility, stability, bioavailability and, as a result, the desired
physiological activity of the drug. Therefore, controlling which form an API in question exists in,
before it is made into an approved dosage form, is of critical importance [2]. Currently, 85% of
known APIs exhibit (pseudo)polymorphism and 50% of APIs can exist in multiple forms [3]. Hence,
the importance of developing reliable approaches to stabilizing a particular crystal form of an API
cannot be overestimated. Ideally, a desired polymorph should be stabilized to such an extent that it
becomes thermodynamically stable, is not affected by humidity levels (i.e., it does not form hydrates
in humid environments) and, in general, acts as a monomorphic compound [4]. Judicious engineering
of co-crystals (i.e., crystalline forms that consist of two or more components that are solid at room
temperature) has attracted growing attention as a productive means of stabilizing an API in a specific
solid form [5]. The development of an optimal, stable co-crystal entails elements of discovery and
rational design and, therefore, carries aspects of utility, novelty and non-obviousness which are
critical criteria for intellectual property protection [6]. This makes the process of co-crystal design and
engineering an advantageous process in itself, potentially leading to excipients (non-API components of
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the solid form) which can themselves be protected by a patent [7]. Moreover, engineering of completely
novel crystal forms for an API with suboptimal physicochemical characteristics can lead to a novel
solid form of a drug which is characterized by improved aqueous solubility and bioavailability [8].

The main principle of crystal engineering has been the ‘exploitation of noncovalent interactions
between molecular or ionic components for the rational design of solid-state structures that might
exhibit interesting electrical, magnetic, and optical properties’ [9]. Thus, co-crystallization has
prominently emerged as a tool to generate multiple solid forms for a given API with an aim to select
the most suitable ones [7,10–12]. Candidate co-crystals, in turn, can be obtained by crystallization from
a solution [13–15] or by mechanochemical means [16–18].

To a prevailing degree, however, when noncovalent interactions are concerned, hydrogen
bonding (HB) [19] is implied [20]. Considering that over the last decade, the halogen bond (XB) [21]
has emerged as an effective tool for crystal engineering [22–29] and designing supramolecular
constructs [30–32], it is surprising that literature reports on the utility of XB in engineering
new API crystal forms has been relatively scarce [20,33–36]. Our recent engagement in crystal
engineering based on XB in metal complexes [37–45] prompted us to consider exploring new
opportunities for filling the above void and applying the XB approach towards identifying novel
API crystal forms. We screened a number of important APIs for the formation of co-crystals
with known potential as well as recently synthesized [46] donors of halogen bonds. One of the
APIs employed in our program was the known antiviral drug nevirapine (NVP, IUPAC name
11-cyclopropyl-4-methyl-5,11-dihydro-6H-dipyrido[3,2-b:2’,3’-e][1,4]diazepin-6-one), which acts as
non-nucleoside reverse transcriptase inhibitor (NNRTI) and is used for treatment of HIV-1 infection
and AIDS [47,48]. In addition to antiviral activity, it has been reported to bind to CYP3A4 and CYP2B6
cytochromes [49] and to display some anticancer activity [50–52]. Various crystal structures of NVP
have been described [53–60]. In the majority of these structures, the NVP molecule acts as an HB donor
(via the N–H motif) and an HB acceptor (via the carbonyl O and pyridine N atoms).

We performed a comprehensive analysis of ten XRD structures of NVP solvates, two structures
of unassociated NVP, and six structures of NVP adducts with carboxylic acids, saccharine and
polycaprolactone using the Olex2 program. This analysis revealed that (i) the O carbonyl atom
is the nucleophilic center for 51 noncovalent interactions including HBs and lp(O)···π(C) interactions;
and (ii) the amide H atom is the electrophilic center for 23 examples of HBs. Other peripheral atoms are
also involved in both HBs and lp(O)···π(C) interactions (Figure 1). Many of these contacts, especially
the C–H···X (X = N, O) HBs, were not discussed or were simply overlooked in the corresponding
reports, although they are real HBs in accordance with the IUPAC definition for HBs [19].
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Figure 1. Statistical analysis results for the crystal structures containing nevirapine. Blue arrows 
highlight atoms that act as nucleophilic components of noncovalent interactions, while those acting 
as electrophilic components are marked by red arrows. Only the interactions of nondisordered 
fragments were taken into account, while π-stacking interactions were not. 
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of unassociated NVP, and six structures of NVP adducts with carboxylic acids, saccharine and 
polycaprolactone using the Olex2 program. This analysis revealed that (i) the O carbonyl atom is the 
nucleophilic center for 51 noncovalent interactions including HBs and lp(O)···π(C) interactions; and 
(ii) the amide H atom is the electrophilic center for 23 examples of HBs. Other peripheral atoms are 
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Figure 1. Statistical analysis results for the crystal structures containing nevirapine. Blue arrows
highlight atoms that act as nucleophilic components of noncovalent interactions, while those acting as
electrophilic components are marked by red arrows. Only the interactions of nondisordered fragments
were taken into account, while π-stacking interactions were not.
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Previously, we have already attempted [61] to involve NVP in co-crystallization with molecular
iodine as an XB donor. Contrary to our expectations at the time, instead of a co-crystal, we obtained an
intriguing salt form, nevirapinium pentaiodide hydrate, which was investigated by crystallography to
reveal the presence of numerous HBs and an unusual I4–I–···O=C interionic XB. In continuation of
these efforts, NVP was co-crystallized with 1,2,4,5-tetrafluoro-3,6-diiodobenzene (1,4-FIB), an XB donor
that has already been employed in the co-crystal formation for such biologically active compounds as
nicotine [62], pyrazinamide, lidocaine and pentoxifylline [20]. Additionally, we used 1,3-diiodobenzene
(1,3-DIB), a rarely employed [63] XB donor. To our delight, both attempts resulted in the formation of
nevirapine co-crystals with these XB donors. Herein, we present the results of these studies.

2. Experimental Section

2.1. Materials

Nevirapine, 1,2,4,5-tetrafluoro-3,6-diiodobenzene, 1,3-diiodobenzene and MeOH were obtained
from commercial source and used as received.

2.2. X-ray Structure Determination

A crystal of NVP·1,3-DIB was measured on a SuperNova, Dual, Cu at zero, Atlas diffractometer
at 100 K using monochromated MoKα (λ = 0.7107) radiation. A crystal of NVP·1,3-DIB was measured
on an Xcalibur, Eos diffractometer at 100 K using monochromated MoKα (λ = 0.7107) radiation.
The structures have been solved by the direct methods by means of the SHELX program [64]
incorporated into the Olex2 program package [65]. For crystallographic data and refinement
parameters, see Supplementary Material (Table S2). The carbon-bound H atoms were placed in
calculated positions and were included in the refinement in the ‘riding’ model approximation, with
Uiso(H) set to 1.5Ueq(C) and C–H 0.98 Å for CH3 groups, with Uiso(H) set to 1.2Ueq(C) and C–H 0.99 Å
for CH2 groups and with Uiso(H) set to 1.2Ueq(C), C–H 0.95 Å for CH groups. Empirical absorption
correction was applied in the CrysAlisPro [66] program complex using spherical harmonics, and
implemented in the SCALE3 ABSPACK scaling algorithm. Supplementary crystallographic data for
this paper have been deposited at the Cambridge Crystallographic Data Centre (CCDC 1882105 and
1882106) and can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

2.3. Computational Details

The single-point calculations based on the experimental X-ray geometries of NVP·1,4-FIB and
NVP·1,3-DIB have been carried out at the DFT level of theory using the M06 functional [67] with the
help of the Gaussian-09 [68] program package. The Douglas–Kroll–Hess 2nd-order scalar relativistic
calculations requested relativistic core Hamiltonian were carried out using the DZP-DKH basis
sets [69–72] for all atoms. The topological analysis of the electron density distribution with the
help of the atoms in molecules (QTAIM) method developed by Bader [73] has been performed by
using the Multiwfn program [74]. The Wiberg bond indices were computed by using the natural bond
orbital (NBO) partitioning scheme [75]. The Cartesian atomic coordinates of model supramolecular
clusters (NVP)4·(1,4-FIB)3 and (NVP)3·(1,3-DIB)3 are presented in Supporting Information, Table S3.

3. Results and Discussion

3.1. Halogen Bonding in NVP·1,4-FIB and NVP·1,3-DIB

Slow evaporation of MeOH solutions of NVP containing an equimolar amount of either 1,4-FIB or
1,3-DIB at room temperature gave co-crystals NVP·1,4-FIB and NVP·1,3-DIB, respectively. The results
of the XRD study indicated that both adducts contained the C–I···N XBs (Figure 2), numerous HBs
as well as a number of other interactions. DFT calculations and topological analysis of the electron
density distribution within the framework of the QTAIM method confirmed the noncovalent nature of
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these contacts and allowed evaluation of their energies (0.6–5.7 kcal/mol) (for details see theoretical
study section).
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Figure 2. The important noncovalent interactions in NVP·1,4-FIB (a) and NVP·1,3-DIB (b) co-crystals
obtained in this work.

In both adducts, one or both of the pyridine nitrogen atoms of nevirapine molecule were found to
be involved in XBs as nucleophiles. In NVP·1,4-FIB, both pyridine nitrogen atoms form the C–I···N
XBs with comparable geometric parameters (Table 1). Analysis of the data in CCDC related to C–I···N
XBs between 1,4-FIB and various pyridine rings revealed that the shortest p-I–C6F4–I···N(pyridine) XB
had been documented for an adduct of 1,4-FIB with 4-(dimethylamino)pyridine (d(I···N) = 2.6672(18)
Å) [76] whereas the longest p-I–C6F4–I···N(pyridine) XB had been observed in a 1,4-FIB adduct with
pyridine-2-thioamide (d(I···N) = 3.215(4) Å) [77]. Thus, the C–I···N XB lengths found in NVP·1,4-FIB
(2.988(4) and 2.973(4) Å) fall within this range and can be regarded as rather common for the XBs
between 1,4-FIB and a pyridine ring.

In the NVP·1,3-DIB co-crystal, only one nitrogen atom (that of the unsubstituted pyridine ring)
forms a C–I···N XB (Table 1). To the best of our knowledge, this structure represents the second
example of a supramolecular assembly where 1,3-DIB acts as XB donor. Previously, Uekusa et al. [63]
reported the adduct of 1,3-DIB with N-(4-bromosalicylidene)-3-aminopyridine, demonstrating the
C–I···N XBs (3.081(3) Å). It should be noted that isomeric 1,4-diiodobenzene (1,4-DIB) is a well-known
participant in the C–I···N XBs. In most cases involving 1,4-DIB, the lengths of such contacts are in
the range 2.928(4)–3.076(11) Å [23,78–81]. Noticeably larger lengths (3.313(3)–3.462(2) Å and 3.239(3)
Å, respectively) were encountered in the case of bifurcate C–I···(N,N) contacts [82] as well as for
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C–I···N≡C–R XB involving much less nucleophilic Nsp atoms [79]. Thus, the relatively long XB in the
NVP·1,3-DIB co-crystal (3.231(3) Å) can be rationalized by steric rather than electronic effects.

Table 1. Parameters of the C–I···N XBs in the co-crystals obtained in this work.

Structure C–I···N d(I···N), Å RIN
2 ∠∠∠(C–I···N), ◦ Eint

3 Eint
4

NVP·1,3-DIB C1S–I1S···N1 3.231(3) 0.92 156.09(11) 2.5 2.4
NVP·1,4-FIB C1S–I1S···N1 2.988(4) 0.85 174.33(10) 4.4 3.8

C2S–I2S···N4 2.973(4) 0.84 175.88(13) 4.4 4.0
Comparison 1 3.53 1.00 180

1 Comparison is the vdW radii sum [83] for distances and classic XB angle. 2 RIN = d(I···N)/(RvdW(I) + RvdW(N)).
3 Eint = −V(r)/2 [84]. 4 Eint = 0.429G(r) [85].

3.2. Hydrogen Bonding in the NVP·1,4-FIB and NVP·1,3-DIB Co-Crystals

Dimerization of nevirapine molecules upon the N–H···O=C HB formation was evident in both
structures (Figure 2). Almost the same supramolecular features can be found in NVP (PABHIJ [53]
and PABHIJ01 [58]) crystals as well as in numerous crystals of nevirapine solvates (GIRWUA [54],
KACPAH [55], OKETII [57], TISJEL [59], TISJEL01, YIVQIE, YIVQOK, YIVQUQ [58]) and adducts
(LATQOO, LATQUU [56], ZEYSAA [60]). Only in co-crystals with relatively strong HB donors (H2O,
TISJAH [59] and TISJAH01 [58]; cis-HO2C(CH=CH)CO2H, LATQII; HO2C(CH2)3CO2H, LATQEE;
HO2C(CHOH)2CO2H, LATRAB [56]) is said dimerization absent because at least the C=O nevirapine
functionality is involved in O–H···O=C HBs.

NVP·1,3-DIB also contains weaker C–H···O=C HBs supporting the N–H···O=C HBs (Figure 2),
the C–H···N hydrogen bonding between NVP molecules, and the C–H···I interactions between
1,3-DIB molecules.

Notably, NVP·1,4-FIB demonstrated weak C–H···O and C–H···N interactions between NVP
molecules, and the numerous C–H···F and C–H···I HBs between NVP and 1,4-FIB molecules. The latter
interactions are interesting because the same C–H moiety in the cyclopropyl group is involved in both
C–H···I interactions (Figure 2). Note that the simultaneous formation of HBs and XBs with the I atoms
in 1,4-FIB was previously reported by us [42]. The geometrical parameters of HBs are represented in
Table S1.

3.3. Theoretical Study of Different Noncovalent Interactions in NVP·1,4-FIB and NVP·1,3-DIB

Inspection of the crystallographic data suggests the presence of different noncovalent interactions
responsible for the formation of a supramolecular structure of NVP·1,4-FIB and NVP·1,3-DIB.
In light of this, in addition to structural analysis, a detailed computational study was undertaken.
In order to confirm or disprove the hypothesis on the existence of these supramolecular contacts and
quantify their energies from a theoretical standpoint, we carried out DFT calculations and performed
topological analysis of the electron density distribution within the framework of Bader’s theory
(QTAIM method) [73] for the (NVP)4·(1,4-FIB)3 and (NVP)3·(1,3-DIB)3 model supramolecular cluster
(Supporting Information, Table S3). We have already used a similar approach to study noncovalent
interactions (e.g., hydrogen, halogen and chalcogen bonding, metallophilic interactions, stacking)
in various organic, organometallic and coordination compounds [42–44,86–89]. The results of these
calculations are summarized in Table 2. The contour line diagrams of the Laplacian distribution
∇2ρ(r), bond paths, and selected zero-flux surfaces for (NVP)4·(1,4-FIB)3 and (NVP)3·(1,3-DIB)3, are
shown in Figure 3. To visualize the noncovalent interactions studied, we carried out reduced density
gradient (RDG) analysis [90] and plotted RDG isosurfaces for (NVP)4·(1,4-FIB)3 and (NVP)3·(1,3-DIB)3

(Figure 3).
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surfaces (left), and RDG isosurfaces (right) referring to the C–I···N XBs in (NVP)3·(1,3-DIB)3 (upper)
and (NVP)4·(1,4-FIB)3 (middle and lower). Bond critical points (3, −1) are shown in blue, nuclear
critical points (3, −3) in pale brown, ring critical points (3, +1) in orange. Length units—Å, RDG
isosurface values are given in a.u.

The QTAIM analysis of (NVP)4·(1,4-FIB)3 and (NVP)3·(1,3-DIB)3 demonstrated the presence of
appropriate bond critical points (3,−1) (BCPs) for all noncovalent interactions listed in Table 2. The low
magnitude of the electron density (0.005–0.024 a.u.), positive values of the Laplacian (0.018–0.097 a.u.),
and close to zero positive energy density (0.001–0.003 a.u.) in these BCPs are typical for noncovalent
interactions [91]. We have defined energies for these contacts according to the correlations proposed by
Espinosa et al. [84] and Vener et al. [85], and one can state that the strengths of these supramolecular
contacts vary from 0.6 to 5.7 kcal/mol. The balance between the Lagrangian kinetic energy G(r)
and potential energy density V(r) at the BCPs reveals the nature of these interactions; if the ratio
–G(r)/V(r) > 1 is satisfied, then the nature of appropriate interaction is purely noncovalent; in case the
–G(r)/V(r) < 1, some covalent component takes place [92]. Based on this criterion, one can state that a
covalent contribution is absent in all supramolecular contacts listed in Table 2. The negligible values
of the Wiberg bond indices for these supramolecular contacts additionally confirm their electrostatic
nature, and analysis of the basins of total electron density (also known as QTAIM basins) reveals that
delocalization indices are also negligible for all noncovalent interactions listed in Table 1.
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Table 2. Values of the density of all electrons—ρ(r), Laplacian of electron density—∇2ρ(r), energy
density—Hb, potential energy density—V(r), Lagrangian kinetic energy—G(r) (a.u.) at the bond
critical points (3, −1), corresponding to different noncovalent interactions in (NVP)4·(1,4-FIB)3 and
(NVP)3·(1,3-DIB)3, bond lengths—l (Å), as well as energies for these contacts Eint (kcal/mol), defined
by two approaches, appropriate Wiberg bond indices (WI), and delocalization indices (DI).

Contact ρ(r) ∇2ρ(r) Hb V(r) G(r) Eint
1 Eint

2 l WI DI

(NVP)4·(1,4-FIB)3
I1S···N1 0.019 0.060 0.001 −0.014 0.014 4.4 3.8 2.988 0.04 0.00
I2S···N4 0.019 0.062 0.001 −0.014 0.015 4.4 4.0 2.973 0.04 0.01
H3···O1 0.024 0.097 0.003 −0.017 0.021 5.3 5.7 1.980 0.02 0.00
H9···O1 0.005 0.020 0.001 −0.003 0.004 0.9 1.1 2.702 0.00 0.00
H2···N4 0.008 0.030 0.001 −0.004 0.006 1.3 1.6 2.601 0.00 0.00

H15B···F3S 0.005 0.026 0.001 −0.004 0.005 1.3 1.3 2.597 0.00 0.00
H12B···F4S 0.006 0.032 0.002 –0.005 0.006 1.6 1.6 2.461 0.00 0.00
H10···F1S 0.007 0.034 0.002 −0.005 0.007 1.6 1.9 2.500 0.00 0.00
H13···I1S 0.006 0.026 0.002 −0.003 0.005 0.9 1.3 3.145 0.00 0.00
H13···I2S 0.010 0.033 0.001 −0.006 0.007 1.9 1.9 2.931 0.01 0.00
C9···C11 0.007 0.022 0.001 −0.003 0.004 0.9 1.1 3.237 0.00 0.00

C2S···C2S 0.006 0.019 0.001 −0.002 0.004 0.6 1.1 3.364 0.00 0.00
C2···C4S 0.006 0.018 0.001 −0.002 0.004 0.6 1.1 3.372 0.00 0.00

(NVP)3·(1,3-DIB)3
I1S···N1 0.012 0.043 0.001 −0.008 0.009 2.5 2.4 3.231 0.02 0.00
H3···O1 0.020 0.086 0.003 −0.015 0.018 4.7 4.8 2.035 0.01 0.01

H12A···O1 0.007 0.033 0.002 −0.004 0.006 1.3 1.6 2.585 0.00 0.00
H2···N4 0.007 0.031 0.002 −0.004 0.006 1.3 1.6 2.666 0.00 0.00

H6S···I2S 0.005 0.020 0.001 −0.003 0.004 0.9 1.1 3.172 0.00 0.00
I2S···I2S 0.014 0.043 0.001 −0.010 0.010 3.1 2.7 3.562 0.04 0.00

1 Eint = −V(r)/2 [84]. 2 Eint = 0.429G(r) [85].

4. Conclusions

We have identified a new opportunity for co-crystallization of an active pharmaceutical ingredient,
nevirapine, with 1,2,4,5-tetrafluoro-3,6-diiodobenzene, a classical XB donor, and 1,3-diiodobenzene,
which has been seldom employed as an XB donor to date. Our findings provide another solid,
proof-of-principle example of successfully employing halogen bonds for the design and discovery of
stable crystalline forms of important drug substances. These results also lay the ground for exploring
similar opportunities for other bioactive compounds with a wider range of potential donors of halogen
bonds. The distinctive features of the crystal structures obtained and characterized in detail in this
work are the presence of XBs with the pyridine N atoms, an XB never observed for nevirapine before.
Encouraged by these findings, we aim to continue screening for novel instances of XBs stabilizing the
crystal structure of active pharmaceutical ingredients. The results of these studies will be reported in
due course.
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