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Abstract: In recent decades, it has been demonstrated that bimetallic nanoparticles (NPs) possess
a number of advantages over monometallic NPs, as the combination of metals results in important
changes to their physicochemical properties. Synthesis of bimetallic NPs can be achieved through
a number of methods, yet there are serious difficulties in controlling these protocols. Biological
methods based on the use of microorganisms exhibit important advantages over traditional methods,
which makes the search for organisms such as bacteria, yeast and fungi endowed with these abilities
an important task. In this context, it has been found that Candida species are able to biosynthesize
monometallic NPs, but their ability to form bimetallic NPs has not been investigated. CdHgS is
a bimetallic NP of special interest, as it has been found useful in a number of applications; however,
its preparation by traditional methods poses certain limitations, and the ability to obtain it through
biological procedures has never been demonstrated. With this in mind, the major purpose of this
study is to evaluate whether several Candida species were able to synthesize bimetallic NPs of CdHgS
in a Cd4HgS5 phase. To our knowledge, this is the first report on the biological synthesis of bimetallic
NPs in Candida species.
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1. Introduction

Nanoparticles (NPs) are of great importance in our daily lives. In vivo biosynthesis of NPs using
organisms such as yeasts, bacteria and algae have demonstrated the availability to obtain these
materials, as well as the possibility of removing hazardous elements from water, soil and industrial
effluents [1]. Some advantages of biosynthetic approaches are their environmentally friendly, simple
one-step protocols, their use of mild conditions and the production of water-stable homogeneous
materials [2]. In vivo remediation is generally believed to be an advantageous water treatment
approach that allows the generation of useful materials. However, for this technique to be successful,
the existence of multiple chemicals/reagents in contaminated water has to be further investigated.
Natural detoxification by microorganisms that immobilize, isolate and biomineralize toxic cations has
been extensively studied regarding single-metal exposure. Most of these studies include bioremoval
percentages and the mechanisms and kinetics of biomineralization. However, in the last decades it
has been demonstrated that monometallic nanoparticles present disadvantages as compared to the
bimetallic compounds. This is because the combination of two metals results in important changes in
their physicochemical properties, such as unique size-dependent optical, electronic and catalytic effects
that yield a better performance as compared to their monometallic counterparts [3–5]. Bimetallic NPs
have a more important structure because of the presence of extra degrees of freedom, which depends
on the thermodynamic properties of the system [4]. It is very important to understand the elaboration
process of bimetallic NPs to obtain materials with specific properties and applications. A vast diversity
of methods to synthetize monometallic NPs has been reported [4,6,7], but the controlled synthesis of
bimetallic NPs is more difficult [4].

Several research teams have been successful in obtaining bimetallic NPs of varying composition
using different protocols, such as electrochemical or chemical reduction, sputtering, sol-gel or
hydrothermal methods and others [4]. Currently, biological systems such as bacteria, yeasts and
fungi are being used for the synthesis of monometallic and bimetallic NPs because of their advantages
as compared with other non-biological methods. For example, the biosynthesis of these NPs can be
manipulated to affect size and shape by controlling culture parameters [1]. Hence, it is important
to identify microorganisms capable of synthetizing bimetallic NPs with a high reproducibility
and efficiency.

Candida species are of special interest, because these yeasts can be isolated from soil and aquatic
habitats that have been contaminated with metals [8]. Moreover, Candida species are able to synthetize
monometallic NPs such as CdS, PbS, HgS and HgCl2 [8]. In spite of this, multimetal resistance
of Candida has been barely studied. HgS and CdS NPs are among the monometallic NPs with
different applications [8]. Conveniently, these two monometallic NPs exhibit similar crystallographic
characteristics that allow them to synthesize bimetallic CdHgS NPs [9]. Synthesis of CdHgS NPs is of
special biotechnological interest, as these NPs possess a better electric conductivity than monometallic
CdS NPs [9] and are used in LED devices, quantum computing, optics and fluorescent devices, among
others [10]. Bimetallic CdHgS NPs have been synthesized in vitro by distinct techniques [9], although
it is known that some microorganisms are able to biosynthesize both monometallic and bimetallic NPs
with higher efficiency.

In the present study, we demonstrate that Candida species are capable of forming monometallic
NPs of CdS or HgS [8], suggesting that they might also be able to form bimetallic CdHgS NPs.
This possibility was investigated using five species of the genus, namely, Candida albicans, Candida
dubliniensis, Candida glabrata, Candida krusei and Candida parapsilosis, after exposure to a 1:1 mixture of
Hg (II) and Cd (II). Both environmental and biosynthetic perspectives were evaluated using different
techniques. Results indicate that susceptibility and metal uptake depended on the Candida strain,
whereas distribution and crystal structure behavior of NPs were influenced by the metal.
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2. Materials and Methods

2.1. Strains and Susceptibility Test

The strains of C. albicans, C. dubliniensis, C. glabrata, C. krusei and C. parapsilosis were clinical isolates
from the collection of the Departamento de Microbiología, ENCB-IPN, México. They were grown in
yeast peptone dextrose (YPD) (1% Bacto yeast extract, 2% Bacto peptone, 2% dextrose; 2% agar was
added to solidify the media) at 28 ◦C for 24 h and stored at 4 ◦C. For the subsequent tests, fresh cultures
of cells were cultured in YPD at 28 ◦C while being shaken at 200 rpm in an incubator model 311DS
Labnet (Labnet International Inc., Woodbridge, NJ, USA). After 24 h, cultures of cells were adjusted to
an optical density of 600 nm (OD600nm) using a Genesys 20 Thermo Scientific spectrometer (Syngene,
Cambridge, UK). Metal exposure was carried out by adding proper volumes of 0.1 M stock solutions
of Hg(NO3)2 and Cd(NO3)2 to the inoculum to obtain a 1:1 metal mix, which was shaken at 28 ◦C
for 48 h. For susceptibility tests, the total cation concentration was tuned from 0 to 4 mM. After 48 h
at 28 ◦C and 200 rpm, an aliquot of each cell suspension was adjusted to an OD of 0.5 to prepare
exponential dilutions in 96-well plates. Finally, each dilution was spotted in YPD-agar and incubated at
28 ◦C for 24 h. All used chemicals were provided by Bio-Rad (Hercules, CA, USA) and Sigma-Aldrich
(Sigma-Aldrich, St. Louis, MO, USA).

2.2. Growth Curves and Metal Uptake

For growth curves and metal uptake studies, cultures were exposed to a 1:1 Cd2+–Hg2+ mixture
to obtain a total cation concentration of 1.0 mM, which was shaken at 200 rpm for 48 h at 28 ◦C.
The cell uptake of heavy metal was calculated from the difference between the added and the remnant
metal concentrations in the supernatant, as measured by atomic adsorption spectroscopy (PINACLE
Perkin Elmer equipment, (PerkinElmer Inc., MA, USA). Cellular growth was monitored by OD600nm

measurements and run in duplicate.

2.3. Crystal Characterization

Identification and analysis of biogenic crystals were evaluated by electron microscopy techniques.
Scanning electron microscope (SEM) was performed using a Carl Zeiss SIGMA-HDVP Field Emission
Scanning Electron Microscope (Carl Zeiss NTS Ltd., Cambridge, UK), equipped with angle-selective
backscatter (AsB) and Quantax Bruker energy-dispersive X-ray detectors (Bruker Nano GmbH, Berlin,
Germany). Prior to observation, metal-exposed samples were washed with deionized sterile water,
centrifuged several times and lyophilized at −48◦, mounted on a carbon tape and covered with
colloidal gold.

For transmission electron microscope (TEM) analysis, samples were fixed, embedded in resin
and cut in ultrathin sections for observation. Fixation was performed by exposing the sample to 3%
glutaraldehyde at 48 ◦C for 4 h, washing with sodium cacodylate buffer (0.1 M, pH 7.4) and gradually
dehydrating with ethanol in steps of 10% to absolute ethanol, holding for 10 min at each ethanol
concentration. Absolute ethanol was replaced by propylene oxide for infiltration, samples were placed
in 1 mL of epoxy resin and dried at room temperature for 24 h doing repetitions with 25%, 50%
and 75%. After this, polymerization was completed in plastic embedding molds filled out with 100%
epoxy resin and stored at 60 ◦C for 36 h. The resulting blocks were cut in ultrathin sections 60 nm thick
using an ultramicrotome (MTX-RMC, Boeckeler Instruments, Inc., Tucson, AZ, USA) and collected
on TEM 300-mesh copper grids. Finally, carbon coating was applied to stabilize the ultrathin sections
on the TEM grid surface. Transmission electron analysis was achieved using a JEOL JEM-ARM200F
spherical aberration-corrected scanning transmission electron microscope (STEM) (JEOL USA Inc.,
Peabody, MA, USA) coupled with energy-dispersive X-ray spectroscopy (EDS, JEOL USA Inc., Peabody,
MA, USA) and high-angle annular dark field (HAADF, JEOL USA Inc., Peabody, MA, USA) detectors.
An accelerating voltage of 200 kV was used in TEM–HAADF mode. X-ray microanalysis was carried out
and processed using AZTEC EDS software (Oxford Instruments plc, 2013). Micrographs were recorded
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and analyzed with Gatan Microscopy Suite Software (DigitalMicrograph, Gatan Inc., Pleasanton, CA,
USA) and HRTEM plugins (DigitalMicrograph, Gatan Inc., Pleasanton, CA, USA).

Emission spectrum analysis was performed using a Zeiss 880-NLO laser scanning microscope
equipped with a Chameleon Vision II Ti Sapphire laser (Carl Zeiss NTS Ltd., Cambridge, MA, USA)
with tuning wavelengths from 690 nm to 1060 nm. Chameleon laser power was operated at 1.0%
and an open pinhole at 601.1. Observations were carried out in Zeiss Plan NEOFLUAR immersion
objective 60X/1.3. Micrographs were acquired separating the emission into three channels, namely
a blue or UV region (371–440 nm), a green/yellow region (450–550 nm) and a red region (560–730 nm).
Punctual spectral emission was performed using a wavelength excitation of 800 nm and measuring
emission intensity from 404 nm to 714 nm each 10 nm.

3. Results and Discussion

3.1. Susceptibility and Metal Uptake

Tolerance and uptake capacities of the five Candida species were evaluated regarding their
susceptibility behavior when exposed to a mixture of the toxic cations Cd2+–Hg2+ in a 1:1 metal
ratio and a total concentration from 0.5 to 2.0 mM. For the sake of simplicity, the metal mixture was
named after their elemental components Cd–Hg. As depicted in Figure 1, C. albicans, C. glabrata and
C. krusei were able to resist a concentration of Cd–Hg as high as 1.0 mM, whereas C. dubliniensis and
C. parapsilosis were susceptible to half this concentration.
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Figure 1. Susceptibility test of the five Candida species exposed to the Cd–Hg mixture ranging from 0
to 2.0 mM of total cation concentration. Cation ratio is fixed at 1:1.

Difference in susceptibility to toxic metals may have been due to the fact that species have
adapted to habitats as different as the human body and soils and water contaminated with heavy
metals [8,11–13]. It is worth noting that the most resistant C. albicans, C. glabrata and C. krusei are
considered as the first species that adapted not only to contaminated soils and water, but also to
different ecological niches where they developed mechanisms to cope with high concentrations of
antifungals as well as reactive oxygen and nitrogen species produced by the human immunitary
system [14–16]. This does not seem to hold true for the more sensitive C. dubliniensis and C. parapsilosis.

As expected, susceptibility to a specific toxic agent depended on each Candida species and relied
on each individual genetic background. Key factors in the bioaccumulation process were not only
susceptibility, but also the ability to replicate in the presence of the metal mixture. This notion prompted
us to monitor the growth of metal-exposed strains over the time. Representative growth curves of
control and metal-exposed C. albicans, C. glabrata and C. krusei resisted 1 mM Cd–Hg are illustrated
in Figure 2.

Growth of the exposed cells was inhibited by the Cd–Hg mixture. These results indicate that even
when C. albicans, C. glabrata and C. krusei can resist 1.0 mM Cd–Hg (Figure 1), they do not duplicate
(Figure 2)—most likely because they use their metabolisms to survive and not for the generation of
new cells. These results are in accord with previous findings that indicate that cells go into homeostasis
with toxic ions forming monometallic NPs of CdS or HgS without duplication [8].
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Figure 2. Growth curves of Candida albicans and representative non-C. albicans species of Candida
(C. glabrata and C. krusei) when exposed to 1.0 mM Cd–Hg mixture. Non metal-exposed samples are
shown as controls.

Additionally, removal percentages of the toxic mixture by cells were measured directly from the
supernatant of exposed samples by atomic adsorption spectroscopy (AAS) (Figure 3).
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Figure 3. Cadmium and mercury uptake percentages of the five used Candida species when exposed to
0.5 mM Cd–Hg mixture during 48 h.

As depicted in Figure 3, cells incubated with the Cd–Hg mixture incorporated both cations. It has
been described that Cd2+ interact with sulfhydryl groups of cysteine-rich, low molecular weight
proteins known as metallothioneins, which inhibit some enzymes and thus play an important role in
the toxicity of Cd2+ and Hg2+ [17], probably by facilitating their uptake by cells.

In summary, the yeast multi-metallic uptake represents a potential remediation technology
for mercury combined with other heavy toxic metals. The process is driven by a community of
mercury-resistant microorganisms selected by the metal toxicity in the host environment.

As resistance is often mediated by biomineralization, a biosynthetic response of exposed strains is
next examined.

3.2. Identification and Characterization of Biosynthetic Materials

For the purpose of evaluating the effect of Cd–Hg on the cell structure of the five Candida species,
exposed cells were observed by scanning electron microscopy (SEM). Photomicrographs show the
formation of bright spots inside all Candida species (Figure 4).
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Figure 4. Scanning electron microscopy images of the five Candida strains exposed to the Hg–Cd
mixture. Scale bar is indicated in each photomicrograph.

These correspond to bimetallic NPs of CdHgS (Figure 5). In a previous work we demonstrated
the presence of similar bodies corresponding to nano- and micro-crystals in Candida species exposed to
toxic elements [8]. To corroborate the nature of the bright spots, a qualitative analysis was carried out
by energy-dispersive X-ray spectroscopy (EDS). As shown in Figure 5, EDS images revealed that these
spots are formed by mercury, cadmium and sulfur (Figure 5), indicating that in the presence of Cd2+

and Hg2+, Candida species synthesize bimetallic NPs of CdHgS in their cytoplasm.
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(a) Electron image and elemental maps of Hg Mα line, Cd Lα line and S Kα line; (b) qualitative analysis
of the elements present in the formed compound; and (c) their corresponding quantification.

It has been proposed that formation of NPs inside the cell may occur as follows: (1) Toxic metals
are transported into the cytoplasm by components that interact with this type of cations [18]. (2) Once in
the cytoplasm, Cd2+ and Hg2+ bind to anions, inhibit transport and give rise to coordinated complexes
with biomolecules and sulfhydryl groups that maintain them in the cytoplasm.

Another mechanism of Cd2+ uptake is by means of calcium channels, as both cations possess
similar ionic radiums [19,20]. In the case of Hg2+, it has been found that in methylation it forms
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a methyl mercury complex that is structurally similar to methionine and thus transported as a neutral
amino acid [21]. Another structural change observed in Candida cells exposed to Cd–Hg is the loss of
their typical oval morphology and the presence of subsidences and deformations. In close concordance
with these findings, we have observed that Candida cells exposed to stressing agents also lose their
oval form [14].

To elucidate the chemical composition of the bimetallic NPs of CdHgS, the particles were analyzed
by TEM. As illustrated in Figure 6, they exhibited a circular morphology with an approximate diameter
of 10 nm. Zoom images depicted in Figure 6a–c show the size and appearance and the cell surroundings.
The size of bimetallic NPs was within the average of 13.4 and 18.0 nm of the crystallite obtained by
chemical synthesis [9].
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Figure 6. Ultrathin section’s TEM–high-angle annular dark field (TEM–HAADF) analysis of representative
Cd–Hg exposed Candida. Zooming into the bright material inside the cell revealed their nanometric
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The EDS mappings in Figure 7 show the distribution of Hg, Cd and S in the proximity of bimetallic
NPs of CdHgS. In order to reveal the crystal structure of CdHgS NPs, it was necessary to analyze them
by high-resolution transmission electron microscopy (HRTEM) techniques.
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Figure 7. HAADF–STEM–energy-dispersive X-ray spectroscopy (EDS) analysis of the biosynthesized
nanoparticles. Layered electron images and elemental maps of Hg, Cd and S are shown.

The HRTEM images provided evidence that NPs are constituted by conglomerates of smaller
particles (Figure 8), and fast Fourier transform (FFT) diffraction patterns identified the Cd4HgS5 phase
in close agreement with the elemental composition found by EDS. Figure 8b,c reveal a crystalline
domain below 50 nm, with the FFT zone axis corresponding to [101] of an orthorhombic phase
(a = 10.752 A, b = 12.566 A, c = 7.255 A). As far as we know, such Cd4HgS5 nanoparticles have not been
reported in Candida and complete other reports in literature that claim there is a wurtzite hexagonal
phase [9] for other CdHgS nanoparticles.
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Figure 8. HRTEM images of Cd4HgS5 nanoparticles. (a) Agglomerated nanoparticles of about 10 nm;
(b) higher magnification of the selected area in (a), clarifying the crystal structure oriented in the [101]
zone axis as the corresponding (c) FFT shows.

4. Conclusions

To our knowledge, this is the first report on the biological synthesis of Cd4HgS5 bimetallic NPs,
and in Candida species in particular. Our data indicate that these yeasts have mechanisms that allow
them to achieve homeostasis for the Cd–Hg mixture. Cd4HgS5 NPs synthesized by Candida are very
promising in terms of their potential applications in different areas. Experiments are in progress to
explore these possibilities.
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