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Abstract: CoFeMnSi has been both experimentally and theoretically proven as a novel spin-gapless
semiconductor and resulted in a new research direction in equiatomic full Heusler compounds. Using
the first-principles calculation method, we investigated the electronic, magnetic and mechanical
properties of CoFeMnSi material in this study. The obtained lattice constant under the LiMgPdSn-type
Heusler structure is 5.611 Å and it is fairly consistent with previous experimental results and theoretical
calculations. Furthermore, the achieved total magnetic moment of 4 µB follows the Slater–Pauling
rule as Mtotal = Ztotal − 24, where Mtotal is the total magnetic moment per formula unit and Ztotal

is the total valence electron number, i.e., 28 for CoFeMnSi material. We have also examined the
mechanical properties of CoFeMnSi and computed its elastic constants and various moduli. Results
show CoFeMnSi behaves in a ductile fashion and its strong elastic anisotropy is revealed with the help
of the 3D-directional-dependent Young’s and shear moduli. Both mechanical and dynamic stabilities
of CoFeMnSi are verified. In addition, strain effects on the electronic and magnetic properties of
CoFeMnSi have been investigated, including both uniform and tetragonal strains, and we found
that the spin-gapless feature is easily destroyed with both strain conditions, yet the total magnetic
moment maintains a good stability. Furthermore, the specific behaviors under various temperatures
and pressures have been accessed by the thermodynamic properties with a quasi-harmonic Debye
model, including bulk modulus, thermal expansion coefficient, Grüneisen constant, heat capacity and
Debye temperature. This comprehensive study can offer a very helpful and valuable reference for
other relative research works.

Keywords: first principles calculation; Heusler compounds; electronic band structure; spin-gapless
semiconductor; strain effect

1. Introduction

Since the discovery of spin-gapless semiconductors (SGS) from a theoretical approach by
Wang, et al. [1], they immediately became interesting for the development of spintronics and
magnetoelectronics [2–13]. The electronic band structure of SGS is completely spin-polarized; in one
spin channel, a small band gap is present at the Fermi level, similar to in a semiconductor; whereas, in
the other spin channel, the valence band maximum contacts the conduction band minimum at the
Fermi level, resulting into an exactly zero gap. This particular band structure in SGS endows several
special properties [1,14], such as, zero energy consumption to excite electrons from the valence band to
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the conduction band, high mobility of the excited electrons, complete spin polarization of the excited
electrons and holes, high sensitivity to external influence.

Among different research directions for SGSs of different structures and different components,
the Heusler alloy families are particularly interesting because there are not only many theoretical
calculations showing the electronic band feature of SGSs in Heusler alloys, such as Ti2MnAl [2,12,15–17],
Ti2CoSi [5], Ti2Vas [5], Zr2MnAl [18,19], Zr2MnGa [18,20] and Cr2ZnSi [13,21,22], but also, a few
experimental syntheses and measurements confirming the presence of the spin-gapless semiconducting
behaviors, such as Mn2CoAl [14], Ti2MnAl [2]. Conventionally, Heusler compounds represent a huge
family of intermetallic alloys and they can be mainly divided into two groups [23,24]: full-Heusler with
general formula X2YZ and half-Heusler with general formula XYZ, in which Z is an sp main group
element and X and Y are the transition metal elements. Consequently, various Heusler compounds can
be simply designed by substituting with an element from the same group in the periodic table. For a
full-Heusler alloy, when the highly ordered cubic structure is considered under normal conditions,
there are two typical structural configurations [12,25]: the first one is the Cu2MnAl-type, also known
as the L21 structure; the second one is the Hg2CuTi-type, also known as the XA structure.

With one transition metal—element X—replaced by another transition metal—element X´—the
ternary full-Heusler compounds transform into equiatomic quaternary Heusler (EQH) compounds
with a change in the general formula to XX´YZ [26]. The EQH compounds have a stoichiometry of 1:
1: 1: 1 and thus, the structures are less disordered [23,27–30]. Because the Mn-based and Co-based
ternary Heusler materials have been investigated in numerous studies, the EQH compounds composed
of Co and Mn atoms are of great interest and they can be regarded as the intermediate product of
Co2YZ and Fe2YZ. In particular for CoFeMnZ, Dai et al. [31] firstly synthesized CoFeMnSi by an
arc-melting method and confirmed its LiMgPdSb-type structure by X-ray diffraction. Different atomic
orderings have been considered and, with the lowest energy configuration, it shows half-metallic
properties. Afterwards, several studies followed, such as Alijani et al. [32] and Klaer et al. [33], who
studied electronic, structural and magnetic properties in CoFeMnZ (Z = Al, Ga, Si, Ge) from both
theoretical calculations and experimental measurements and found that there is a small amount of
disorder present in the crystal structure. Then, Feng et al. [34] detailed a thorough theoretical study of
the possible different disorders and their effect on the electronic and magnetic properties. Immediately
after, Bainsla et al. [28] revealed the spin-gapless semiconducting behavior in EQH CoFeMnSi from
experimental results. Recently, Fu et al. [35] prepared CoFeMnSi in a bulk sample and studied its
magnetic and transportation properties. They found a semiconductor-like transporting characteristic
in CoFeMnSi with a Curie temperature of 763 K.

While all these studies primarily investigate the electronic and magnetic properties, there are
few discussions about the corresponding mechanical and thermodynamic properties. In this paper,
for the purpose of providing a thorough analysis of the physical properties of EQH CoFeMnSi, we
systematically investigate its electronic, magnetic, mechanical properties by first-principles calculations
based on density functional theory. In addition, the effects of uniform strain and tetragonal strain are
also assessed. Lastly, with the quasi-harmonic Debye model, its thermodynamic properties have also
been elucidated in the temperature range 0–500 K and pressure from 0 to 10 GPa.

2. Computational Methodology

The first-principles calculations for the electronic, magnetic and mechanical properties of the
Heusler compound CoFeMnSi in this work have been performed with the Cambridge Serial Total
Energy Package (CASTEP) [36], which is based on the pseudo-potential plane-wave methods under the
framework of density functional theory [37]. The Perdew–Burke–Ernzerhof functional of the generalized
gradient approximation (GGA) [38] was selected for dealing with the electronic exchange–correlation.
The ultrasoft Vanderbilt-type pseudopotentials [39] are used for the interaction between the valence
electrons and the atomic core. The valence electron configurations for the four atoms are set as follows:
Fe (3d64s2), Mn (3d54s2), Co (3d74s2) and Si (3s23p2). A cutoff energy of 500 eV is set for the plane-wave
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basis set and a Monkhorst–Pack special 12 × 12 × 12 k sampling point mesh is selected in the Brillouin
zone. The reciprocal space integrations are performed with a k-mesh of 120 points in the irreducible
wedge of the Brillouin zone by using the tetrahedron method. The total energy convergence tolerance
is set within 1 × 10−6 eV/atom during the self-consistent field cycle. The quasi-harmonic Debye model
employed [40–42] has been adopted for studying the thermodynamic properties, and the dependencies
of several parameters on pressure (0–10 GPa) and temperature (0–500 K) were computed, including
unit cell volume, bulk modulus, heat capacity, Grüneisen constant, thermal expansion coefficient and
Debye temperature.

3. Results and Discussions

3.1. Crystal Structure and Equilibrium Lattice

The crystal structure of the equiatomic quarternary full-Heusler compound CoFeMnSi has been
both theoretically and experimentally studied [28,35] and the obtained results show it adopts the
LiMgPdSn prototype cubic structure with four Wyckoff positions occupied by the corresponding four
atoms: A(0,0,0) by Fe, B(1/4,1/4,1/4) by Mn, C(1/2,1/2,1/2) by Co, and D(3/4,3/4,3/4) by Si, as shown in the
inset crystal structure of Figure 1. To derive the equilibrium lattice constant for CoFeMnSi in the current
study, the total energy per unit cell is calculated at different lattice points and the result is displayed in
Figure 1. By applying fitting and minimization of the total energies versus the lattice constants, we
successfully obtained the equilibrium lattice constant of 5.611 Å at the minimum total energy point.
This value is in good agreement with previous theoretical and experimental results [28,31,35].
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Figure 1. The calculated total energy of CoFeMnSi with respect to different lattice constants. The inset
is the corresponding crystal structure.

3.2. Electronic and Magnetic Properties

After the equilibrium lattice constant of CoFeMnSi was obtained, we calculated its electronic
properties. Figure 2 shows the spin-polarized electronic band structure. It is very clear that there exists
an indirect band gap (0.62 eV) in the spin-down direction, while the valence band maximum almost
touches the conduction band minimum at the Fermi energy level in the spin-up channel, which reflects
the spin-gapless behavior in CoFeMnSi. Although there is a small discrepancy in the band structure
at the Fermi energy level, it does not affect the spin-gapless behavior as confirmed by experimental
measurements. To further study the origination of the band gap in the spin-down channel, we draw a
schematic diagram of the different energy levels in both spin channels for CoFeMnSi in Figure 3. It can
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be seen the double degeneracy states 2 × eu are above the Fermi energy level in the spin-down channel
and, thus, not occupied, leading to an eu - tu (nonbonding - bonding) energy band gap formation.
These results are consistent with a previous study [34]. According to the generalized electron filling
rule and Slater–Pauling rule [43,44], the total occupied states for CoFeMnSi are 16 for the spin-up
channel and 12 for the spin-down channel, respectively, and thus, a net spin magnetic moment is
expected and it should be equal to 4.00 µB, as it is the difference between the two spin directions. At the
equilibrium state, the total and partial magnetic moments are calculated and presented in Table 1. The
integral value of the total magnetic moment (4 µB) matches the above-mentioned theoretical analysis
and it follows the Slater–Pauling rule in the form of Mtotal = Ztotal − 24, where Ztotal is the total valence
electron number, 28 for CoFeMnSi and Mtotal is the total magnetic moment. It can also be observed
from Table 1 that Mn atoms provide the main contribution to the total magnetic moment, while Co and
Fe carry relative moments aligned parallel to Mn atoma. The large magnetic moment of Mn atoms is
from their strong spin-splitting effect, as revealed by the partial density of state in the literature [34].
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Table 1. The calculated equilibrium lattice constant and the corresponding total and atom-resolved
magnetic moments of CoFeMnSi.

Compound Lattice [Å]
Magnetic Moment [µB]

Total Fe Mn Co Si

CoFeMnSi Current 5.611 4.00 0.34 3.08 0.69 −0.11

Reference [31] 5.653 * 3.99* 0.576 2.649 0.878 −0.07

Reference [28] 5.658 * 4.01 0.53 2.72 0.82

Reference [45] 5.67 * 3.49 *

Reference [32] 5.611 4.00 0.52 2.70 0.89 −0.11

* Values are obtained from experiment.

To further examine the electronic bonding state and the magnetic distribution, we also calculated
the distributions of the charge density difference and the electronic spin density for CoFeMnSi along
the (110) plane and the results are shown in Figure 4. The electronic spin density is defined as the
electron density difference between the two spin directions and the brighter color indicates a larger
difference. Consequently, we can find that the large red-colored area around Mn atoms clearly indicates
their strong magnetic properties, and the small area of less bright color around Co and Fe atoms
indicates weak magnetism. Note that the color difference of Si atoms is indistinguishable from the
background, resulting in very weak magnetism. These findings are in a good agreement with the
calculated partial magnetic moments in Table 1. Regarding the charge density difference reported in
Figure 4b, the blue color indicates the electron deficiency and the red color, the electron excess. The
accumulation of electrons is mainly located along the diagonal directions between Fe and Co atoms,
and it reflects the typical covalent bonding characteristic. A spherical blue region surrounds Si atoms,
which suggests that the valence electrons of Si atoms form metallic bonds in CoFeMnSi.
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3.3. Mechanical Property and Dynamic Stability

In this section, we discuss the mechanical behavior and dynamic stability of CoFeMnSi. Only
three independent elastic constants exist for a simple cubic structure and they are C11, C12 and C44,
in which C12 and C44 reflect the elasticity in terms of the shape and C11 characterizes the elasticity
in terms of the length [29,30,46,47]. All these elastic constants for CoFeMnSi have been calculated
with the stress–strain method [36] and the derived values for CoFeMnSi are summarized in Table 2.
By applying the Voigt–Reuss–Hill approximation [48], several other mechanical parameters, such as
the bulk modulus B, the shear modulus G and the Young’s modulus E, can be calculated with the
following formulae as:

B =
BV + BR

2
, G =

GV + GR

2
, E =

9GB
3B + G

(1)
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where BV (BR) and GV (GR) stand for the lower (upper) limit of the Voigt (Reuss) boundary and they
are derived from the elastic constants as follows:

BV = BR =
C11 + 2C12

3
, GV =

C11 −C12 + 3C44

5
, GR =

5C44(C11 −C12)

4C44 + 3(C11 −C12)
(2)

Table 2. The calculated elastic constants (Cij), bulk modulus (B), shear modulus (G), Young’s modulus
(E), Poisson’s ratio (ν), Pugh’s ratio (B/G) and anisotropy factor (η) for CoFeMnSi.

Compound C11
[GPa]

C12
[GPa]

C44
[GPa]

B
[GPa]

G
[GPa]

E
[GPa] υ B/G η

CoFeMnSi
Current 332.2 188.9 157.5 236.7 114.8 296.5 0.29 2.06 2.19

Reference [32] 317.0 189.0 167.0 231.0 114.0 293.0 0.29 2.04 2.60

With these values, the anisotropy factor (η) and Poisson’s ratio (ν) can be also calculated as follows:

η =
2C44

C11 −C12
, ν =

3B− 2G
2(3B + G)

(3)

All the values for CoFeMnSi are reported in Table 2 and it is found that the calculated elastic
constants fulfill the following Born–Huang generalized elastic criteria [49,50], confirming the mechanical
stability of CoFeMnSi since it has been experimentally synthesized.

C11 −C12 > 0, C11 + 2C12 > 0, C44 > 0 (4)

According to the Pugh’s criteria, when the Pugh’s ratio of materials is smaller/larger than the
critical value of 1.75, they behave in a brittle/ductile manner. In this work, the Pugh’s ratio of CoFeMnSi
is 2.06 and, thus, it behaves in a ductile fashion. The elastic anisotropy can be evaluated by the
anisotropy factor; if it is equal to 1, the material is perfectly isotropic; if it is not equal to 1, the material is
anisotropic. The calculated anisotropy factor for CoFeMnSi is 2.19 and it is bigger than 1, implying the
presence of very strong elastic anisotropy. Furthermore, we also calculated the directional dependent
Young’s modulus and the shear modulus for CoFeMnSi; the results are reported in Figure 5 as 3D
surface plots. The corresponding 2D projections in different planes are displayed in Figure 6. Note the
different color curves in Figure 6 correspond to the same color curves on the 3D surface in Figure 5.
The elastic anisotropy in CoFeMnSi can be clearly observed.Acoustics 2020, 3 FOR PEER REVIEW  7 
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Dynamic stability is also very important for materials as the soft phonon modes can indicate
the possible distortion in the crystal. The calculated phonon spectrum for CoFeMnSi along the
high-symmetry direction (K-L-G-X-W-K) under the equilibrium lattice is shown in Figure 7. It can be
clearly seen that there are no imaginary frequencies in the phonon dispersion curves, confirming the
dynamic stability of CoFeMnSi.Acoustics 2020, 3 FOR PEER REVIEW  8 
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3.4. Strain Effects

During material preparation, the distortion of the crystal structure often happens, and this
situation is especially prevalent in thin-film growth. The electronic and magnetic properties are
strongly related with the structures of materials and they could experience large changes under
structural distortions [12,25]. Herein, we further evaluate the effects of uniform and tetragonal strains
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for CoFeMnSi. It should be pointed out that the unit cell volume is maintained at the equilibrium state
when the tetragonal distortion is considered.

Firstly, the effect of uniform strain is studied in terms of the electronic band structure and magnetic
moments. With a uniform increase, the lattice expands and thus the distance between all atoms
increases. The energy values of the valence band maximum (VBM) and the conduction band minimum
(CBM) as a function of different uniform strain for CoFeMnSi in both spin-up and spin-down directions
have been calculated and the result is shown in Figure 8. It is found that the VBM moves above
the CBM in the spin-up direction when the uniform strain is applied, leading to the destruction of
spin-gapless behavior. While for the spin-down direction, the band gap can be maintained from −5%
to + 1% uniform strain. Thus, even the spin-gapless feature cannot be retained with uniform strain;
the half-metallicity can be considerably maintained on the negative side. When the uniform strain is
above + 1%, the CoFeMnSi becomes a ferromagnetic metal.
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The total and atomic magnetic moments under uniform strain are calculated and displayed in
Figure 9. It is clearly shown that the total magnetic moment of CoFeMnSi stays constant—at 4 µB.
Whereas, the magnetic moments of Mn and Fe atoms display relatively large variations under uniform
strain—increase for Mn and decrease for Fe. There is a negligible change in the moment for both Si
and Co atoms.
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Afterwards, the effect of tetragonal strain is further inspected with the c/a ratio from 0.9 to 1.1.
The crystal changes from a cubic structure into a tetragonal structure when the c/a ratio deviates
from 1. The total energy variation from the cubic structure is computed under different c/a ratios
and the result is shown in Figure 10. It is found that the tetragonal distortion always increases the
total energy, eliminating the possible martensitic phase transition observed in some Heusler-type
compounds [46,51].
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The electronic band structure is examined under tetragonal strain and the variation of the CBM
and VBM is shown in Figure 11. When the c/a ratio is changed from 1 to 1.02, the CBM and VBM
have almost no change in the spin-up direction and thus, the spin-gapless behavior is expected to be
maintained. Once a larger strain is induced, the VBM surpasses the CBM and the spin-gapless feature
is lost. For the spin-down direction, the VBM moves slightly above the Fermi energy level when the
c/a ratio is larger than 1.08. However, there is a band gap present in the spin-down direction, which
leads to the persistence of the half-metallicity.
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The total and atomic magnetic moments under different tetragonal strains are also calculated,
see Figure 12. It is observed that the total magnetic moment remains fairly constant at 4 µB when the



Crystals 2019, 9, 678 10 of 16

c/a ratio is varied from 0.9 to 1.1. Whereas, the partial moments of Mn and Fe atoms exhibit small
variations: increase for Fe and decrease for Mn when the structure is changed from cubic to tetragonal.
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3.5. Thermodynamic Property

The thermodynamic properties of materials under varying temperatures and pressures can
provide important information about their specific behaviors and, thus, they are of great interest. In
this section, we studied the thermodynamic properties of CoFeMnSi by adopting the quasi-harmonic
Debye model [12,40–42]. The variation of the normalized unit cell volume V/V0, bulk modulus B,
thermal expansion coefficient α, heat capacity CV, Grüneisen constant γ and Debye temperature θD

are calculated for the temperature range 0–500 K and pressure from 0 to 10 GPa.
Figure 13 shows the unit cell volume variation V/V0 of CoFeMnSi under different pressures

and temperatures. All the volumes are normalized with respect to the equilibrium volume V0 at 0
K without pressure. With increasing temperature, the cell volume continuously increases. This is
apparently expected because of the thermal expansion. However, the changing rate is not constant:
small at temperature from 0 to 500 K and then larger at higher temperatures. On the contrary, the cell
volume continuously shrinks in a linear manner with increasing pressure due to pressure compression.
Overall, the change in the volume with temperature is much smaller than with pressure under the
current studied conditions.
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Figure 14 displays the bulk modulus B under different temperatures and pressures. It should
be mentioned here that the bulk modulus of CoFeMnSi at 0 K and 0 GPa is 230.25 GPa and it
overlaps very well with the value obtained in section detailing the mechanical properties, indicating
a mutual corroboration between the two different study approaches. It is observed from Figure 14
that the bulk modulus monotonously decreases with temperature increase yet increases with pressure
increase. The variation follows a linear manner with pressure but shows a different rate of change with
temperature: smaller when the temperature is lower than 100 K and larger at higher temperatures.
This changing behavior is similar as the previous volume variation and can be instinctively understood:
with increasing temperature, the compound expands and thus becomes less resistant to external
compression; with increasing pressure, the compound shrinks and thus becomes more resistant to
external compression.
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The thermal expansion coefficient α of the material describes how the object size change with
temperature and it is a very important parameter to study the thermodynamic equation of state.
The variation of the thermal expansion coefficient α for CoFeMnSi under different temperatures and
pressures is reported in Figure 15. It is shown that α changes very slightly with temperature at
low temperatures, from 0 to 50 K, and then rapidly increases at higher temperatures. This finding
can partially correlate to the different changing rate of volume with temperature. The change of α
with temperature at different pressure shows different extents: larger variation under low pressure.
With pressure increase, α shows larger variation under higher temperatures. The calculated thermal
expansion coefficient for CoFeMnSi at 0 GPa and 300 K is 3.10 × 10−5 K−1.
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The heat capacity CV is another crucial physical parameter for materials, and it can reflect
important details about the lattice vibration and the phase transition. The calculated variation of CV

with pressure and temperature is depicted in Figure 16. It is clearly observed that the effect of the
temperature on CV is much stronger than that of pressure. With temperature increase, CV slightly
increases at low temperature and then grows rapidly at high temperature. With higher temperature,
CV is expected to saturate to the Dulong–Petit limit. The variation of CV with temperature shows a
very small difference among different pressures. With increasing pressure, CV decreases slightly. The
calculated heat capacity for CoFeMnSi at 0 GPa and 300 K is 80.85 J·mol−1

·K−1.
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The Grüneisen constant γ is of great importance because it exists in several useful thermodynamic
relations. The dependences of γ on pressure and temperature are plotted in Figure 17. It is observed
that γ increases smoothly with increasing temperature. However, the rate of change becomes smaller
at higher pressure. With pressure increase, γ decreases almost linearly and different temperatures only
offset the curve vertically. The calculated Grüneisen constant of CoFeMnSi is 2.29.
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The evolution of Debye temperature θD with temperature and pressure has been investigated
and the results are shown in Figure 18. It is found that θD remains almost constant at the low
temperature range from 0 to 100 K and then slowly decreases. The rate of change becomes smaller
at higher pressure. For a given temperature, θD increases with pressure in a linear manner. The
calculated Debye temperature of CoFeMnSi at 0 GPa and 300 K is 629.37 K. Our calculation of the
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thermodynamic properties of CoFeMnSi can provide a valuable reference for further work and also
inspire future investigations.
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4. Conclusions

In the current study, the electronic, magnetic and mechanical properties of CoFeMnSi have been
thoroughly examined by employing first-principles calculations. Under a LiMgPdSn-type Heusler
structure, the obtained lattice constant of 5.611 Å is fairly consistent with previous experiment results
and theoretical calculations. The derived total magnetic moment of 4µB obeys the well-known
Slater–Pauling rule, i.e., Mtotal = Ztotal −24, with Ztotal is the total valence electron number and Mtotal is
the total magnetic moment. Moreover, the mechanical properties of CoFeMnSi have been computed
under an equilibrium state and several elastic constants and moduli are obtained. It is found that
CoFeMnSi behaves in a ductile manner and it exhibits very strong elastic anisotropy, as revealed by
the 3D surface plots of the directional-dependent moduli. Both mechanical and dynamic stabilities
of CoFeMnSi have been verified. Furthermore, the strain effects on the electronic and magnetic
properties of CoFeMnSi have been investigated, including both uniform and tetragonal strains, and it
is found that the spin-gapless feature is easily lost with both strain conditions yet the total magnetic
moment maintains a relative good stability. Finally, the specific thermodynamic properties under
various pressures and temperatures have been assessed by applying the quasi-harmonic Debye model,
including bulk modulus, thermal expansion coefficient, Grüneisen constant, heat capacity and Debye
temperature. The considered temperature range was from 0 to 500 K and pressure was from 0 to 10
GPa. This study comprehensively reveals different physical aspects of CoFeMnSi and can offer a very
valuable reference for its real-world application.
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