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Abstract: In this study, GaN-based blue InGaN/GaN light-emitting diodes (LEDs) with different
growth rates of the quantum barriers were fabricated and investigated. The LEDs with quantum
barriers grown with a higher growth rate exhibit a lower leakage current and less non-radiative
recombination centers in the multiple quantum wells (MQWs). Therefore, the LED with a higher
barrier growth rate achieves a better light output power by 18.4% at 120 mA, which is attributed
to weaker indium fluctuation effect in the QWs. On the other hand, the localized states created by
indium fluctuation lead to a higher local carrier density, and Auger recombination in the QWs. Thus,
the efficiency droop ratio of the LEDs with a higher barrier growth rate was only 28.6%, which was
superior to that with a lower barrier growth rate (39.3%).
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1. Introduction

Recently, LEDs have been used for many applications, such as full-color displays, exterior
automotive lighting, traffic lights, indicators, and cell phones. LEDs are the most important lighting
devices in the future due to their advantages in terms of environmental protection, long lifetime, and
vivid color. However, some existing mechanisms of the LEDs can still lead to the efficiency droop
effect, such as electron overflow loss [1–3], lacking in hole injection [4,5], Auger recombination [6–8],
carrier delocalization [9,10], junction heating [11], and current crowding [12].

In the past several years, many studiees have reported different kinds of electron blocking layer
(EBL) of the LEDs in the literature to improve these problems, such as shortperiod superlattice (SPS)
EBL with AlGaN/GaN structure, SPS EBL with graded-composition [13–15], and p-AlInGaN or p-AlInN
EBL [16], which can inhibit the effect of electron overflow and enhance the ability of hole injection to
diminish the efficiency droop effect. Iveland et al. reported the effect of efficiency droop in GaN-based
LEDs that originated from the excitation of Auger recombination processes by using electron emission
spectroscopy to detect the Auger electrons [6]. Galler et al. reported that when using the recombination
rate equation (i.e., R = An + Bn2 + Cn3, ABC model), the dominant physical mechanism of the
efficiency droop was superlinear in the carrier density of electron and can thereby be attributed to
Auger recombination [7]. Delaney et al. illustrated that Auger recombination was really an important
damage mechanism in the InGaN quantum wells by the calculations of the Auger recombination
process [8]. Then, Yang et al. reported that the quantum efficiency and peak shift were dependent
on the injection currents and exhibited a significant function of the indium alloy composition in the
MQWs. Such a result offered strong evidence that the delocalization was the primary loss mechanism
of the efficiency roll-off in InGaN-based LEDs [9].
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As mentioned previously, the efficiency droop effect limits the use of the LEDs especially, in
the case of application of a high current density. Therefore, we need to further improve the effect of
efficiency droop of the LEDs. In our study, GaN-based InGaN/GaN MQW blue LEDs with different
growth rates of the quantum barriers were fabricated. It is reported by Keller et al. that by using 12 pair
MQW structures with 3 nm thick InGaN well and 4.5 nm thick GaN barrier, indium at a lower growth
rate of GaN barrier can desorb from some areas of the InGaN well, which will cause a lower well
indium content and a higher compositional non-uniformity [17]. Therefore, by modulating the growth
rates of the quantum barriers, it will be expected that the injection carrier behavior in the MQWs can
be improved, thus the quantum efficiency and efficiency droop of the LEDs were also investigated.

2. Experimental

The epitaxial layers of the samples used in our study were all grown on c-plane (0001) sapphire
substrates by AIXTRON metal-organic chemical vapor deposition (MOCVD) system with Close Coupled
Showerhead technology. About the MO source of epitaxial growth, trimethylgallium (TMGa) (Cassen,
Hsinchu, Taiwan), trimethylindium (TMIn) (Cassen, Hsinchu, Taiwan), trimethylaluminum (TMAl)
(Cassen, Hsinchu, Taiwan), and ammonia (NH3) (Praxair, Hsinchu, Taiwan) were used as gallium,
indium, aluminum, and nitrogen sources, respectively. Disilane (Si2H6) (Praxair, Hsinchu, Taiwan)
and biscyclopentadienyl magnesium (CP2Mg) (Cassen, Hsinchu, Taiwan) were used as the doping
sources of the n- and p-type GaN, respectively. First of all, a 30 nm thick GaN buffer layer was grown
on top of the sapphire substrate at low temperature of 550 ◦C. Then, a 3 µm thick un-doped GaN
layer and a 2 µm thick Si-doped n-GaN layer were grown at 1050 ◦C. After that, the pre-strain layer
with 20 pairs and a lower indium composition InGaN/GaN structure was grown at 900 ◦C. Then, the
carrier recombination centers of InGaN/GaN MQWs were grown. The active region of the MQWs
consisted of six pairs of InGaN QW layers with 3 nm thickness and GaN quantum barrier with 6 nm
thickness, which were grown at 800 and 910 ◦C, respectively. The growth rates of the GaN quantum
barrier layers labeled LED I, LED II, and LED III were 15, 11.25, and 7.5 Å/min, respectively, which
were achieved by a change in III/V ratio. Finally, a 30 nm thick Mg-doped p-AlGaN electron EBL and
an 80 nm thick Mg-doped p-GaN layer were all grown at 1000 ◦C. In order to activate the p-AlGaN
and p-GaN layers, the as-grown epitaxial wafers were all further annealed at 650 ◦C by the furnace in
an N2 ambient atmosphere.

For the process of the LED chip, the chip size was 580 × 1140 µm2, which was defined by using
standard photolithography. The mesa of the LED chip was performed by dry etching until the 2 µm
thick n-GaN layer was exposed. Then, the RF sputter system was used to deposit a transparent and
conductive indium tin oxide (ITO) layer with 70 nm thickness onto the p-GaN layer, which can serve
as the p-type ohmic contact material, current spreading film, and transparent layer. Next, we used the
e-beam evaporator to deposit an Ni/Au (30/500 nm) metal contact layer as the p-electrode on the ITO
layer, and a Ti/Al/Ti/Au (15/450/50/500 nm) metal contact as the n-electrode on the exposed n-GaN
layer. After that, the backside of a 2 inch sapphire substrate with epitaxial layers were polished down
to about the thickness of 90 µm. Finally, the LED chips were performed by dicing saw. After the
chip process, the TO-39 metal cans without epoxy resin or silicone for LED encapsulation are used
to package these fabricated LED chips, which can collect the emission light. The integrating sphere
detector (Forter Tech, Tainan, Taiwan) can be used to measure the light output powers (LOPs) of the
fabricated LEDs. The current–voltage (I–V) curves of these fabricated LEDs were all measured by a
semiconductor parameter analyzer of HP4156C.

3. Results and Discussion

The LOPs, external quantum efficiency (EQE), and normalized EQE of the fabricated LEDs on
a linear and log I scale as shown in Figure 1a–c, respectively. As shown in Figure 1a, the LOPs of
LED I, LED II, and LED III were 106.6, 100.7, and 90.0 mW at 120 mA, respectively. In addition,
the LOP of LED I at 120 mA was enhanced by 5.9% and 18.4% compared with LED II and LED III,
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respectively. It was evident that LED I exhibited a superior LOP. Otherwise, the LOPs of LED I, LED II,
and LED III were 214.2, 192.9, and 172.0 mW at 300 mA, respectively. As compared with LED II and
LED III, the LOP of LED I was improved by approximately 11.0% and 24.5% at 300 mA, respectively.
The same tendency is also shown in Figure 1b. The differences of LOP and EQE between the fabricated
LEDs evidently became significantly larger especially, at higher injection currents. Then, as shown
in Figure 1c, normalized EQE can more clearly compare the differences of the efficiency droop. It
was found that the EQE decay percentages from maximum EQE to EQE at 300 mA of LED I, LED II,
and LED III were 28.6%, 35.1%, and 39.3%, respectively. Such a result once again pointed out that
the optical properties of LED I were superior to those of the others whether operating at low or high
injection currents. The physical mechanism of this phenomenon will be proposed in the following
paragraphs in detail.
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Figure 1. (a) The light output power, (b) external quantum efficiency (EQE), and (c) normalized EQE 
of three light-emitting diodes (LEDs) as a function of the injection currents on a linear and log I scale, 
respectively. 

Figure 2 shows the forward current–voltage characteristics on a semilogarithmic scale. It is 
obvious that the forward current of LED III under the forward bias voltage of 2.4 V is larger than that 
of the other LEDs. According to the equivalent circuit model of the pn junction diode [18], LED III— 
with a smaller parallel resistance—is attributed to a larger leakage current. It is pointed out that the 
excess current of LEDs generated at a voltage of less than 2.4 V is attributed to the minority carrier 
recombination by the traps in the depletion region most likely related to the V-defects in the MQWs, 
which arise from the heterointerfaces between the wells and barriers [19,20]. Figure 3a,b shows the 
(002) and (102) double-crystal X-ray diffraction (DCXRD) spectra of LED I and LED III, respectively. 

Figure 1. (a) The light output power, (b) external quantum efficiency (EQE), and (c) normalized
EQE of three light-emitting diodes (LEDs) as a function of the injection currents on a linear and log I
scale, respectively.

Figure 2 shows the forward current–voltage characteristics on a semilogarithmic scale. It is
obvious that the forward current of LED III under the forward bias voltage of 2.4 V is larger than that
of the other LEDs. According to the equivalent circuit model of the pn junction diode [18], LED III—
with a smaller parallel resistance—is attributed to a larger leakage current. It is pointed out that the
excess current of LEDs generated at a voltage of less than 2.4 V is attributed to the minority carrier
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recombination by the traps in the depletion region most likely related to the V-defects in the MQWs,
which arise from the heterointerfaces between the wells and barriers [19,20]. Figure 3a,b shows the
(002) and (102) double-crystal X-ray diffraction (DCXRD) spectra of LED I and LED III, respectively.
It can be seen clearly that both the main and satellite peaks of (002) XRD spectrum of LED I exhibit
larger intensity and narrower full-width at half-maximum (FWHM) than those of LED III in Figure 3a.
The same results are also shown in (102) XRD spectrum. The superior X-ray (102) characteristic of LED
I implies a lower V-pits density forms along the threading dislocations. Such a result demonstrates
that the crystal quality of MQWs of LED I with a higher barrier growth rate is better than that of LED
III, which corresponds to the forward I–V characteristics, as mentioned above.
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Then, we present an in-depth approach to analyze the non-radiative recombination in the MQW
region by the cathodoluminescence (CL) system. The CL spectra of these three LEDs (not shown
here) include a weaker GaN near-band-edge (NBE) emission (i.e., 365 nm), a stronger InGaN/GaN
MQWs emission (i.e., 450 nm), and a broad yellow band (YL) emission (i.e., 550 nm). Figure 4a,b
shows the CL mapping images of the LED I and III recorded at an MQW emission wavelength of
450 nm, respectively. It is clearly evident that LED I has more light spots than LED III. According to
the literature, the V-defects in the MQW can act as non-radiative recombination centers and generate
the dark areas in the CL images [21,22]. The results obtained demonstrate that LED III has a greater
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V-defect density and larger leakage current, which also corresponds to the results of Figures 2 and 3.
This could be attributed to the fact that the growth temperature of the quantum barriers was 110 ◦C
higher than that of the quantum wells. In order to suppress the generation of V-pits in the MQWs
and enhance the carrier confinement capability of MQWs, the growth temperature of the quantum
barrier was higher than that of QW, and growth rate of the quantum barrier was decreased. However,
if the growth temperature and rate of the quantum barrier are too high and low, respectively, the
indium fluctuation effect [23,24] in the MQWs can be induced, which will result in the defect generation
(i.e., non-radiative recombination centers) and crystal quality degradation of the MQWs. On the basis
of the above, we choose a compromise, which is the reduction of the growth time (i.e., increase the
barrier growth rate appropriately) at 910 ◦C. LED I increases the barrier growth rate appropriately
(i.e., still able maintain a good-quality crystal of the barrier–well heterointerfaces in the MQWs) and
reducing the barrier growth time in the high-temperature environment can reduce the thermal budget
to mitigate the effect of indium fluctuation. According to the equation of the recombination rate
for LEDs (i.e., R = An + Bn2 + Cn3), the Shockley–Read–Hall (SRH) recombination (An) and the
radiative recombination (Bn2) are dominant recombination mechanisms at a lower current injection
density. Such a result evidences that the LOP and EQE of LED I in Figure 1 are the best at lower
injection currents.
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Figure 5a–c show the temperature-dependent electroluminescence (EL) spectra of LED I, LED II,
and LED III, respectively, cooled from 300 K down to 10 K at 5 mA by Helium compressor system and
the temperature was controlled by the temperature sensor and heat controller. The similar tendency of
temperature-dependent EL intensity of these three fabricated LEDs was observed. As the temperature
went down from 300 K, the light intensity of the emission for the LEDs increased. This is attributed
to the reduction of the non-radiative recombination rate in the MQW. In other words, the carrier
capture rate by the defects will decrease as the temperature decreases [25]. Therefore, the internal
quantum efficiency (IQE) of the fabricated LEDs will be increased. Then, the light intensity of the
emission began to drop as the temperature kept decreasing due to the reduction of electron and hole
concentrations [26]. On the other hand, it was found that the light intensity and FWHM of the emission
spectrum for LED III were smaller and wider than those of the other two. In addition to this, it can
also be observed that LED III displayed a more evident emission sub-peak than those of the other two
around the wavelength of 460 nm. Furthermore, as the ambient temperature decreases, the intensity of
the sub-peak has a more significant proportion in the emission spectrum in Figure 5c. This is because
when the ambient temperature is lower, the injected carriers into the MQWs are more easily attracted
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and confined in the localized states with lower potential energy and the longer light wavelengths
are emitting. It is suggested that the localized states in the InGaN/GaN quantum wells are created
by random indium alloy fluctuations or indium-rich clusters [23,24], which could be attributed that
the growth temperature of the quantum barriers was 110 ◦C higher than that of the quantum wells.
As described in the previous paragraph, the higher growth temperature of the quantum barriers can
induce indium fluctuation in the MQWs. In addition, the LEDs with quantum barriers grown with a
lower growth rate have a larger strain and piezoelectric polarization field between GaN and InGaN due
to the strong lattice mismatch. This is the reason that the lattice constant of the GaN quantum barrier
of LED III with a lower growth rate will be closer to the ideal value of GaN bulk than that of LED I,
which would result in a larger lattice mismatch between the GaN barrier and InGaN well. Therefore,
as the carriers are injected into the MQWs, the localized states with the potential minimum in the
QWs created by random indium alloy fluctuations or indium-rich clusters leads to a higher partial
carrier density in the QWs, which has a significant effect on the FWHM of the spectrum of emitted light.
The Auger recombination procedure in the MQWs is extremely enhanced by the carrier localization
mechanism [27]. According to the recombination rate equation of the LEDs (i.e., R = An + Bn2 + Cn3),
the Auger recombination (Cn3) is a dominant recombination mechanism at higher current injection
density. Thus, the efficiency droop effect induced by Auger recombination will become more serious
especially, at higher injection current levels. Therefore, LED III has a more serious carrier localization
effect induced by random indium alloy fluctuations. Such a result demonstrates why LED I exhibits
the weakest efficiency droop effect in Figure 1b.
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4. Conclusions

In summary, GaN-based blue InGaN/GaN LEDs with different growth rates of the quantum
barriers were demonstrated. It was found that the LOP of the LED with a higher barrier growth rate
was 18.4% higher than the LED with a lower barrier growth rate at 120 mA. The LEDs with quantum
barriers grown with a higher growth rate exhibit a lower leakage current and less non-radiative
recombination centers in the MQWs from the CL mapping images, which is attributed to a weaker
indium fluctuation effect induced by the growth temperature of the quantum barriers 110 ◦C higher
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than that of the quantum wells. On the other hand, the localized states in the MQWs created by indium
fluctuation lead to a higher local carrier density, which resulted in the Auger recombination in the
QWs. Thus, the efficiency droop ratio of the LEDs with a higher barrier growth rate was only 28.6%,
which was superior to that with a lower barrier growth rate (39.3%).
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