Intermolecular interactions in ionic crystals of nucleobase chlorides – combining topological analysis of electron densities with energies of electrostatic interactions

Prashant Kumar, Małgorzata Katarzyna Cabaj and Paulina Maria Dominiak* Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland. E-mail: pdomin@chem.uw.edu.pl

Interactions within dimers of the CC. Selected intermolecular bond critical points (CP) are presented as small yellow spheres and corresponding intermolecular bonding paths as red lines.

Interactions within dimers of the ACH. Selected intermolecular bond critical points (CP) are presented as small yellow spheres and corresponding intermolecular bonding paths as red lines.

Interactions within dimers of the GDC. Selected intermolecular bond critical points (CP) are presented as small yellow spheres and corresponding intermolecular bonding paths as red lines.

Table S1 Selected QTAIM parameters of intermolecular interactions at BCPs detected in the electron densities of the CC, ACH and GDC crystals by experiment, UBDB model and periodic quantum calculations for with structure optimization (Theoretical (opt)). R_{ab} - distance (Å) between interacting atoms; dI_{BPL} and dZ_{BPL} - bonding path lengths (Å) from the first or the second atom to the BCP, respectively; $\rho(r)$ - electron density (eÅ⁻³) at BCP; $V^2\rho(r)$ - Laplacian of electron density (eÅ⁻⁵) at BCP; ε - ellipticity at BCP, E_{EML} - interaction energy (kcal mol⁻¹) estimated from Espinosa-Molins-Lecomte approach and exact values of $V(r)_{BCP}$. For the symmetry operations required to build particular dimers see Table S2 in SI.

			Experimental				UBDB											Theoretical (opt)						
			Rab	$d1_{BPL}$	$d2_{BPL}$	$\rho(r)$	$\nabla^2 \rho(r)$	3	E_{EML}	R _{ab}	$d1_{BPL}$	$d2_{BPL}$	$\rho(r)_{BCP}$	$\nabla^2 \rho(r)$	3	E_{EML}	R _{ab}	$d1_{BPL}$	$d2_{BPL}$	$\rho(r)$	$\nabla^2 \rho(r)$	3	E_{EML}	ex. E _{EML}
Cytosi	nium chl	oride (C	C)																					
A A 1	U1	02	1766	0.624	1 1 2 /	0 2 2 0	1 1 /	0.06	12.06	1 766	0 6 0 2	1 1 6 5	0.224	2 50	0.01	0.45	1 724	0.622	1 1 / 0	0.277	2 2 2 2	0.02	12 20	10.02
AA1		02	1.700	0.034	1.134	0.329	1.14	0.00	-12.90	1.700	0.003	1.105	0.234	2.35	0.01	-9.43	1.754	0.032	1.149	0.277	3.33	0.03	-12.39	-10.03
AAZ	C4	C2	3.312	1.670	1./69	0.047	0.42	0.66	-0.91	3.312	1.648	1./15	0.042	0.36	1.68	-0.77								
AAZ	N3	N3	3.312	1.657	1.657	0.038	0.52	23.85	-0.89	3.312	1.657	1.657	0.038	0.54	16.69	-0.90	3.287	1.644	1.644	0.047	0.46	0.94	-0.96	-1.24
AA2	02	N7															3.333	1.634	1.766	0.034	0.46	1.04	-0.76	-1.03
AA3	H5	02															2.798	1.376	1.590	0.034	0.55	1.80	-0.86	-1.00
AA3	H6	02	2 311	0.952	1 4 0 1	0.082	0.98	0.32	-2.22	2 3 1 1	0 968	1 370	0.078	1 24	035	-2.41	2 2 9 2	0941	1 383	0.094	1.06	0.05	-2.62	-319
1110	N7	CE	2 4 2 2	1 600	1 000	0.020	0.20	0.67	0.62	2 / 22	1 711	1 721	0.020	0.20	1 1 5	0.60	2.250	1672	1 601	0.040	0.20	0.00	0.79	0.05
AA4	N7	N1	3.433	1.090	1.000	0.029	0.35	0.07	-0.03	3.433	1./11	1.731	0.028	0.30	1.1.5	-0.00	3.330	1.072	1.001	0.040	0.39	0.40	-0.78	-0.05
AAS	IN 7	IN I	3.765	1.903	1.926	0.010	0.17	3.24	-0.22	3./05	1.896	1.897	0.012	0.20	1.43	-0.26								
AA6	H6	C5	2.998	1.315	1.784	0.031	0.24	0.10	-0.49	2.998	1.261	1.797	0.024	0.28	0.75	-0.45	2.953	1.239	1.771	0.027	0.34	0.43	-0.55	-0.58
AB1	H7B	Cl1	2.365	0.885	1.496	0.151	0.86	0.04	-4.13	2.365			0.120	1.07	0.10	-3.34	2.300	0.809	1.535	0.142	1.28	0.00	-4.27	-3.66
AB1	H5	Cl1	2.544	0.929	1.629	0.091	0.97	0.28	-2.43	2.544	0.928	1.627	0.089	1.01	0.20	-2.42	2.580	0.965	1.645	0.088	0.89	0.04	-2.26	-2.46
AB2	N7	C11	3 308	1 5 7 4	1 7 3 9	0.052	0.75	0.56	-136	3 308	1 6 2 6	1 746	0.054	0.76	0.86	-140	3 3 2 9	1 797	1 803	0.047	0.65	0.86	-117	-134
102	C2	C11	2 2 4 0	1 572	1 772	0.052	0.75	0.30	1.50	2 2 4 0	1 501	1 706	0.051	0.70	2 1 0	1.10	5.527	1., ,,	1.005	0.017	0.05	0.00	1.17	1.51
ADS	02		5.540	1.575	1.//2	0.054	0.57	0.51	-1.19	5.540	1.501	1./00	0.055	0.54	2.10	-1.14	0.400					0.54		1.00
AB3	N3	CI1															3.402	1.652	1.804	0.054	0.55	2.76	-1.18	-1.32
AB4	H3	Cl1	2.024	0.702	1.329	0.327	1.20	0.05	-12.91	2.024	0.630	1.398	0.232	1.96	0.01	-8.68	1.994	0.659	1.376	0.277	2.19	0.00	-11.16	-8.79
AB4	H7A	Cl1	2.621	0.959	1.698	0.069	0.78	0.43	-1.72	2.621	0.948	1.696	0.069	0.76	0.33	-1.69	2.686	1.008	1.721	0.067	0.68	0.11	-1.57	-1.87
AB5	6	C11	3 7 2 9	1956	1961	0.023	034	0.39	-0.51															
ADE	116	C11	5.727	1.750	1.701	0.025	0.51	0.57	0.51	2 2 1 0	1 5 7 7	1 0 2 4	0.026	0.20	0.02	0.50	2 1 7 2	1 266	1 0 2 0	0.024	0.20	052	0.60	0.71
ADD	по	UI1								5.210	1.5//	1.924	0.026	0.50	0.62	-0.58	5.175	1.500	1.928	0.034	0.39	0.52	-0.66	-0.71
AB6	C6	CI1	3.690	1.822	1.953	0.025	0.30	0.41	-0.48	3.690	1.756	1.956	0.025	0.29	0.20	-0.48	3.692	1.697	2.005	0.027	0.29	0.39	-0.50	-0.56
BB1	Cl1	Cl1															4.098	2.050	2.050	0.027	0.24	3.86	-0.44	-0.53
Adeni	nium chlo	oride he	mihydrate	e (ACH)																				
ΔΔ1	H10A	N7	1 943	0 727	1 2 2 8	0 241	0.99	0.02	-8.05	1 9 4 3	0.688	1 2 6 4	0 184	1 94	0.06	-656	1 874	0.677	1 243	0.236	2 4 3	0.05	-939	-716
A A 1	N7	N7	2 706	1057	1.057	0.016	0.77	1 20	0.05	1.715	0.000	1.201	0.101	1.71	0.00	0.50	1.07 1	0.077	1.215	0.230	2.15	0.05	5.55	7.10
AAI	N/	IN /	3.796	1.957	1.957	0.016	0.24	1.30	-0.34		4.9.49													1.05
AAZ	H2	N3	2.720	1.389	1.574	0.047	0.76	0.44	-1.28	2.720	1.268	1.572	0.040	0.70	0.63	-1.11	2.737	1.166	1.628	0.047	0.58	0.28	-1.09	-1.35
AA2	N3	N3	3.150	1.586	1.586	0.043	0.68	0.61	-1.13	3.150	1.581	1.581	0.040	0.65	0.40	-1.06	3.147	1.581	1.581	0.047	0.55	0.21	-1.06	-1.46
AA3	N3	N3	3.204	1.604	1.604	0.051	0.64	2.67	-1.22	3.204	1.604	1.604	0.048	0.66	7.99	-1.19	3.217	1.609	1.609	0.047	0.51	2.17	-1.01	-1.26
ΔΔ4	N2	N7	3 2 1 7	1 6 1 2	1615	0.043	0.58	0 4 4	-1.02	3 2 1 7	1 6 1 1	1614	0.041	0.57	0.65	-0.99	3 2 1 8	1 605	1.620	0.047	0.4.8	0.62	-0.98	-1.24
A A A	C2	N10	2 4 2 0	1 715	2 1 1 0	0.013	0.00	11 22	0.64	5.217	1.011	1.011	0.011	0.57	0.05	0.77	5.210	1.005	1.020	0.017	0.10	0.02	0.70	1.21
AA4	CZ	N10	3.438	1./15	2.110	0.031	0.38	11.22	-0.64															
AA4	N1	N10															3.401	1.941	1.729	0.034	0.36	4.24	-0.66	-0.80
AA5	C2	C6								3.447	1.717	2.394	0.034	0.37	17.60	-0.67								
AA5	N7	C6	3.287	1.618	1.769	0.046	0.49	0.50	-0.97															
445	N7	N10								3 340	1650	1 808	0.041	0.52	4.05	-0.93	3 364	1662	1 737	0.040	0.46	1 2 3	-0.85	-117
A D 1	U10P	C11	2 250	0 000	1465	0 1 5 7	0.01	0.02	4.40	2 250	0.760	1 5 1 0	0149	1 40	0.12	4.61	2 214	0.766	1 400	0.160	1 50	0.01	E E 0	4 71
ADI	IIIOD		2.230	0.009	1.405	0.137	0.51	0.02	-4.40	2.230	0.700	1.510	0.140	1.40	0.12	-4.01	2.214	0.700	1.490	0.109	1.39	0.01	-3.30	-4.71
ABZ	H8	CI1	2.601	0.953	1.664	0.078	0.62	0.10	-1.74	2.601	0.950	1.657	0.083	0.80	0.09	-2.05	2.548	0.935	1.645	0.094	0.84	0.00	-2.38	-2.46
AB3	H9	Cl1	2.104	0.713	1.398	0.224	0.86	0.04	-7.11	2.104	0.669	1.439	0.198	1.67	0.02	-6.84	2.099	0.710	1.433	0.209	1.88	0.01	-7.55	-5.94
AB4	H2	Cl1	2.705	1.021	1.694	0.061	0.55	0.04	-1.30	2.705	1.007	1.704	0.069	0.65	0.06	-1.58	2.676	1.004	1.705	0.074	0.67	0.02	-1.71	-1.89
AB5	N1	Cl1	3 5 7 0	1714	1872	0.028	039	0.27	-0.62	3 5 7 0	1 6 9 8	1 883	0.031	0.43	037	-0.70	3 6 1 2	1 688	1 933	0.034	0.36	0.61	-0.66	-0.79
AD6	C9	C11	2 050	1 0 1 1	2 000	0.011	0.16	0.42	0.21	2050	1077	2.074	0.015	0.21	0.02	0.20	2 0 0 0	2.040	2,000	0.020	0.22	1 4 1	0.25	0.26
ADD	LO NO		3.930	1.911	2.099	0.011	0.10	0.45	-0.21	3.930	1.977	2.074	0.013	0.21	0.05	-0.29	3.909	2.040	2.090	0.020	0.22	1.41	-0.33	-0.30
AB/	N9	CII	3.826	1.886	2.009	0.017	0.22	1.17	-0.32	3.826	1.836	2.028	0.018	0.25	2.49	-0.36	3.829	1.866	2.047	0.020	0.24	1.44	-0.37	-0.52
AW1	H1	01	1.830	0.693	1.139	0.294	1.53	0.00	-11.38	1.830	0.631	1.204	0.209	2.38	0.02	-8.09	1.762	0.637	1.169	0.277	3.01	0.03	-12.05	-9.51
BW1	H1A	Cl1	2.120	0.668	1.462	0.174	1.66	0.00	-5.86	2.120	0.681	1.442	0.191	1.80	0.02	-6.69	2.090	0.710	1.432	0.216	1.95	0.01	-7.93	-6.27
BW2	01	Cl1	3.608	1.678	1.939	0.022	0.33	0.79	-0.49	3.608	1.662	1.949	0.024	0.35	0.39	-0.52	3.633	1.661	1.982	0.027	0.34	0.80	-0.55	-0.71
DD1	C11	C11	4 261	2122	2122	0.011	0.14	0.22	0.10	4 761	2 1 2 1	2 1 2 1	0.012	0.16	0.02	0.22	4 2 2 0	2 1 1 0	2 1 1 0	0.020	0.10	0.12	0.22	0.40
Curri			4.201	2.155	2.155	0.011	0.14	0.22	-0.17	4.201	2.131	2.131	0.015	0.10	0.05	-0.25	4.220	2.110	2.110	0.020	0.19	0.12	-0.52	-0.40
Guani		oriae (Gi								0.050		4 9 9 4					0.004							
AA1	H8	010	2.252	1.198	1.321	0.083	1.75	0.30	-3.07	2.252	1.102	1.304	0.103	1.71	0.37	-3.55	2.201	0.976	1.303	0.115	1.61	0.25	-3.78	-4.24
AA1	H9	010															2.216	1.019	1.326	0.101	1.42	0.32	-3.19	-3.89
AA1	010	N9	2.759	1.329	1.617	0.083	1.70	1.40	-3.02	2.759	1.321	1.769	0.094	1.64	0.59	-3.23								
442	N11	010	3 4 1 8	1 715	1 720	0.021	0.36	0.90	-0.51	3 4 1 9	1 710	1 7 3 2	0.022	0.34	0.97	-0.50	3 4 1 7	1 6 9 5	1 734	0.027	0 34	0.24	-0.55	-0.73
112	NTT NTT	N1	3.710	1.713	1.720	0.021	0.50	2.25	-0.31	5.410	1.710	1.755	0.022	0.54	0.77	-0.50	5.417	1.075	1.754	0.027	0.54	0.24	-0.55	-0.75
AAZ	N/	NI	3.783	1.879	1.916	0.011	0.18	3.25	-0.24															
AA3	N3	N9	3.786	1.884	1.918	0.011	0.18	1.13	-0.24	3.786	1.897	1.907	0.013	0.19	5.60	-0.26								
AB1	H11B	Cl1	2.097	0.720	1.394	0.221	0.50	0.02	-6.59	2.097	0.673	1.431	0.204	1.79	0.08	-7.23	2.065	0.703	1.405	0.229	2.07	0.00	-8.68	-7.17
AB1	H3	Cl1	2.301	0.836	1.484	0.138	0.97	0.07	-3.81	2.301	0.775	1.546	0.126	1.33	0.23	-3.81	2.317	0.813	1.545	0.142	1.25	0.00	-4.24	-3.66
102	U1	C11	2.025	0.600	1 2/0	0.275	1 2 2	0.02	10.12	2.025	0.624	1 / 1 2	0.220	1 0 2	0.00	707	2 007	0.667	1 202	0.262	2.1.4	0.01	10.41	0.00
ADZ	111		2.033	0.090	1.349	0.273	1.34	0.02	-10.12	2.033	0.024	1.412	0.220	1.02	0.00	-7.97	2.007	0.007	1.303	0.203	2.14	0.01	-10.41	-0.09
AB3	H8	CII	2.824	1.103	1./40	0.056	0.26	0.04	-0.89	2.824	1.054	1.//5	0.053	0.47	0.07	-1.07	2.764	1.030	1.//1	0.054	0.53	0.04	-1.15	-1.43
AB4	H3	CI2	2.952	1.223	1.831	0.033	0.36	0.71	-0.64	2.952	1.143	1.871	0.034	0.46	1.92	-0.76	2.982	1.155	1.877	0.040	0.43	0.52	-0.83	-0.99
AB4	H9	Cl2	2.219	0.779	1.455	0.166	1.09	0.06	-4.93	2.219	0.737	1.500	0.151	1.54	0.16	-4.87	2.203	0.758	1.489	0.169	1.57	0.00	-5.55	-4.69
AB5	H7	Cl2	2.074	0.706	1.371	0.252	0.82	0.01	-8.41	2.074	0.647	1.430	0.205	1.74	0.02	-7.22	2.043	0.677	1.410	0.250	1.98	0.02	-9.55	-7.23
AB6	H11A	C12	2 291	0.810	1 5 1 1	0.138	0.65	0.08	-3.46	2 2 9 1	0 777	1 530	0135	1 36	0.10	-4.13	2 212	0.767	1 488	0.169	1 59	0.01	-5 5 8	-4.66
107	C0	C11	2.271	1 5 20	1.311	0.130	0.03	0.00	1 1 1	2.271	1 5 2 0	1 7 7 7	0.133	1.50	0.19	1.1.0	2.212	1 402	1.770	0.107	1.37	0.01	-3.50	1 2 1
AB/	LØ		3.255	1.520	1./44	0.049	0.57	0.08	-1.11	3.235	1.528	1.///	0.005	0.04	0.11	-1.48	3.205	1.492	1.//0	0.061	0.63	0.27	-1.38	-1.31
AB8	C2	CI2								3.424	1.663	1.799	0.049	0.54	1.18	-1.08								
AB8	Cl2	C4	3.546	1.836	2.139	0.035	0.41	4.23	-0.73	3.546	1.811	1.849	0.040	0.46	2.27	-0.84	3.540	1.885	1.969	0.040	0.43	7.37	-0.83	-0.95
AB8	N1	Cl2	3.483	1.720	1.819	0.035	0.49	8.85	-0.81								3.491	1.691	1.850	0.047	0.51	3.09	-1.01	-1.20
AB8	N3	C12	3 466	1 690	1 800	0.038	0.53	2.49	-0.90								3 4 6 3	1.636	1 841	0.047	0.51	1 58	-1.01	-127
DD1	C12	C11	2 602	1042	1.000	0.030	0.33	0.02	0.70	2 602	1.045	1047	0.020	0.40	0.21	0.05	3.103	1.050	1.071	0.047	0.31	1.50	1.01	1.47
DDI	UI2	ui	3.092	1.043	1.020	0.032	0.43	0.92	-0./0	3.092	1.045	1.047	0.039	0.48	0.31	-0.05								

Table S2. A list of symmetry operation defining selected dimers in the CC, ACH and GDC structures. To build a given dimer symmetry card assigned to it should be applied to the second molecule in the dimer represented by the second letter in the dimer name (A nucleobase cation, B chloride anion, W water molecule).

Dimer	Symmetry card						
Cytosinium chloride (CC)							
AA1	-x, -y+2, -z+1						
AA2	-x, -y+1, -z+1						
AA3	x+0.5, -y+1.5, z+0.5						
AA4	-x+1, -y+1, -z+1						
AA5	x, y-1, z						
AA6	-x+0.5, y+0.5, -z+1.5						
AA7	-x,+1, -y, -z+1						
AB1	х, у, z						
AB2	-x+1, -y, -z+1						
AB3	-x+1, -y+1, -z+1						
AB4	x-0.5, -y+0.5, z-0.5						
AB5	x, y+1, z						
AB6	-x+0.5, +y+0.5, -z+1.5						
BB1	-x+1, -y, -z+1						
Adenin	ium chloride hemihydrate (ACH)						
AA1	-x, -y, -z+1						
AA2	-x+1, -y+2, -z+1						
AA3	-x+1, -y+1, -z+1						
AA4	x, y+1, z						
AA5	-x, -y+1, -z+1						
AA6	-x+0.5, y, -z+1.5						
AB1	x-0.5, -y+1, z+0.5						
AB2	-x+0.5, y-1, -z+0.5						
AB3	X, Y, Z						
AB4	-x+1, -y+2, -z+1						
AB5	-x+1, -y+1, -z+1						
AB6	x, y-1, z						
AB7	-x+0.5, y, -z+0.5						
AW1	X, Y, Z						
BW1	x+0.5, -y+2, z-0.5						
BW2	-x+1, -y+1, -z+1						
BB1	-x+0.5, y, -z+0.5						
Guanin	ium dichloride (GDC)						
AA1	x+0.5, -y+1.5, -z+1.5						
AA2	-x+1.5, -y+1, z+0.5						
AA3	-x+2, y-0.5, -z+1						
AA4	x, y-1, z						
AA5	x, y, z-1						
AB1	x+0.5, -y+1.5, -z+0.5						
AB2	X, Y, Z						
AB3	x+0.5, -y+1.5, -z+1.5						
AB4	x+0.5, -y+1.5, -z+1.5						
AB5	X, V, Z						
AB6	x, y, z-1						
AB7	-x+1.5, -v+1, z+0.5						
AB8	-x+1.5, -y+1, z-0.5						
AB9	-x+1, y+0.5, -z+1						
BB1	x, y, z-1						

Selected QTAIM parameters of intermolecular interactions at BCPs detected in the experimental electron densities (HC model) of the CC, ACH and GDC crystals related to parameters at BCPs detected in the electron densities (HC model) from the UBDB models (UBDB) or from the periodic theoretical calculations (without HC model) done for relaxed geometry (Theo. opt.). $d1_{BPL}$ - path lengths (Å) from the first atom to the BCP; $\rho(r)_{BCP}$ - electron density (eÅ⁻³) at BCP; $\nabla^2 \rho(r)_{BCP}$ - Laplacian of electron density (eÅ⁻⁵) at BCP; ε - ellipticity at BCP, E_{EML} - interaction energy (kcal mol⁻¹) estimated from Espinosa-Molins-Lecomte approach computed on the basis of the Abramov approximation (UBDB, Theo. opt.) or of the exact values of the virial density $V(r)_{BCP}$ (Theo. opt. exact).

Correlation between the E_{EML} interaction energies (kcal mol⁻¹) summed over all intermolecular BCPs found in particular dimer and the electrostatic interaction energies of dimers (Ees) from experimental charge densities (Exp) or the total interaction energies (E_{tot}) from the SAPT. The E_{EML} energies were estimated from the Espinosa-Molins-Lecomte approach and the Abramov expression on the basis of experimental densities (Exp.), UBDB (UBDB) densities, or from the Espinosa-Molins-Lecomte approach and exact values of $V(r)_{BCP}$ (not approximated by Abramov expression) on the basis of periodic DFT electron densities from geometry optimization (Theo. opt.).

Correlation between the E_{EML} interaction energies (kcal mol⁻¹) summed over all intermolecular BCPs found in particular dimer and the charge penetration contributions (E_{pen}) to E_{es} computed from MM model of experimental charge densities (Exp.), of periodic DFT charge densities (Theo. opt. MM) or build from UBDB (UBDB). The E_{EML} energies were estimated from the Espinosa-Molins-Lecomte approach and the Abramov expression on the basis of experimental densities (Exp.), UBDB (UBDB) densities, or from the Espinosa-Molins-Lecomte approach and exact values of $V(r)_{BCP}$ (not approximated by Abramov expression) on the basis of periodic DFT electron densities from geometry optimization (Theo. opt.).

Figure S7

Correlation between the E_{pen} energies (kcal mol⁻¹) computed from MM model of experimental charge densities (Exp.) and E_{pen} energies (kcal mol⁻¹) computed from MM model of periodic DFT charge densities (Theo. opt. MM) or build from UBDB (UBDB).