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Abstract: Two interpenetrated coordination polymers (CPs) {[Zn1(L)(NO2pbda)]n[Zn2(L)(NO2pbda)]
n} (1) and [Zn(L)(Brpbda)]n (2) were prepared by reactions of zinc sulfate heptahydrate with N-donor
ligands of 1,4-di(1H-imidazol-4-yl)benzene (L) and auxiliary carboxylic acids of nitroterephthalic
acid (H2NO2pbda) and 2,5-dibromoterephthalic acid (H2Brpbda), respectively. The structures of the
CPs were characterized by Fourier-Transform Infrared (IR) spectroscopy, elemental analysis, and
single-crystal X-ray diffraction. The coordination polymer 1 has two different (4, 4) sql 2D layer
structures based on the [Zn(L)(NO2pbda)] moiety, which results in inclined interpenetration with a 2D
+ 2D→ 3D architecture, while the CP 2 exhibits a 3-fold interpenetrating dmp network. The diffuse
reflectance spectra are also investigated for the CPs 1 and 2.
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1. Introduction

The design of metal–organic coordination polymers (CPs), as one of the most active research
areas, has acquired great attention in recent years, due to their intriguing structures and significant
applications [1–7]. Recently, luminescent coordination polymers have been widely employed to detect
guest molecules with high sensitivity and selectivity. For example, two CPs, {[Cd2L2(H2O)4]·H2O}n and
{[Zn2L2(H2O)4]·H2O}n (H2L = 5-(1H-1,2,4-triazol-1-yl)isophthalic acid), can serve as highly selective
and sensitive fluorescent probes toward CrVI-anions (CrO4

2− and Cr2O7
2−) [8]. In crystal engineering,

the most important factors in assembling desirable CPs are the rational choosing of the bridging ligand
and metal centers; in addition, other reaction conditions, such as solvent, temperature, pH value,
and the nature of anions, can affect the resulting framework [9–13]. It should be mentioned that
the length, rigidity, functional groups, coordination modes, or substituents of organic ligands can
decide the final frameworks of CPs [14,15]. Generally, two important kinds of ligands, including
N-donor and O-donor organic compounds, are widely used to construct diverse CPs, due to their
various coordination modes and modifiable backbones [16,17]. Noticeably, rigid rod-type ligands,
including 4,4′-bipyridine (bpy), terephthalic acid, or their analogues, often act as pillars in building a
rich variety of new entangled CPs [18,19], while the flexible ligands have different shapes associated
with the trans or gauche conformation, favoring the formation of interesting entanglements [20,21].
More recently, a new type of rigid N-donor ligand, including the 4-imidazolyl group, has been designed
by our group, and employed to fabricate porous crystalline materials with good gas adsorption
properties [22–34]. Moreover, a series of diverse CPs have been built through the mixed system
of imidazole and polycarboxylates [25,26]. Taking into account their good compatibility for the
N/O donor mixed system, we choose different carboxylic acids with distinct natures, together with
the rigid rod-type 1,4-di(1H-imidazol-4-yl)benzene (L) ligand to build novel CPs as our continual
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work. In this contribution, we report two Zn(II) CPs of {[Zn1(L)(NO2pbda)]n[Zn2(L)(NO2pbda)]n}
(1) and [Zn(L)(Brpbda)] (2) by reactions of zinc sulfate heptahydrate with mixed ligands of L and
nitroterephthalic acid (H2NO2pbda), and 2,5-dibromoterephthalic acid (H2Brpbda), respectively.

2. Materials and Methods

2.1. Materials and Techniques

The L organic ligand was synthesized according to the literature [27]. The infrared spectrum
was recorded on a Bruker Vector 22 FTIR spectrophotometer (Instrument Inc., Karlsruhe, Germany).
Elemental analyses were performed on a PerkinElmer 2400 elemental analyzer (PerkinElmer, Waltham,
MA, USA). The UV–vis spectra were recorded using a computer-controlled PE Lambda 900 UV–vis
spectrometer (PerkinElmer, USA). Thermogravimetric analyses (TGA) were analyzed by a simultaneous
SDT 2960 thermal analyzer (Thermal Analysis Instrument Inc., New Castle, DE, USA). Power X-ray
diffraction (PXRD) patterns were measured on a Shimadzu XRD-6000 X-ray diffractometer (Shimadzu
Corporation, Kyoto, Japan) with CuKα (λ = 1.5418 Å) radiation.

2.2. Synthesis of {[Zn1(L)(NO2pbda)]n[Zn2(L)(NO2pbda)]n} (1)

Mixtures of ZnSO4·7H2O (28.7 mg, 0.1 mmol), L (21.2 mg, 0.1 mmol), H2NO2pbda (21.1 mg,
0.1 mmol), and H2O (10 mL) were adjusted to pH = 7 with an NaOH solution (0.2 mol L−1), and were
placed in a 25 mL Teflon-lined container and heated to 160 ◦C for 72 h. Brown block crystals of 1 were
collected, with a yield of 69%, at room temperature. Anal. calcd for C20H13N5O6Zn (%): C, 49.56; H,
2.70; N, 14.45. Found: C, 49.38; H, 2.56; N, 14.62. IR: 3447 (w), 3141 (w), 1628 (vs), 1528 (s), 1488 (m),
1377 (m), 1346 (vs), 1264 (w), 1179 (w), 1124 (w), 1073 (w), 948 (w), 837 (m), 816 (m), 785 (w), 651 (w),
612 (w), 521 (w), 489 (w), 421 (w).

2.3. Synthesis of [Zn2(L)(Brpbda)2]n (2)

The same synthetic method as above was used, except that H2NO2pbda was replaced by
H2Brpbda (32.4 mg, 0.01 mmol). Brown block crystals of 2 were obtained (yield: 61%). Anal. calcd for
C20H10Br2N4O4Zn (%): C, 40.34; H, 1.69; N, 9.41. Found: C, 40.19; H, 1.75; N, 9.29. IR: 3465 (m), 3386
(m), 3126 (m), 2856 (m), 1638 (s), 1581 (s), 1545 (s), 1489 (m), 1412 (s), 1359 (m), 1272 (w), 1182 (m), 1172
(m), 1145 (m), 1132 (s), 1081 (m), 968 (m), 838 (m), 818 (s), 798 (m), 679 (m), 648 (m), 628 (w), 530 (w),
459 (w).

2.4. Crystallographic Data Collection and Refinements

The data collection for CPs 1–2 was carried out on a Bruker Smart Apex CCD area-detector
diffractometer. The diffraction data and structural analysis were integrated using the SAINT program
and the SADABS program, and anisotropically, on F2 by the full-matrix least-squares technique,
respectively [28–30]. The details of the crystal parameters are summarized in Table 1; selected bond
lengths and angles are listed in Table S1. CCDC: 1959065, 1959064 for 1 and 2. The atoms of C, O, and
Br for CP 2 are disordered and split into (C5, C5B), (C6A, C6B), (C7A, C7B), (C8A, C8B), (C9A, C9B),
(C10A, C10B), (O1A, O1B), (O2A, O2B), and (Br1A, Br1B). Copy of the data can be obtained free of
charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336-033;
E-Mail: deposit@ccdc.cam.ac.uk).
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Table 1. Crystallographic data and structure refinement details for coordination polymers (CPs) 1 and 2.

1 2

Empirical formula C20H13N5O6Zn C20H10Br2N4O4Zn
Formula weight 484.72 595.51
Temperature/K 296(2) 296(2)
Crystal system Triclinic Orthorhombic

Space group P 1 P nna
a/Å 9.037(2) 11.0101(10)
b/Å 9.141(2) 14.6802(14)
c/Å 12.948(3 14.8721(13)
α/◦ 107.832(3) 90
β/◦ 95.123(3) 90
γ/◦ 108.233(3) 90

V (Å3) 946.6(4) 2403.8(4)
Z, Dcalc/(Mg/m3) 2, 1.701 4, 1.646

F(000) 492 1160
θ range/◦ 1.69–25.99 3.59–25.01

Reflections collected 7131 26144
Independent reflections 5942 2088
Goodness-of-fit on F2 0.997 1.094

R1 [I > 2σ (I)] a 0.0398 0.0989
wR2 [I > 2σ (I)] b 0.0819 0.2401

a R1 = Σ||Fo | − |Fc ||/Σ|Fo |. b wR2 = |Σw(|Fo |2 − |Fc |
2)|/Σ|w(Fo)2 |1/2, where w = 1/[σ2(Fo

2) + (aP)2 + bP]. P = (Fo
2 + 2Fc

2)/3.

3. Results

3.1. Structural Descriptions

3.1.1. Structure of {[Zn1(L)(NO2pbda)]n[Zn2(L)(NO2pbda)]n} (1)

Single-crystal structural analysis reveals that CP 1 crystallizes in a monoclinic form with space
group P 1 (Table 1). The asymmetric unit has two sets of [Zn(L)(NO2pbda)] units, and each unit
includes a distinct Zn(II) atom, one L ligand, and one NO2pbda2−. Both of the Zn(II) atoms possess
a N2O2 donor set, forming 4-coordinated tetrahedral coordination geometry (Figure 1a). The Zn−O
bond distances range from 1.939(3) to 2.015(3) Å and the Zn−N bond distances range from 1.980(4)
to 2.000(4) Å; the coordination angles around Zn(II) range from 94.83(14)◦ to 128.61(17)◦ (Table S1).
Noticeably, in each independent set of [Zn(L)(NO2pbda)]n, the NO2pbda2− ligands act as linear
ligands to link two Zn(II) atoms by the opposite carboxylate groups in the µ1-η1:η0-monodentate
mode, forming a one-dimensional (1D) chain [Zn(NO2pbda)]n. The linear L ligands connect 1D
chains into two-dimensional (2D) [Zn(L)(NO2pbda)]n layers (Figure 1b), which can be considered as
44-sql topology, by taking Zn(II) atoms as 4-connecting nodes, and the L and NO2pbda2− ligands as
2-connectors. Thus, two L ligands together with two NO2pbda2− units, connect four Zn(II) atoms to
afford a [Zn4(L)2(NO2pbda2−)2] square unit, where the lateral Zn···Zn distances are around 9.10 and
13.36 Å. The rhombus has large rectangular windows, which permit inclined interpenetration for these
two distinct [Zn(L)(NO2pbda)] layers, with an angle of 66.24◦, forming the 2D + 2D→ 3D inclined
polycatenation framework (Figure 1c,d) [31,32].
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Figure 1. (a) The coordination environment of the Zn(II) atoms in 1. Symmetry code: A x, 1+y, 1+z, B 
−1+x, y, z, C x, 1+y, z. (b) 2D polycatenation of 1. (c) The 3D framework built from 2D + 2D → 3D 
interpenetration. (d) Schematic representation of inclined interpenetration in 1. 
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monoclinic space group, P 1, in 1. The asymmetric unit includes half of the [Zn(L)(Brpbda)] units, 
namely half of a distinct Zn(II) atom, a Brpbda2− anion, and an L unit, respectively. As shown in 
Figure 2a, the Zn1 atom is coordinated by two oxygen atoms (O1, O1A) from two different Brpbda2− 
anions, and two nitrogen atoms (N3, N3A) of two L ligands, forming distorted tetrahedral 
coordination geometry. In 2, each Brpbda2− anion links two adjacent Zn2+ ions by two carboxyl 
groups using the µ1-η1:η0-monodentate coordination mode, generating a 1D zigzag chain along the 
a axis (Figure 2b). Similarly, the linear L ligands act as 2-connectors to link Zn(II) atoms to form 1D 
zigzag chains. As a consequence, these 1D chains are interconnected to afford a 3D coordination 
framework (Figure 2c). Topologically, both the µ2-Brpbda2− anions and the L ligands are linear 
2-connectors, while each Zn(II) atom is a 4-connector to connect the other four Zn(II) atoms by two 
Brpbda2− and two L ligands. Thus, the network of 2 is a 4-connected dmp net with a (65·8) topology 
[33,34]. Due to the great void of each single net, it permits the inclusion of another two independent 
equivalent networks, resulting in a 3-fold interpenetrating dmp net (Figure 2d).  

Figure 1. (a) The coordination environment of the Zn(II) atoms in 1. Symmetry code: A x, 1+y, 1+z, B
−1+x, y, z, C x, 1+y, z. (b) 2D polycatenation of 1. (c) The 3D framework built from 2D + 2D→ 3D
interpenetration. (d) Schematic representation of inclined interpenetration in 1.

3.1.2. Structure of [Zn(L)(Brpbda)]n (2)

A different H2Brpbda acid with a Br atom substituent group replaced H2NO2pbda in the reaction
of 1, and the new compound of 2, possessing 3-fold interpenetrating dmp topology was obtained.
Complex 2 crystallizes in the orthorhombic P nna space group, quite different from the monoclinic
space group, P 1, in 1. The asymmetric unit includes half of the [Zn(L)(Brpbda)] units, namely half of a
distinct Zn(II) atom, a Brpbda2− anion, and an L unit, respectively. As shown in Figure 2a, the Zn1 atom
is coordinated by two oxygen atoms (O1, O1A) from two different Brpbda2− anions, and two nitrogen
atoms (N3, N3A) of two L ligands, forming distorted tetrahedral coordination geometry. In 2, each
Brpbda2− anion links two adjacent Zn2+ ions by two carboxyl groups using the µ1-η1:η0-monodentate
coordination mode, generating a 1D zigzag chain along the a axis (Figure 2b). Similarly, the linear L
ligands act as 2-connectors to link Zn(II) atoms to form 1D zigzag chains. As a consequence, these 1D
chains are interconnected to afford a 3D coordination framework (Figure 2c). Topologically, both the
µ2-Brpbda2− anions and the L ligands are linear 2-connectors, while each Zn(II) atom is a 4-connector
to connect the other four Zn(II) atoms by two Brpbda2− and two L ligands. Thus, the network of 2 is a
4-connected dmp net with a (65

·8) topology [33,34]. Due to the great void of each single net, it permits
the inclusion of another two independent equivalent networks, resulting in a 3-fold interpenetrating
dmp net (Figure 2d).
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3.2. Thermal Analyses and X-Ray Power Diffraction Analyses

The stability of CPs 1 and 2 was evaluated by thermogravimetric analysis (TGA); the analysis
results are listed in Figure S1. The results of TGA for CPs 1 and 2 showed no weight losses for the
crystalline materials until the frameworks collapses at about 195 and 245 ºC respectively, indicating
that the frameworks of compounds 1–2 contain no guest molecules, which is consistent with their
structures, as evidenced by the analysis of the crystal structures. The diffraction peaks of as-synthesized
CPs 1 and 2 fit well with the simulated power X-ray diffraction (PXRD) patterns from single crystal
results. The result confirms that the as-synthesized crystalline materials of 1 and 2 are phase purities,
as shown in Figure S2.

3.3. IR and Diffuse Reflectance Spectra

IR spectra of CPs 1 and 2 were recorded between 4000 and 400 cm−1. The characteristic peak with
vibrational bands, 1638–1528 cm−1, disappear around 1700 cm−1, which means the carboxylic groups
are deprotonated. The infrared spectra of L indicate the prominent characteristic absorption bands at
1528–1489 and 1270–1124 cm−1, attributed to its aromatic rings [35].

The UV–vis absorption spectra of 1 and 2 in their solid states were recorded in Figure 3. The L ligand
shows intense absorption peaks ranging from 250 to 300 nm, which belongs to π−π* transitions [36].
Obviously, the CPs 1 and 2 showed similar absorption bands in the UV region, which correspond to
intraligand π→ π* and n→ π* transitions. Furthermore, the diffuse reflectance data obtained were
transformed into a Kubelka–Munk function to get their band gaps (Eg), which can be employed to
evaluate the semiconductivity of the CPs. The values of Eg are estimated as 3.52 and 2.59 eV for CPs 1
and 2 (Figure 4), which were determined by a direct band gap semiconductor: (Ahν)2 = B(hν− Eg). The
values of Eg for CPs 1 and 2 are comparatively a little higher than the series of Ni(II) compounds [37],
and the as-synthesized crystalline materials may be optical semiconductors [38].
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