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Abstract: A unprecedented hetero-bimetallic 3d-4f BDC-salamo-based coordination polymer,
[(L)Ni(BDC)Gd(NO3)(DMF)] was prepared and validated via elemental analyses, IR and UV–Visible
absorption spectra, DFT calculation, and X-ray crystallography. The six-coordinated Ni1 ion lies at the
N2O2 donor site of the L2− moiety, and one DMF O atom and carboxylate O atom occupy, collectively,
the axial positions, and form a twisted octahedron. The nine-coordinated Gd1 ion consists of three
oxygen atoms (O12, O13, and O14) of two carboxylate groups, two oxygen atoms (O8 and O9) derived
from one bidentate nitrate group, and an O2O2 coordination site (O1, O2, O6, and O5) of the L2− unit,
forming a twisted three-capped triangular prism coordination geometry. Compared to the ligand
(H2L), the fluorescence intensity decreases due to the coordination of metal ions. Meanwhile, the
antibacterial activities are researched.

Keywords: 3d-4f coordination polymer; salamo-based ligand; crystal structure; property;
DFT calculation

1. Introduction

The salen-like compounds are an important class of Schiff bases having a C2 axis of
symmetry [1–5], and the coordinating group of the salen-like ligands mostly contain two Schiff
base N and phenol O atoms on the skeleton [6–11] which constitutes a tetradentate N2O2

coordination cavity, and is easy to bind with transition metal ions, alkaline earth metal ions,
and rare earth metal ions to obtain various metal complexes such as mononuclear, binuclear,
multinuclear, and heteropolynuclear complexes [12–17]. Salen and its metal complexes have been
researched far and wide [18–23] for their excellent catalytic [24,25] and biological activities [26–28],
magnetic materials [29–33], electrochemical researches [34–37], supramolecular buildings [38–42], and
fluorescence properties [43–46]. The salamo-like ligands are a very important kind of versatile chelating
bisoxime ligands including N2O2-donor cavity [47]. These ligands are synthesized by structural
modification of the salen-like ligands, and are generally coordinated with metal ions to obtain
multinuclear metal complexes. On account of the high coordination abilities of the phenoxy atoms,
many central metal ions could be coordinated to prepare heteromultinuclear metal complexes [48–50].
However, transition metal complexes of salamo-based compounds have aroused wide concern on their
photophysical properties and reported successively [51–57], and heterobimetallic 3d-4f salamo-like
complexes, especially containing auxiliary ligands, have rarely been reported [58]. It is generally true
that the self-assembly process of organometallic complexes is frequently used to construct metal organic
framework (MOF) materials [59]. Here, an unprecedented heterobimetallic salamo-like coordination
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polymer, ∞[(L)Ni(BDC)Gd(NO3)(DMF)], is synthesized, and the photophysical characteristics and
antibacterial activities of H2L and its NiII-GdIII polymer are discussed. In addition, the paper also
introduces DFT calculations to study the electronic structure and properties of the polymer.

2. Experimental Section

2.1. Materials and Physical Measurements

3-Ethoxybenzaldehyde (97%) was bought from Alfa Aesar and utilized without further purification.
Terephthalic acid (BDC) and other analytically pure solvents and reagents were from Tianjin Chemical
Reagent Factory. Elemental analyses were detected with an IRIS ER/S-WP-1 ICP atomic emission
spectrometer and GmbH VarioEL V3.00 automatic elemental analysis instrument from Berlin, Germany,
respectively. Melting points were measured via a micro melting point apparatus manufactured by
Beijing Taike Instrument Limited company and were uncorrected. FT-IR spectra were recorded on
a Vertex70 FT-IR spectrophotometer, with samples prepared as KBr (500–4000 cm−1) from Bruker,
Germany. UV-vis spectra were obtained on a Shimadzu UV-3900 spectrometer from Hitachi, Tokyo,
Japan. Fluorescence spectra were obtained on a F-7000 FL 220-240V spectrophotometer from Hitachi,
Tokyo, Japan. 1H NMR spectra were determined by a German Bruker AVANCE DRX-400 spectrometer.
X-ray structure determination was carried out on a SuperNova Dual (Cu at zero) Eos four-circle
diffractometer (Bruker, Germany) and Mo-Kα (λ = 0.71073 Å) ray radiation was monochromated
with graphite [60]. Molecular orbital calculations were performed by density functional theory (DFT).
The DFT methods used were the gradient-corrected functional proposed by B3LYP; basis sets with SDD
were used to expand the Kohn–Sham orbitals. These calculations were done using the Gaussian 09
(Shenzhen, P. R. China.) suite of programs. The conductivity was measured by DOS-110 conductivity
meter produced by Shanghai Precision Scientific Instrument Co., Ltd. Powder X-ray diffraction (PXRD)
data were recorded on a Rigaku D/Max-2400 X-ray diffractometer with Cu/Kα as the radiation source
(λ = 0.15406 nm) in the angular range 2θ = 5–50◦ at room temperature.

2.2. Preparation and Characterization of H2L

H2L was prepared in the light of a similar method previously reported [61]. The synthetic route
to H2L is shown in Scheme 1. An ethanol solution (10 mL) of 1,2-bis(aminooxy)ethane (276.0 mg,
3.0 mmol) was added to an ethanol solution (20 mL) of 2-hydroxy-3-ethoxybenzaldehyde (996.0 mg,
6.0 mmol), and the mixture was stirred at 60~55 ◦C for 5 h. Then, white crystalline H2L was separated
and obtained. Yield: 784.0 mg, 67.3%. m.p. 462~463 K. Anal. calcd for C20H24N2O6 (%): C, 61.84; H,
6.23; N, 7.21. Found (%): C, 61.80; H, 6.30; N, 7.19. 1H NMR (500MHz, CDCl3): 1H NMR (500 MHz,
CDCl3) δ 1.48 (t, J = 9.4 Hz, 6H, CH3), 4.12 (q, J = 7.0 Hz, 4H, OCH2), 4.46 (s, 4H, CH2), 6.83 (t, J = 3.1
Hz, 4H, ArH), 6.91 (dd, J = 4.9, 2.4 Hz, 2H, ArH), 8.26 (s, 2H, CH=N), 9.69 (s, 2H, OH).
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2.3. Preparation of the Coordination Polymer

A solution of gadolinium nitrate hexahydrate (27.5 mg, 0.05 mmol) and nickel acetate tetrahydrate
(12.4 mg, 0.05 mmol) in ethanol (5.0 mL) were added dropwise to a solution (5.0 mL) of H2L in ethanol
(5.0 mL), then a solution (5.0 mL) of terephthalic acid (16.6 mg, 0.1 mmol) in DMF was added to the
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mixed solution. The mixture color changed to green immediately, and the mixture was kept stirring
for 1 h. Then the mixture was filtered and the filtrate was obtained. The crystals suitable for X-ray
crystallographic analysis were obtained by vapor diffusion of diethyl ether into the resulting filtrate
for a few weeks at room temperature. Yield: 54.8%. Anal. Calcd for ∞[(L)Ni(BDC)Gd(NO3)(DMF)]
(C31H33GdN4NiO14) (%): C, 41.31; H, 3.69; N, 6,21; Gd, 17.44, Ni, 6.51. Found: C, 41.48; H, 3.54; N,
6.12; Gd, 17.01, Ni, 6.10.

2.4. X-ray Crystallography

The single crystal of the polymer was collected by a SuperNova Dual Eos four-circle diffractometer,
monochromatic Mo-Kα radiation (λ = 0.71073 Å) was carried out with a graphite monochromator and
then processed with Olex2-2009. The crystal structure was solved with ShelXT-2015 and refined with
ShelXL-2015 [62]. The anisotropic thermal parameters are assigned to all non–hydrogen atoms. CCDC
1957944. The crystallographic data for the NiII-GdIII coordination polymer was listed in Table 1.

Table 1. Crystallographic data for the NiII-GdIII coordination polymer.

Compond The NiII-GdIII Coordination Complex

Formula C31H33GdN4NiO14
Formula weight 901.57
Temperature (K) 100.00(10)

Radiation (Å) 0.71073
Crystal system monoclinic

Space group P 21/n
a (Å) 10.8324 (7)
b (Å) 18.4853 (11)
c (Å) 17.7452 (12)
α (◦) 90
β (◦) 104.790 (7)
γ (◦) 90

V (Å3) 3435.6 (4)
Z 4

Dc (g·cm−3) 1.743
µ (mm−1) 2.536

F (000) 1804
Crystal size (mm) 0.11 × 0.09 × 0.08
θ Range (◦) 2.203–29.566

Index ranges
−14 ≤ h ≤ 11
−23 ≤ k ≤ 23
−22 ≤ l ≤ 19

Completeness to θ 84.3% (θ = 25.242)
Tot. Date 18,620

Uniq. Date 8118
R (int) 0.0397

Observed Date 6605
Nref/Npar 8118/464

GOF 1.020
R[I/>2σ(I)] R1 = 0.0396, R2 = 0.0846

Largest diff. peak
and hole (e·Å−3) −0.88, 1.45

R1 = Σ||Fo| − |Fc||/Σ|Fo|;ωR2 = [Σω(Fo
2
− Fc

2)2/Σω(Fo
2)2]1/2; GOF = [Σω(Fo

2
− Fc

2)2/nobs − nparam)]1/2.
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3. Results and Discussion

3.1. Solubility and Molar Conductance

The NiII-GdIII polymer can be soluble in DMF and DMSO, slightly soluble in acetone, methanol,
ethanol, trichloromethane, dichloromethane, and acetonitrile, and insoluble in ethyl ether, n-hexane,
ethyl acetate, and water. The molar conductance of the NiII-GdIII polymer dissolved in DMF at
25 ◦C (1 × 10−3 mol L−1) is 174.2 Ω−1

·cm2
·mol−1. The molar conductivity result is close to the

previously reported 1:2 electrolyte [63]. The NiII-GdIII polymer dissolved in DMF may be comprised
of [Gd(DMF)2]3+ cation and [(L)Ni(BDC)]2− and NO3

− anions. The observed conductance would then
correspond to the following equilibria taking place in solution:

[(L)Ni(BDC)Gd(NO3)(DMF)]
 [(L)Ni(BDC)]2− + [Gd(NO3)(DMF)]2+

[Gd(NO3)(DMF)]2+ + DMF
 [Gd(DMF)2]3+ + NO3
−

3.2. PXRD Analysis

A PXRD experiment was performed for the NiII-GdIII coordination polymer to confirm whether
the crystal structure is truly representative. The PXRD pattern of the NiII-GdIII coordination polymer
is depicted in Figure 1. The experimental pattern is in good agreement with the simulated one through
detailed comparison. Thus, the as-synthesized sample is pure enough for the further research of
spectral characterization and fluorescence property.
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3.3. FT-IR Spectra

The infrared spectra of H2L and its NiII-GdIII coordination polymer are given in Figure 2. The C=N
stretching vibration band of H2L is observed at ca. 1611 cm−1, while that of the NiII-GdIII coordination
polymer is found at ca. 1627 cm−1. The O–H stretching band of H2L is found at ca. 3452 cm−1 that
belongs to the phenolic hydroxyl groups. Furthermore, the typical Ar–O stretching band of H2L
emerges at approximately 1248 cm−1, and after coordination, the stretching band shifted to a low
wave number emerges at approximately 1216 cm−1 [17,24]. In the coordination polymer, there is an
unsymmetrical νasCOO

− stretching vibration band (1549 cm−1) and a symmetric νsCOO
− stretching

band (1496 cm−1) of the terephthalic acid, indicating that the carboxylate is a bridge-shaped structure.
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3.4. UV-Vis Spectra

The free ligand H2L and its NiII-GdIII coordination polymer were dissolved and made into
1 × 10−5 M methanol solution, and their UV-Vis absorption spectra are depicted in Figure 3. It can be
seen that their UV-Vis absorption spectra are obviously different. The UV-Vis absorption spectrum of
H2L possesses two strong absorption peaks at about 270 and 318 nm. The peak at 270 nm could be part
of the π–π* transition of the benzene rings, and the peak at 318 nm can be part of the intra-ligand π–π*

transition of the C=N bonds [11,37]. Compared with the peaks of H2L, a new absorption peak is found
at about 320 nm upon coordination, which is part of the n–π* transition from the filled pπ orbital of the
bridging phenolic O to the vacant d-orbital of the NiII ions [28,29].
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3.5. Crystal Structure Description

The molecule structure of the NiII-GdIII coordination polymer and coordination geometries of
metal(II/III) ions are depicted in Figure 4, and the essential bond lengths and angles are summarized
in Table 2. The X-ray crystallographic result reveals that the NiII-GdIII coordination polymer crystallizes
in the monoclinic system, space group P 21/n, an asymmetric unit of the coordination polymer contains
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one wholly deprotonated L2− unit, one NiII ion (Ni1), one GdIII ion (Gd1), one nitrate group, one DMF,
and one terephthalic acid molecule.
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Figure 4. (a) Molecule structure and atom numberings of the NiII-GdIII coordination polymer with
30% probability displacement ellipsoids; (b) coordination polyhedra for NiII and GdIII ions of the
coordination polymer; (c) view of 1-D chain structure of the NiII-GdIII coordination polymer.
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Table 2. Essential bond lengths (Å) and angles (◦) for the NiII-GdIII coordination polymer.

Bond Dist. Bond Dist. Bond Dist.

Gd1–O1 2.378(2) Gd1–O13 #1 2.416(3) Ni1–N1 2.063(3)
Gd1–O2 2.521(3) Gd1–O14 #1 2.482(3) Ni1–N2 2.060(3)
Gd1–O5 2.336(3) Ni1–O1 2.019(3) Ni1–O7 2.091(3)
Gd1–O6 2.599(3) Ni1–O5 2.025(2) Ni1–O11 2.063(3)
Gd1–O8 2.473(3) Gd1–O9 2.520(3)

Bond Angles Bond Angles Bond Angles

O1–Gd1–O2 63.76(9) O2–Gd1–O6 149.31(10) O5–Gd1–O12 82.51(9)
O1–Gd1–O5 68.34(8) O2–Gd1–O8 122.89(10) O5–Gd1–O13 #1 131.02(9)
O1–Gd1–O6 123.24(8) O2–Gd1–O9 71.92(9) O5–Gd1–O14 #1 90.05(9)
O1–Gd1–O8 145.56(10) O2–Gd1–O12 87.78(10) O5–Gd1–C31 #1 110.41(10)
O1–Gd1–O9 122.76(9) O1–Gd1–O13 #1 78.28(10) O7–Ni1–N2 86.07(12)

O1–Gd1–O12 73.76(9) O1–Gd1–O14 #1 80.07(10) O6–Gd1–O8 70.28(10)
O1–Gd1–O13 #1 126.03(9) O1–Gd1–C31 #1 79.59(11) O6–Gd1–O9 113.51(9)
O1–Gd1–O14 #1 81.99(9) O5–Gd1–O6 62.21(8) O6–Gd1–O12 122.81(10)
O1–Gd1–C31 #1 105.41(10) O5–Gd1–O8 98.84(9) O6–Gd1–O13 #1 74.78(10)

O2–Gd1–O5 131.95(9) O5–Gd1–O9 143.56(9) O6–Gd1–O14 #1 72.24(10)
O6–Gd1–C31 #1 69.72(11) O9–Gd1–O13 #1 73.97(10) O13#1–Gd1–31 #1 26.98(10)

O8–Gd1–O9 51.00(10) O9–Gd1–O14 #1 124.44(9) O14#1–Gd1–31 #1 26.72(10)
O8–Gd1–O12 72.90(10) O9–Gd1–C31 #1 100.01(10) O1–Ni1–O5 81.82(10)

O8–Gd1–O13 #1 86.97(10) O12–Gd1–O13 #1 143.91(10) O1–Ni1–O7 91.33(10)
O8–Gd1–O14 #1 131.28(10) O12–Gd1–O14 #1 155.71(10) O1–Ni1–O11 90.02(11)
O8–Gd1–C31 #1 109.03(11) O12–Gd1–C31 #1 166.02(11) O1–Ni1–N1 89.95(12)

O9–Gd1–O12 70.06(10) O13#1–Gd1–14 #1 53.60(9) O1–Ni1–N2 169.75(12)
O5–Ni1–O7 92.62(10) O7–Ni1–O11 175.67(11) O11–Ni1–N2 93.31(12)
O5–Ni1–O11 91.64(11) O7–Ni1–N1 87.35(12) N1–Ni1–N2 99.83(13)
O5–Ni1–N1 171.76(12) O7–Ni1–N2 86.07(12) Gd1 #2–C31–O14 62.0(2)
O5–Ni1–N2 88.39(12) O11–Ni1–N1 88.54(13) Gd1 #2–C31–C28 171.4(3)

Gd1 #2–C31–O13 59.03(19) Gd1 #2–O13–C31 94.0(2) Gd1 #2–O13–C31 91.3(2)

Symmetry transformations used to generate equivalent atoms: #1 x + 1/2, −y + 1/2, z − 1/2, #2 x − 1/2, −y + 1/2,
z + 1/2.

The six-coordinated Ni1 ion lies at the N2O2 donor site of the ligand L2− unit, and one DMF O
atom and carboxylate O atom occupy, collectively, the axial positions, and form a twisted octahedron.
The nine-coordinated Gd1 ion consists of three O atoms (O12, O13, and O14) of two carboxylate
molecules, two O atoms (O8 and O9) derived from one bidentate nitrate group, and an O2O2

coordination site (O1, O2, O6, and O5) of the ligand L2− unit, forming a twisted three-capped triangular
prism coordination geometry. The salamo-like ligand H2L can be self-assembled with some bridging
ligands and metal salts to obtain multiple complexes or polymers due to its structural specificity [64];
here, terephthalic acid, as a tetradentate connecting agent, can connect NiII and GdIII ions to form a
chain coordination polymer.

Furthermore, the hydrogen bonding interactions of the NiII-GdIII coordination polymer are listed
in Table 3. In the structure of the NiII-GdIII coordination polymer, there are seven intra-molecular
hydrogen bonding interactions (C7–H7B···O13, C11–H11B···O11, C19–H19B···O13, C20–H20C···O8,
C21–H21···O5, C23–H23A···O7, and C27–H27···O13) [65–73] (Figure 5a) and four inter-molecular
hydrogen bonding interactions (C9–H9...O10, C10–H10A...O9, C19–H19B...O5, and C20–H20B...O3)
(Figure 5b), and an infinite 1-D chain supramolecular structure is formed by inter-molecular hydrogen
bonding interactions.
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Table 3. Hydrogen bond parameters (Å, ◦) for the NiII-GdIII coordination polymer.

D–H···A d(D–H) d(H···A) d(D···A) ∠D–H···A Symmetry Code

C7–H7B···O13 0.97 2.55 3.163(5) 121 –1/2 + x, 1/2–y, 2 + z
C9–H9···O10 0.93 2.56 3.456(5) 163 3/2 − x, 1/2+ y, 3/2 − z

C10–H10A···O9 0.97 2.54 3.259(6) 131 3/2 − x, 1/2+y, 3/2 − z
C11–H11B···O11 0.97 2.24 3.169(5) 159
C19–H19B···O4 0.97 2.50 3.105(5) 120 1/2 − x, −1/2 + y,3/2 − z
C19–H19B··O13 0.97 2.47 3.146(6) 128 –1/2 + x, 1/2 − y, 2 + z
C20–H20B···O3 0.96 2.49 3.396(6) 157 1/2 − x, 1/2 + y, 3/2 − z
C20–H20C···O8 0.96 2.41 3.185(6) 138
C21–H21···O5 0.93 2.56 3.090(4) 116
C21–H21···O14 0.93 2.46 2.258(5) 148 –1/2 + x, 1/2 − y, 2 + z
C23–H23A···O7 0.96 2.44 2.810(5) 103
C23–H27···O13 0.96 2.49 2.796(5) 100
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3.6. Fluorescence Properties

Photophysical properties of lanthanide complexes of salen-like and salamo-like ligands have been
successfully reported previously [74]. The free ligand H2L and its NiII-GdIII coordination polymer
were dissolved and made into a 2.5 × 10−5 M methanol solution, and their fluorescence spectra excited



Crystals 2019, 9, 596 9 of 15

at 315 nm are revealed in Figure 6. H2L has the strongest absorption peak at about 404 nm, probably
owing to the π–π* transition of the L2− unit. Compared to the free ligand H2L, a stronger emission
peak at approximately 404 nm is observed upon coordination, which is attributable to the coordination
of the L2− unit and metal ions; the conjugated system upon coordination decreases.
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3.7. DFT Calculation

In order to understand the electronic structure and properties of the polymer, a DFT calculation
was performed on the polymer using Gaussian 09 [75] (Figure 7). The graph of the highest occupied
molecular orbitals (HOMOs) of the polymer indicates that the HOMOs are delocalized, mainly in the
orbit of NiII-GdIII ions. LUMOs are relatively limited to the auxiliary ligands of terephthalic acid and
NiII-GdIII orbitals. The frontier molecular orbital energy of the polymer is EHOMO = −4.4792 eV and
ELUMO = −2.3518 eV. The polymer HOMO–LUMO gap is 2.12177 eV. The molecular orbital energy
occupied by the polymer is all negative, indicating molecular chemical stability. The polymer has a
lower HOMO–LUMO energy gap (∆E = ELUMO − EHOMO), and the smaller the ∆E value, the more
active the molecule.Crystals 2019, 9, x FOR PEER REVIEW 9 of 14 
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3.8. Antibacterial Activities

This paper chooses DMF as the solvent and configured the ligand, nickel acetate, cerium nitrate,
the NiII-GdIII polymer, and ampicillin as solutions to be tested. Four sets of different concentrations of
DMF solutions were prepared–0.4, 0.8, 1.6, and 3.2 mg/mL. For ease of analysis, we distributed the
bacterial inoculant evenly over a flat surface, placing the impregnated plate near the edge of the flat
surface and maintaining a certain distance. Ampicillin was used as a positive experiment under the
same condition and 200 µL sample was put into LB solid medium, and all samples were incubated at
32 ◦C for 12 h.

The ampicillin inhibition zone diameter was the best in various samples at a concentration of
3.2 mg/mL. As depicted in Figure 8, the inhibitory regions of DMF, nickel(II) acetate, gadolinium nitrate,
H2L, ampicillin, and the coordination polymer dissolved in DMF gradually increased, and show that
the coordination polymer dissolved in DMF has a good antibacterial activity. Firstly, due to the heavy
metal ion effect force in the polymer, protein structure in the bacteria are destroyed. Secondly, the
ligand also destroys part of the bacterial membrane, and the bacteria cannot further divide and multiply
and thus die. These observations are similar to the biological activities of previously successfully
reported complexes [76–79].
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4. Conclusions

An unprecedented hetero-bimetallic 3d-4f coordination polymer, [(L)Ni(BDC)Gd(NO3)(DMF)]
was designed and synthesized, and the single crystal structure was validated via X-ray crystallography.
The coordination polymer forms a 1-D supra-molecular chain structure, and the nine-coordinated
GdIII ion is located in an O9 coordination environment and forms a twisted three-capped triangular
prism coordination geometry. The six-coordinated Ni1 ion lies at the N2O2 donor site of the L2− unit,
and one DMF O atom and carboxylate O atom occupy, collectively, the axial positions, and form a
twisted octahedron. In addition, the polymer dissolved in DMF has good antibacterial activity due to
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the heavy metal ion effect of the NiII-GdIII coordination polymer, and a stronger emission peak appears
at about 404 nm. The structure of the polymer was rationalized by DFT calculation. In addition, the
possible form of the polymer dissolved in DMF was investigated by measuring the molar conductivity.
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